File size: 4,561 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
import torch.nn as nn

from toolkit.models.zipper_resampler import ContextualAlphaMask


# Conv1d MLP
# MLP that can alternately be used as a conv1d on dim 1
class MLPC(nn.Module):
    def __init__(
            self,
            in_dim,
            out_dim,
            hidden_dim,
            do_conv=False,
            use_residual=True
    ):
        super().__init__()
        self.do_conv = do_conv
        if use_residual:
            assert in_dim == out_dim
        # dont normalize if using conv
        if not do_conv:
            self.layernorm = nn.LayerNorm(in_dim)

        if do_conv:
            self.fc1 = nn.Conv1d(in_dim, hidden_dim, 1)
            self.fc2 = nn.Conv1d(hidden_dim, out_dim, 1)
        else:
            self.fc1 = nn.Linear(in_dim, hidden_dim)
            self.fc2 = nn.Linear(hidden_dim, out_dim)

        self.use_residual = use_residual
        self.act_fn = nn.GELU()

    def forward(self, x):
        residual = x
        if not self.do_conv:
            x = self.layernorm(x)
        x = self.fc1(x)
        x = self.act_fn(x)
        x = self.fc2(x)
        if self.use_residual:
            x = x + residual
        return x


class ZipperBlock(nn.Module):
    def __init__(
            self,
            in_size,
            in_tokens,
            out_size,
            out_tokens,
            hidden_size,
            hidden_tokens,
    ):
        super().__init__()
        self.in_size = in_size
        self.in_tokens = in_tokens
        self.out_size = out_size
        self.out_tokens = out_tokens
        self.hidden_size = hidden_size
        self.hidden_tokens = hidden_tokens
        # permute to (batch_size, out_size, in_tokens)

        self.zip_token = MLPC(
            in_dim=self.in_tokens,
            out_dim=self.out_tokens,
            hidden_dim=self.hidden_tokens,
            do_conv=True,  # no need to permute
            use_residual=False
        )

        # permute to (batch_size, out_tokens, out_size)

        # in shpae: (batch_size, in_tokens, in_size)
        self.zip_size = MLPC(
            in_dim=self.in_size,
            out_dim=self.out_size,
            hidden_dim=self.hidden_size,
            use_residual=False
        )

    def forward(self, x):
        x = self.zip_token(x)
        x = self.zip_size(x)
        return x






# CLIPFusionModule
# Fuses any size of vision and text embeddings into a single embedding.
# remaps tokens and vectors.
class CLIPFusionModule(nn.Module):
    def __init__(
            self,
            text_hidden_size: int = 768,
            text_tokens: int = 77,
            vision_hidden_size: int = 1024,
            vision_tokens: int = 257,
            num_blocks: int = 1,
    ):
        super(CLIPFusionModule, self).__init__()

        self.text_hidden_size = text_hidden_size
        self.text_tokens = text_tokens
        self.vision_hidden_size = vision_hidden_size
        self.vision_tokens = vision_tokens

        self.resampler = ZipperBlock(
            in_size=self.vision_hidden_size,
            in_tokens=self.vision_tokens,
            out_size=self.text_hidden_size,
            out_tokens=self.text_tokens,
            hidden_size=self.vision_hidden_size * 2,
            hidden_tokens=self.vision_tokens * 2
        )

        self.zipper_blocks = torch.nn.ModuleList([
            ZipperBlock(
                in_size=self.text_hidden_size * 2,
                in_tokens=self.text_tokens,
                out_size=self.text_hidden_size,
                out_tokens=self.text_tokens,
                hidden_size=self.text_hidden_size * 2,
                hidden_tokens=self.text_tokens * 2
            ) for i in range(num_blocks)
        ])

        self.ctx_alpha = ContextualAlphaMask(
            dim=self.text_hidden_size,
        )

        self.alpha = nn.Parameter(torch.zeros([text_tokens]) + 0.01)

    def forward(self, text_embeds, vision_embeds):
        # text_embeds = (batch_size, 77, 768)
        # vision_embeds = (batch_size, 257, 1024)
        # output = (batch_size, 77, 768)

        vision_embeds = self.resampler(vision_embeds)
        x = vision_embeds
        for i, block in enumerate(self.zipper_blocks):
            res = x
            x = torch.cat([text_embeds, x], dim=-1)
            x = block(x)
            x = x + res

        # alpha mask
        ctx_alpha = self.ctx_alpha(text_embeds)
        # reshape alpha to (1, 77, 1)
        alpha = self.alpha.unsqueeze(0).unsqueeze(-1)

        x = ctx_alpha * x * alpha

        x = x + text_embeds

        return x