File size: 12,205 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import math
import weakref

import torch
import torch.nn as nn
from typing import TYPE_CHECKING, List, Dict, Any
from toolkit.models.clip_fusion import ZipperBlock
from toolkit.models.zipper_resampler import ZipperModule, ZipperResampler
import sys
from toolkit.paths import REPOS_ROOT
sys.path.append(REPOS_ROOT)
from ipadapter.ip_adapter.resampler import  Resampler
from collections import OrderedDict

if TYPE_CHECKING:
    from toolkit.lora_special import LoRAModule
    from toolkit.stable_diffusion_model import StableDiffusion


class MLP(nn.Module):
    def __init__(self, in_dim, out_dim, hidden_dim, dropout=0.1, use_residual=True):
        super().__init__()
        if use_residual:
            assert in_dim == out_dim
        self.layernorm = nn.LayerNorm(in_dim)
        self.fc1 = nn.Linear(in_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, out_dim)
        self.dropout = nn.Dropout(dropout)
        self.use_residual = use_residual
        self.act_fn = nn.GELU()

    def forward(self, x):
        residual = x
        x = self.layernorm(x)
        x = self.fc1(x)
        x = self.act_fn(x)
        x = self.fc2(x)
        x = self.dropout(x)
        if self.use_residual:
            x = x + residual
        return x

class LoRAGenerator(torch.nn.Module):
    def __init__(
            self,
            input_size: int = 768,  # projection dimension
            hidden_size: int = 768,
            head_size: int = 512,
            num_heads: int = 1,
            num_mlp_layers: int = 1,
            output_size: int = 768,
            dropout: float = 0.0
    ):
        super().__init__()
        self.input_size = input_size
        self.num_heads = num_heads
        self.simple = False

        self.output_size = output_size

        if self.simple:
            self.head = nn.Linear(input_size, head_size, bias=False)
        else:
            self.lin_in = nn.Linear(input_size, hidden_size)

            self.mlp_blocks = nn.Sequential(*[
                MLP(hidden_size, hidden_size, hidden_size, dropout=dropout, use_residual=True) for _ in range(num_mlp_layers)
            ])
            self.head = nn.Linear(hidden_size, head_size, bias=False)
        self.norm = nn.LayerNorm(head_size)

        if num_heads == 1:
            self.output = nn.Linear(head_size, self.output_size)
            # for each output block. multiply weights by 0.01
            with torch.no_grad():
                self.output.weight.data *= 0.01
        else:
            head_output_size = output_size // num_heads
            self.outputs = nn.ModuleList([nn.Linear(head_size, head_output_size) for _ in range(num_heads)])
            # for each output block. multiply weights by 0.01
            with torch.no_grad():
                for output in self.outputs:
                    output.weight.data *= 0.01

    # allow get device
    @property
    def device(self):
        return next(self.parameters()).device

    @property
    def dtype(self):
        return next(self.parameters()).dtype

    def forward(self, embedding):
        if len(embedding.shape) == 2:
            embedding = embedding.unsqueeze(1)

        x = embedding

        if not self.simple:
            x = self.lin_in(embedding)
            x = self.mlp_blocks(x)
        x = self.head(x)
        x = self.norm(x)

        if self.num_heads == 1:
            x = self.output(x)
        else:
            out_chunks = torch.chunk(x, self.num_heads, dim=1)
            x = []
            for out_layer, chunk in zip(self.outputs, out_chunks):
                x.append(out_layer(chunk))
            x = torch.cat(x, dim=-1)

        return x.squeeze(1)


class InstantLoRAMidModule(torch.nn.Module):
    def __init__(
            self,
            index: int,
            lora_module: 'LoRAModule',
            instant_lora_module: 'InstantLoRAModule',
            up_shape: list = None,
            down_shape: list = None,
    ):
        super(InstantLoRAMidModule, self).__init__()
        self.up_shape = up_shape
        self.down_shape = down_shape
        self.index = index
        self.lora_module_ref = weakref.ref(lora_module)
        self.instant_lora_module_ref = weakref.ref(instant_lora_module)

        self.embed = None

    def down_forward(self, x, *args, **kwargs):
        # get the embed
        self.embed = self.instant_lora_module_ref().img_embeds[self.index]
        if x.dtype != self.embed.dtype:
            x = x.to(self.embed.dtype)
        down_size = math.prod(self.down_shape)
        down_weight = self.embed[:, :down_size]

        batch_size = x.shape[0]

        # unconditional
        if down_weight.shape[0] * 2 == batch_size:
            down_weight = torch.cat([down_weight] * 2, dim=0)

        weight_chunks = torch.chunk(down_weight, batch_size, dim=0)
        x_chunks = torch.chunk(x, batch_size, dim=0)

        x_out = []
        for i in range(batch_size):
            weight_chunk = weight_chunks[i]
            x_chunk = x_chunks[i]
            # reshape
            weight_chunk = weight_chunk.view(self.down_shape)
            # check if is conv or linear
            if len(weight_chunk.shape) == 4:
                org_module = self.lora_module_ref().orig_module_ref()
                stride = org_module.stride
                padding = org_module.padding
                x_chunk = nn.functional.conv2d(x_chunk, weight_chunk, padding=padding, stride=stride)
            else:
                # run a simple linear layer with the down weight
                x_chunk = x_chunk @ weight_chunk.T
            x_out.append(x_chunk)
        x = torch.cat(x_out, dim=0)
        return x


    def up_forward(self, x, *args, **kwargs):
        self.embed = self.instant_lora_module_ref().img_embeds[self.index]
        if x.dtype != self.embed.dtype:
            x = x.to(self.embed.dtype)
        up_size = math.prod(self.up_shape)
        up_weight = self.embed[:, -up_size:]

        batch_size = x.shape[0]

        # unconditional
        if up_weight.shape[0] * 2 == batch_size:
            up_weight = torch.cat([up_weight] * 2, dim=0)

        weight_chunks = torch.chunk(up_weight, batch_size, dim=0)
        x_chunks = torch.chunk(x, batch_size, dim=0)

        x_out = []
        for i in range(batch_size):
            weight_chunk = weight_chunks[i]
            x_chunk = x_chunks[i]
            # reshape
            weight_chunk = weight_chunk.view(self.up_shape)
            # check if is conv or linear
            if len(weight_chunk.shape) == 4:
                padding = 0
                if weight_chunk.shape[-1] == 3:
                    padding = 1
                x_chunk = nn.functional.conv2d(x_chunk, weight_chunk, padding=padding)
            else:
                # run a simple linear layer with the down weight
                x_chunk = x_chunk @ weight_chunk.T
            x_out.append(x_chunk)
        x = torch.cat(x_out, dim=0)
        return x




class InstantLoRAModule(torch.nn.Module):
    def __init__(
            self,
            vision_hidden_size: int,
            vision_tokens: int,
            head_dim: int,
            num_heads: int, # number of heads in the resampler
            sd: 'StableDiffusion',
            config=None
    ):
        super(InstantLoRAModule, self).__init__()
        # self.linear = torch.nn.Linear(2, 1)
        self.sd_ref = weakref.ref(sd)
        self.dim = sd.network.lora_dim
        self.vision_hidden_size = vision_hidden_size
        self.vision_tokens = vision_tokens
        self.head_dim = head_dim
        self.num_heads = num_heads

        # stores the projection vector. Grabbed by modules
        self.img_embeds: List[torch.Tensor] = None

        # disable merging in. It is slower on inference
        self.sd_ref().network.can_merge_in = False

        self.ilora_modules = torch.nn.ModuleList()

        lora_modules = self.sd_ref().network.get_all_modules()

        output_size = 0

        self.embed_lengths = []
        self.weight_mapping = []

        for idx, lora_module in enumerate(lora_modules):
            module_dict = lora_module.state_dict()
            down_shape = list(module_dict['lora_down.weight'].shape)
            up_shape = list(module_dict['lora_up.weight'].shape)

            self.weight_mapping.append([lora_module.lora_name, [down_shape, up_shape]])

            module_size = math.prod(down_shape) + math.prod(up_shape)
            output_size += module_size
            self.embed_lengths.append(module_size)


            # add a new mid module that will take the original forward and add a vector to it
            # this will be used to add the vector to the original forward
            instant_module = InstantLoRAMidModule(
                idx,
                lora_module,
                self,
                up_shape=up_shape,
                down_shape=down_shape
            )

            self.ilora_modules.append(instant_module)

            # replace the LoRA forwards
            lora_module.lora_down.forward = instant_module.down_forward
            lora_module.lora_up.forward = instant_module.up_forward


        self.output_size = output_size

        number_formatted_output_size = "{:,}".format(output_size)

        print(f" ILORA output size: {number_formatted_output_size}")

        # if not evenly divisible, error
        if self.output_size % self.num_heads != 0:
            raise ValueError("Output size must be divisible by the number of heads")

        self.head_output_size = self.output_size // self.num_heads

        if vision_tokens > 1:
            self.resampler = Resampler(
                dim=vision_hidden_size,
                depth=4,
                dim_head=64,
                heads=12,
                num_queries=num_heads,  # output tokens
                embedding_dim=vision_hidden_size,
                max_seq_len=vision_tokens,
                output_dim=head_dim,
                apply_pos_emb=True,  # this is new
                ff_mult=4
            )

        self.proj_module = LoRAGenerator(
            input_size=head_dim,
            hidden_size=head_dim,
            head_size=head_dim,
            num_mlp_layers=1,
            num_heads=self.num_heads,
            output_size=self.output_size,
        )

        self.migrate_weight_mapping()

    def migrate_weight_mapping(self):
        return
        # # changes the names of the modules to common ones
        # keymap = self.sd_ref().network.get_keymap()
        # save_keymap = {}
        # if keymap is not None:
        #     for ldm_key, diffusers_key in keymap.items():
        #         #  invert them
        #         save_keymap[diffusers_key] = ldm_key
        #
        #     new_keymap = {}
        #     for key, value in self.weight_mapping:
        #         if key in save_keymap:
        #             new_keymap[save_keymap[key]] = value
        #         else:
        #             print(f"Key {key} not found in keymap")
        #             new_keymap[key] = value
        #     self.weight_mapping = new_keymap
        # else:
        #     print("No keymap found. Using default names")
        #     return


    def forward(self, img_embeds):
        # expand token rank if only rank 2
        if len(img_embeds.shape) == 2:
            img_embeds = img_embeds.unsqueeze(1)

        # resample the image embeddings
        img_embeds = self.resampler(img_embeds)
        img_embeds = self.proj_module(img_embeds)
        if len(img_embeds.shape) == 3:
            # merge the heads
            img_embeds = img_embeds.mean(dim=1)

        self.img_embeds = []
        # get all the slices
        start = 0
        for length in self.embed_lengths:
            self.img_embeds.append(img_embeds[:, start:start+length])
            start += length


    def get_additional_save_metadata(self) -> Dict[str, Any]:
        # save the weight mapping
        return {
            "weight_mapping": self.weight_mapping,
            "num_heads": self.num_heads,
            "vision_hidden_size": self.vision_hidden_size,
            "head_dim": self.head_dim,
            "vision_tokens": self.vision_tokens,
            "output_size": self.output_size,
        }