File size: 18,486 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import sys

import torch
import torch.nn as nn
import torch.nn.functional as F
import weakref
from typing import Union, TYPE_CHECKING


from transformers import T5EncoderModel, CLIPTextModel, CLIPTokenizer, T5Tokenizer, CLIPTextModelWithProjection
from diffusers.models.embeddings import PixArtAlphaTextProjection

from toolkit import train_tools
from toolkit.paths import REPOS_ROOT
from toolkit.prompt_utils import PromptEmbeds
from diffusers import Transformer2DModel

sys.path.append(REPOS_ROOT)

from ipadapter.ip_adapter.attention_processor import AttnProcessor2_0


if TYPE_CHECKING:
    from toolkit.stable_diffusion_model import StableDiffusion, PixArtSigmaPipeline
    from toolkit.custom_adapter import CustomAdapter


class TEAdapterCaptionProjection(nn.Module):
    def __init__(self, caption_channels, adapter: 'TEAdapter'):
        super().__init__()
        in_features = caption_channels
        self.adapter_ref: weakref.ref = weakref.ref(adapter)
        sd = adapter.sd_ref()
        self.parent_module_ref = weakref.ref(sd.unet.caption_projection)
        parent_module = self.parent_module_ref()
        self.linear_1 = nn.Linear(
            in_features=in_features,
            out_features=parent_module.linear_1.out_features,
            bias=True
        )
        self.linear_2 = nn.Linear(
            in_features=parent_module.linear_2.in_features,
            out_features=parent_module.linear_2.out_features,
            bias=True
        )

        # save the orig forward
        parent_module.linear_1.orig_forward = parent_module.linear_1.forward
        parent_module.linear_2.orig_forward = parent_module.linear_2.forward

        # replace original forward
        parent_module.orig_forward = parent_module.forward
        parent_module.forward = self.forward


    @property
    def is_active(self):
        return self.adapter_ref().is_active

    @property
    def unconditional_embeds(self):
        return self.adapter_ref().adapter_ref().unconditional_embeds

    @property
    def conditional_embeds(self):
        return self.adapter_ref().adapter_ref().conditional_embeds

    def forward(self, caption):
        if self.is_active and self.conditional_embeds is not None:
            adapter_hidden_states = self.conditional_embeds.text_embeds
            # check if we are doing unconditional
            if self.unconditional_embeds is not None and adapter_hidden_states.shape[0] != caption.shape[0]:
                # concat unconditional to match the hidden state batch size
                if self.unconditional_embeds.text_embeds.shape[0] == 1 and adapter_hidden_states.shape[0] != 1:
                    unconditional = torch.cat([self.unconditional_embeds.text_embeds] * adapter_hidden_states.shape[0], dim=0)
                else:
                    unconditional = self.unconditional_embeds.text_embeds
                adapter_hidden_states = torch.cat([unconditional, adapter_hidden_states], dim=0)
            hidden_states = self.linear_1(adapter_hidden_states)
            hidden_states = self.parent_module_ref().act_1(hidden_states)
            hidden_states = self.linear_2(hidden_states)
            return hidden_states
        else:
            return self.parent_module_ref().orig_forward(caption)


class TEAdapterAttnProcessor(nn.Module):
    r"""
    Attention processor for Custom TE for PyTorch 2.0.
    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
        scale (`float`, defaults to 1.0):
            the weight scale of image prompt.
        num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
            The context length of the image features.
        adapter
    """

    def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, adapter=None,
                 adapter_hidden_size=None, layer_name=None):
        super().__init__()
        self.layer_name = layer_name

        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

        self.adapter_ref: weakref.ref = weakref.ref(adapter)

        self.hidden_size = hidden_size
        self.adapter_hidden_size = adapter_hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.scale = scale
        self.num_tokens = num_tokens

        self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=False)
        self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=False)

    @property
    def is_active(self):
        return self.adapter_ref().is_active

    @property
    def unconditional_embeds(self):
        return self.adapter_ref().adapter_ref().unconditional_embeds

    @property
    def conditional_embeds(self):
        return self.adapter_ref().adapter_ref().conditional_embeds

    def __call__(
            self,
            attn,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None,
            temb=None,
    ):
        is_active = self.adapter_ref().is_active
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        # will be none if disabled
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        # only use one TE or the other. If our adapter is active only use ours
        if self.is_active and self.conditional_embeds is not None:
            adapter_hidden_states = self.conditional_embeds.text_embeds
            # check if we are doing unconditional
            if self.unconditional_embeds is not None and adapter_hidden_states.shape[0] != encoder_hidden_states.shape[0]:
                # concat unconditional to match the hidden state batch size
                if self.unconditional_embeds.text_embeds.shape[0] == 1 and adapter_hidden_states.shape[0] != 1:
                    unconditional = torch.cat([self.unconditional_embeds.text_embeds] * adapter_hidden_states.shape[0], dim=0)
                else:
                    unconditional = self.unconditional_embeds.text_embeds
                adapter_hidden_states = torch.cat([unconditional, adapter_hidden_states], dim=0)
            # for ip-adapter
            key = self.to_k_adapter(adapter_hidden_states)
            value = self.to_v_adapter(adapter_hidden_states)
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        try:
            key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        except RuntimeError:
            raise RuntimeError(f"key shape: {key.shape}, value shape: {value.shape}")

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        # remove attn mask if doing clip
        if self.adapter_ref().adapter_ref().config.text_encoder_arch == "clip":
            attention_mask = None

        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class TEAdapter(torch.nn.Module):
    def __init__(
            self,
            adapter: 'CustomAdapter',
            sd: 'StableDiffusion',
            te: Union[T5EncoderModel],
            tokenizer: CLIPTokenizer
    ):
        super(TEAdapter, self).__init__()
        self.adapter_ref: weakref.ref = weakref.ref(adapter)
        self.sd_ref: weakref.ref = weakref.ref(sd)
        self.te_ref: weakref.ref = weakref.ref(te)
        self.tokenizer_ref: weakref.ref = weakref.ref(tokenizer)
        self.adapter_modules = []
        self.caption_projection = None
        self.embeds_store = []
        is_pixart = sd.is_pixart

        if self.adapter_ref().config.text_encoder_arch == "t5" or self.adapter_ref().config.text_encoder_arch == "pile-t5":
            self.token_size = self.te_ref().config.d_model
        else:
            self.token_size = self.te_ref().config.hidden_size

        # add text projection if is sdxl
        self.text_projection = None
        if sd.is_xl:
            clip_with_projection: CLIPTextModelWithProjection = sd.text_encoder[0]
            self.text_projection = nn.Linear(te.config.hidden_size, clip_with_projection.config.projection_dim, bias=False)

        # init adapter modules
        attn_procs = {}
        unet_sd = sd.unet.state_dict()
        attn_dict_map = {

        }
        module_idx = 0
        # init adapter modules
        attn_procs = {}
        unet_sd = sd.unet.state_dict()
        attn_processor_keys = []
        if is_pixart:
            transformer: Transformer2DModel = sd.unet
            for i, module in transformer.transformer_blocks.named_children():
                attn_processor_keys.append(f"transformer_blocks.{i}.attn1")

                # cross attention
                attn_processor_keys.append(f"transformer_blocks.{i}.attn2")

        else:
            attn_processor_keys = list(sd.unet.attn_processors.keys())

        attn_processor_names = []

        blocks = []
        transformer_blocks = []
        for name in attn_processor_keys:
            cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") or name.endswith("attn1") else \
                sd.unet.config['cross_attention_dim']
            if name.startswith("mid_block"):
                hidden_size = sd.unet.config['block_out_channels'][-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = sd.unet.config['block_out_channels'][block_id]
            elif name.startswith("transformer"):
                hidden_size = sd.unet.config['cross_attention_dim']
            else:
                # they didnt have this, but would lead to undefined below
                raise ValueError(f"unknown attn processor name: {name}")
            if cross_attention_dim is None:
                attn_procs[name] = AttnProcessor2_0()
            else:
                layer_name = name.split(".processor")[0]
                to_k_adapter = unet_sd[layer_name + ".to_k.weight"]
                to_v_adapter = unet_sd[layer_name + ".to_v.weight"]

                # add zero padding to the adapter
                if to_k_adapter.shape[1] < self.token_size:
                    to_k_adapter = torch.cat([
                        to_k_adapter,
                        torch.randn(to_k_adapter.shape[0], self.token_size - to_k_adapter.shape[1]).to(
                            to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
                    ],
                        dim=1
                    )
                    to_v_adapter = torch.cat([
                        to_v_adapter,
                        torch.randn(to_v_adapter.shape[0], self.token_size - to_v_adapter.shape[1]).to(
                            to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
                    ],
                        dim=1
                    )
                elif to_k_adapter.shape[1] > self.token_size:
                    to_k_adapter = to_k_adapter[:, :self.token_size]
                    to_v_adapter = to_v_adapter[:, :self.token_size]
                else:
                    to_k_adapter = to_k_adapter
                    to_v_adapter = to_v_adapter

                # todo resize to the TE hidden size
                weights = {
                    "to_k_adapter.weight": to_k_adapter,
                    "to_v_adapter.weight": to_v_adapter,
                }
                
                if self.sd_ref().is_pixart:
                    # pixart is much more sensitive
                    weights = {
                        "to_k_adapter.weight": weights["to_k_adapter.weight"] * 0.01,
                        "to_v_adapter.weight": weights["to_v_adapter.weight"] * 0.01,
                    }

                attn_procs[name] = TEAdapterAttnProcessor(
                    hidden_size=hidden_size,
                    cross_attention_dim=cross_attention_dim,
                    scale=1.0,
                    num_tokens=self.adapter_ref().config.num_tokens,
                    adapter=self,
                    adapter_hidden_size=self.token_size,
                    layer_name=layer_name
                )
                attn_procs[name].load_state_dict(weights)
                self.adapter_modules.append(attn_procs[name])
        if self.sd_ref().is_pixart:
            # we have to set them ourselves
            transformer: Transformer2DModel = sd.unet
            for i, module in transformer.transformer_blocks.named_children():
                module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"]
                module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"]
            self.adapter_modules = torch.nn.ModuleList(
                [
                    transformer.transformer_blocks[i].attn2.processor for i in
                    range(len(transformer.transformer_blocks))
                ])
            self.caption_projection = TEAdapterCaptionProjection(
                caption_channels=self.token_size,
                adapter=self,
            )

        else:
            sd.unet.set_attn_processor(attn_procs)
            self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())

    # make a getter to see if is active
    @property
    def is_active(self):
        return self.adapter_ref().is_active

    def encode_text(self, text):
        te: T5EncoderModel = self.te_ref()
        tokenizer: T5Tokenizer = self.tokenizer_ref()
        attn_mask_float = None

        # input_ids = tokenizer(
        #     text,
        #     max_length=77,
        #     padding="max_length",
        #     truncation=True,
        #     return_tensors="pt",
        # ).input_ids.to(te.device)
        # outputs = te(input_ids=input_ids)
        # outputs = outputs.last_hidden_state
        if self.adapter_ref().config.text_encoder_arch == "clip":
            embeds = train_tools.encode_prompts(
                tokenizer,
                te,
                text,
                truncate=True,
                max_length=self.adapter_ref().config.num_tokens,
            )
            attention_mask = torch.ones(embeds.shape[:2], device=embeds.device)

        elif self.adapter_ref().config.text_encoder_arch == "pile-t5":
            # just use aura pile
            embeds, attention_mask = train_tools.encode_prompts_auraflow(
                tokenizer,
                te,
                text,
                truncate=True,
                max_length=self.adapter_ref().config.num_tokens,
            )

        else:
            embeds, attention_mask = train_tools.encode_prompts_pixart(
                tokenizer,
                te,
                text,
                truncate=True,
                max_length=self.adapter_ref().config.num_tokens,
            )
        if attention_mask is not None:
            attn_mask_float = attention_mask.to(embeds.device, dtype=embeds.dtype)
        if self.text_projection is not None:
            # pool the output of embeds ignoring 0 in the attention mask
            if attn_mask_float is not None:
                pooled_output = embeds * attn_mask_float.unsqueeze(-1)
            else:
                pooled_output = embeds

            # reduce along dim 1 while maintaining batch and dim 2
            pooled_output_sum = pooled_output.sum(dim=1)

            if attn_mask_float is not None:
                attn_mask_sum = attn_mask_float.sum(dim=1).unsqueeze(-1)

                pooled_output = pooled_output_sum / attn_mask_sum

            pooled_embeds = self.text_projection(pooled_output)

            prompt_embeds = PromptEmbeds(
                (embeds, pooled_embeds),
                attention_mask=attention_mask,
            ).detach()

        else:

            prompt_embeds = PromptEmbeds(
                embeds,
                attention_mask=attention_mask,
            ).detach()

        return prompt_embeds



    def forward(self, input):
        return input