File size: 29,469 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
import sys

import torch
import torch.nn as nn
import torch.nn.functional as F
import weakref
from typing import Union, TYPE_CHECKING, Optional
from collections import OrderedDict

from diffusers import Transformer2DModel, FluxTransformer2DModel
from transformers import T5EncoderModel, CLIPTextModel, CLIPTokenizer, T5Tokenizer, CLIPVisionModelWithProjection

from toolkit.config_modules import AdapterConfig
from toolkit.paths import REPOS_ROOT
sys.path.append(REPOS_ROOT)


if TYPE_CHECKING:
    from toolkit.stable_diffusion_model import StableDiffusion
    from toolkit.custom_adapter import CustomAdapter


class MLPR(nn.Module):  # MLP with reshaping
    def __init__(
            self,
            in_dim,
            in_channels,
            out_dim,
            out_channels,
            hidden_dim,
            hidden_channels,
            use_residual=True
    ):
        super().__init__()
        if use_residual:
            assert in_dim == out_dim
        # dont normalize if using conv
        self.layer_norm = nn.LayerNorm(in_dim)

        self.fc1 = nn.Linear(in_dim, hidden_dim)
        self.conv1 = nn.Conv1d(in_channels, hidden_channels, 1)
        self.fc2 = nn.Linear(hidden_dim, out_dim)
        self.conv2 = nn.Conv1d(hidden_channels, out_channels, 1)

        self.use_residual = use_residual
        self.act_fn = nn.GELU()

    def forward(self, x):
        residual = x
        x = self.layer_norm(x)
        x = self.fc1(x)
        x = self.conv1(x)
        x = self.act_fn(x)
        x = self.fc2(x)
        x = self.conv2(x)
        if self.use_residual:
            x = x + residual
        return x

class AttnProcessor2_0(torch.nn.Module):
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """

    def __init__(
        self,
        hidden_size=None,
        cross_attention_dim=None,
    ):
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
    ):
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states

class VisionDirectAdapterAttnProcessor(nn.Module):
    r"""
    Attention processor for Custom TE for PyTorch 2.0.
    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
        scale (`float`, defaults to 1.0):
            the weight scale of image prompt.
        adapter
    """

    def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None,
                 adapter_hidden_size=None, has_bias=False, **kwargs):
        super().__init__()

        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

        self.adapter_ref: weakref.ref = weakref.ref(adapter)

        self.hidden_size = hidden_size
        self.adapter_hidden_size = adapter_hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.scale = scale

        self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
        self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)

    @property
    def is_active(self):
        return self.adapter_ref().is_active
        # return False

    @property
    def unconditional_embeds(self):
        return self.adapter_ref().adapter_ref().unconditional_embeds

    @property
    def conditional_embeds(self):
        return self.adapter_ref().adapter_ref().conditional_embeds

    def __call__(
            self,
            attn,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None,
            temb=None,
    ):
        is_active = self.adapter_ref().is_active
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        # will be none if disabled
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # only use one TE or the other. If our adapter is active only use ours
        if self.is_active and self.conditional_embeds is not None:

            adapter_hidden_states = self.conditional_embeds
            if adapter_hidden_states.shape[0] < batch_size:
                adapter_hidden_states = torch.cat([
                    self.unconditional_embeds,
                    adapter_hidden_states
                ], dim=0)
                # if it is image embeds, we need to add a 1 dim at inx 1
            if len(adapter_hidden_states.shape) == 2:
                adapter_hidden_states = adapter_hidden_states.unsqueeze(1)
            # conditional_batch_size = adapter_hidden_states.shape[0]
            # conditional_query = query

            # for ip-adapter
            vd_key = self.to_k_adapter(adapter_hidden_states)
            vd_value = self.to_v_adapter(adapter_hidden_states)

            vd_key = vd_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            vd_value = vd_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

            # the output of sdp = (batch, num_heads, seq_len, head_dim)
            # TODO: add support for attn.scale when we move to Torch 2.1
            vd_hidden_states = F.scaled_dot_product_attention(
                query, vd_key, vd_value, attn_mask=None, dropout_p=0.0, is_causal=False
            )

            vd_hidden_states = vd_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
            vd_hidden_states = vd_hidden_states.to(query.dtype)

            hidden_states = hidden_states + self.scale * vd_hidden_states


        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class CustomFluxVDAttnProcessor2_0(torch.nn.Module):
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None,
                 adapter_hidden_size=None, has_bias=False, block_idx=0, **kwargs):
        super().__init__()

        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

        self.adapter_ref: weakref.ref = weakref.ref(adapter)

        self.hidden_size = hidden_size
        self.adapter_hidden_size = adapter_hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.scale = scale
        self.block_idx = block_idx

        self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
        self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)

    @property
    def is_active(self):
        return self.adapter_ref().is_active
        # return False

    @property
    def unconditional_embeds(self):
        return self.adapter_ref().adapter_ref().unconditional_embeds

    @property
    def conditional_embeds(self):
        return self.adapter_ref().adapter_ref().conditional_embeds

    def __call__(
        self,
        attn,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        if encoder_hidden_states is not None:
            # `context` projections.
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

        if image_rotary_emb is not None:
            from diffusers.models.embeddings import apply_rotary_emb

            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)

        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # begin ip adapter
        if self.is_active and self.conditional_embeds is not None:
            adapter_hidden_states = self.conditional_embeds
            block_scaler = self.adapter_ref().block_scaler
            if block_scaler is not None:
                # add 1 to block scaler so we can decay its weight to 1.0
                block_scaler = block_scaler[self.block_idx] + 1.0

            if adapter_hidden_states.shape[0] < batch_size:
                adapter_hidden_states = torch.cat([
                    self.unconditional_embeds,
                    adapter_hidden_states
                ], dim=0)
                # if it is image embeds, we need to add a 1 dim at inx 1
            if len(adapter_hidden_states.shape) == 2:
                adapter_hidden_states = adapter_hidden_states.unsqueeze(1)
            # conditional_batch_size = adapter_hidden_states.shape[0]
            # conditional_query = query

            # for ip-adapter
            vd_key = self.to_k_adapter(adapter_hidden_states)
            vd_value = self.to_v_adapter(adapter_hidden_states)

            vd_key = vd_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            vd_value = vd_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

            vd_hidden_states = F.scaled_dot_product_attention(
                query, vd_key, vd_value, attn_mask=None, dropout_p=0.0, is_causal=False
            )

            vd_hidden_states = vd_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
            vd_hidden_states = vd_hidden_states.to(query.dtype)

            # scale to block scaler
            if block_scaler is not None:
                orig_dtype = vd_hidden_states.dtype
                if block_scaler.dtype != vd_hidden_states.dtype:
                    vd_hidden_states = vd_hidden_states.to(block_scaler.dtype)
                vd_hidden_states = vd_hidden_states * block_scaler
                if block_scaler.dtype != orig_dtype:
                    vd_hidden_states = vd_hidden_states.to(orig_dtype)

            hidden_states = hidden_states + self.scale * vd_hidden_states

        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )

            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            return hidden_states, encoder_hidden_states
        else:
            return hidden_states

class VisionDirectAdapter(torch.nn.Module):
    def __init__(
            self,
            adapter: 'CustomAdapter',
            sd: 'StableDiffusion',
            vision_model: Union[CLIPVisionModelWithProjection],
    ):
        super(VisionDirectAdapter, self).__init__()
        is_pixart = sd.is_pixart
        is_flux = sd.is_flux
        self.adapter_ref: weakref.ref = weakref.ref(adapter)
        self.sd_ref: weakref.ref = weakref.ref(sd)
        self.config: AdapterConfig = adapter.config
        self.vision_model_ref: weakref.ref = weakref.ref(vision_model)

        if adapter.config.clip_layer == "image_embeds":
            self.token_size = vision_model.config.projection_dim
        else:
            self.token_size = vision_model.config.hidden_size

        # init adapter modules
        attn_procs = {}
        unet_sd = sd.unet.state_dict()

        attn_processor_keys = []
        if is_pixart:
            transformer: Transformer2DModel = sd.unet
            for i, module in transformer.transformer_blocks.named_children():

                attn_processor_keys.append(f"transformer_blocks.{i}.attn1")

                # cross attention
                attn_processor_keys.append(f"transformer_blocks.{i}.attn2")

        elif is_flux:
            transformer: FluxTransformer2DModel = sd.unet
            for i, module in transformer.transformer_blocks.named_children():
                attn_processor_keys.append(f"transformer_blocks.{i}.attn")

            # single transformer blocks do not have cross attn, but we will do them anyway
            for i, module in transformer.single_transformer_blocks.named_children():
                attn_processor_keys.append(f"single_transformer_blocks.{i}.attn")
        else:
            attn_processor_keys = list(sd.unet.attn_processors.keys())

        current_idx = 0

        for name in attn_processor_keys:
            if is_flux:
                cross_attention_dim = None
            else:
                cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") else sd.unet.config['cross_attention_dim']
            if name.startswith("mid_block"):
                hidden_size = sd.unet.config['block_out_channels'][-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = sd.unet.config['block_out_channels'][block_id]
            elif name.startswith("transformer") or name.startswith("single_transformer"):
                if is_flux:
                    hidden_size = 3072
                else:
                    hidden_size = sd.unet.config['cross_attention_dim']
            else:
                # they didnt have this, but would lead to undefined below
                raise ValueError(f"unknown attn processor name: {name}")
            if cross_attention_dim is None and not is_flux:
                attn_procs[name] = AttnProcessor2_0()
            else:
                layer_name = name.split(".processor")[0]
                if f"{layer_name}.to_k.weight._data" in unet_sd and is_flux:
                    # is quantized

                    to_k_adapter = torch.randn(hidden_size, hidden_size) * 0.01
                    to_v_adapter = torch.randn(hidden_size, hidden_size) * 0.01
                    to_k_adapter = to_k_adapter.to(self.sd_ref().torch_dtype)
                    to_v_adapter = to_v_adapter.to(self.sd_ref().torch_dtype)
                else:
                    to_k_adapter = unet_sd[layer_name + ".to_k.weight"]
                    to_v_adapter = unet_sd[layer_name + ".to_v.weight"]

                # add zero padding to the adapter
                if to_k_adapter.shape[1] < self.token_size:
                    to_k_adapter = torch.cat([
                        to_k_adapter,
                        torch.randn(to_k_adapter.shape[0], self.token_size - to_k_adapter.shape[1]).to(
                            to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
                    ],
                        dim=1
                    )
                    to_v_adapter = torch.cat([
                        to_v_adapter,
                        torch.randn(to_v_adapter.shape[0], self.token_size - to_v_adapter.shape[1]).to(
                            to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
                    ],
                        dim=1
                    )
                elif to_k_adapter.shape[1] > self.token_size:
                    to_k_adapter = to_k_adapter[:, :self.token_size]
                    to_v_adapter = to_v_adapter[:, :self.token_size]
                    # if is_pixart:
                    #     to_k_bias = to_k_bias[:self.token_size]
                    #     to_v_bias = to_v_bias[:self.token_size]
                else:
                    to_k_adapter = to_k_adapter
                    to_v_adapter = to_v_adapter
                    # if is_pixart:
                    #     to_k_bias = to_k_bias
                    #     to_v_bias = to_v_bias

                weights = {
                    "to_k_adapter.weight": to_k_adapter * 0.01,
                    "to_v_adapter.weight": to_v_adapter * 0.01,
                }
                # if is_pixart:
                #     weights["to_k_adapter.bias"] = to_k_bias
                #     weights["to_v_adapter.bias"] = to_v_bias\

                if is_flux:
                    attn_procs[name] = CustomFluxVDAttnProcessor2_0(
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                        scale=1.0,
                        adapter=self,
                        adapter_hidden_size=self.token_size,
                        has_bias=False,
                        block_idx=current_idx
                    )
                else:
                    attn_procs[name] = VisionDirectAdapterAttnProcessor(
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                        scale=1.0,
                        adapter=self,
                        adapter_hidden_size=self.token_size,
                        has_bias=False,
                    )
                current_idx += 1
                attn_procs[name].load_state_dict(weights)

        if self.sd_ref().is_pixart:
            # we have to set them ourselves
            transformer: Transformer2DModel = sd.unet
            for i, module in transformer.transformer_blocks.named_children():
                module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"]
                module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"]
            self.adapter_modules = torch.nn.ModuleList([
                transformer.transformer_blocks[i].attn1.processor for i in range(len(transformer.transformer_blocks))
            ] + [
                transformer.transformer_blocks[i].attn2.processor for i in range(len(transformer.transformer_blocks))
            ])
        elif self.sd_ref().is_flux:
            # we have to set them ourselves
            transformer: FluxTransformer2DModel = sd.unet
            for i, module in transformer.transformer_blocks.named_children():
                module.attn.processor = attn_procs[f"transformer_blocks.{i}.attn"]

            if not self.config.flux_only_double:
                # do single blocks too even though they dont have cross attn
                for i, module in transformer.single_transformer_blocks.named_children():
                    module.attn.processor = attn_procs[f"single_transformer_blocks.{i}.attn"]

            if not self.config.flux_only_double:
                self.adapter_modules = torch.nn.ModuleList(
                    [
                        transformer.transformer_blocks[i].attn.processor for i in
                        range(len(transformer.transformer_blocks))
                    ] + [
                        transformer.single_transformer_blocks[i].attn.processor for i in
                        range(len(transformer.single_transformer_blocks))
                    ]
                )
            else:
                self.adapter_modules = torch.nn.ModuleList(
                    [
                        transformer.transformer_blocks[i].attn.processor for i in
                        range(len(transformer.transformer_blocks))
                    ]
                )
        else:
            sd.unet.set_attn_processor(attn_procs)
            self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())

        num_modules = len(self.adapter_modules)
        if self.config.train_scaler:
            self.block_scaler = torch.nn.Parameter(torch.tensor([0.0] * num_modules).to(
                dtype=torch.float32,
                device=self.sd_ref().device_torch
            ))
            self.block_scaler.data = self.block_scaler.data.to(torch.float32)
            self.block_scaler.requires_grad = True
        else:
            self.block_scaler = None

        if self.config.num_tokens is not None:
            image_encoder_state_dict = self.adapter_ref().vision_encoder.state_dict()
            # max_seq_len = CLIP tokens + CLS token
            max_seq_len = 257
            if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict:
                # clip
                max_seq_len = int(
                    image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0])
            self.resampler = MLPR(
                in_dim=self.token_size,
                in_channels=max_seq_len,
                out_dim=self.token_size,
                out_channels=self.config.num_tokens,
                hidden_dim=self.token_size,
                hidden_channels=max_seq_len,
                use_residual=False
            )

    def state_dict(self, destination=None, prefix='', keep_vars=False):
        if self.config.train_scaler:
            # only return the block scaler
            if destination is None:
                destination = OrderedDict()
            destination[prefix + 'block_scaler'] = self.block_scaler
            return destination
        return super().state_dict(destination, prefix, keep_vars)

    # make a getter to see if is active
    @property
    def is_active(self):
        return self.adapter_ref().is_active

    def forward(self, input):
        # block scaler keeps moving dtypes. make sure it is float32 here
        # todo remove this when we have a real solution
        if self.block_scaler is not None and self.block_scaler.dtype != torch.float32:
            self.block_scaler.data = self.block_scaler.data.to(torch.float32)
        if self.config.num_tokens is not None:
            input = self.resampler(input)
        return input

    def to(self, *args, **kwargs):
        super().to(*args, **kwargs)
        if self.block_scaler is not None:
            if self.block_scaler.dtype != torch.float32:
                self.block_scaler.data = self.block_scaler.data.to(torch.float32)
        return self

    def post_weight_update(self):
        # force block scaler to be mean of 1
        pass