File size: 29,469 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 |
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import weakref
from typing import Union, TYPE_CHECKING, Optional
from collections import OrderedDict
from diffusers import Transformer2DModel, FluxTransformer2DModel
from transformers import T5EncoderModel, CLIPTextModel, CLIPTokenizer, T5Tokenizer, CLIPVisionModelWithProjection
from toolkit.config_modules import AdapterConfig
from toolkit.paths import REPOS_ROOT
sys.path.append(REPOS_ROOT)
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
from toolkit.custom_adapter import CustomAdapter
class MLPR(nn.Module): # MLP with reshaping
def __init__(
self,
in_dim,
in_channels,
out_dim,
out_channels,
hidden_dim,
hidden_channels,
use_residual=True
):
super().__init__()
if use_residual:
assert in_dim == out_dim
# dont normalize if using conv
self.layer_norm = nn.LayerNorm(in_dim)
self.fc1 = nn.Linear(in_dim, hidden_dim)
self.conv1 = nn.Conv1d(in_channels, hidden_channels, 1)
self.fc2 = nn.Linear(hidden_dim, out_dim)
self.conv2 = nn.Conv1d(hidden_channels, out_channels, 1)
self.use_residual = use_residual
self.act_fn = nn.GELU()
def forward(self, x):
residual = x
x = self.layer_norm(x)
x = self.fc1(x)
x = self.conv1(x)
x = self.act_fn(x)
x = self.fc2(x)
x = self.conv2(x)
if self.use_residual:
x = x + residual
return x
class AttnProcessor2_0(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(
self,
hidden_size=None,
cross_attention_dim=None,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class VisionDirectAdapterAttnProcessor(nn.Module):
r"""
Attention processor for Custom TE for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
adapter
"""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None,
adapter_hidden_size=None, has_bias=False, **kwargs):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.hidden_size = hidden_size
self.adapter_hidden_size = adapter_hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
@property
def is_active(self):
return self.adapter_ref().is_active
# return False
@property
def unconditional_embeds(self):
return self.adapter_ref().adapter_ref().unconditional_embeds
@property
def conditional_embeds(self):
return self.adapter_ref().adapter_ref().conditional_embeds
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
is_active = self.adapter_ref().is_active
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
# will be none if disabled
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# only use one TE or the other. If our adapter is active only use ours
if self.is_active and self.conditional_embeds is not None:
adapter_hidden_states = self.conditional_embeds
if adapter_hidden_states.shape[0] < batch_size:
adapter_hidden_states = torch.cat([
self.unconditional_embeds,
adapter_hidden_states
], dim=0)
# if it is image embeds, we need to add a 1 dim at inx 1
if len(adapter_hidden_states.shape) == 2:
adapter_hidden_states = adapter_hidden_states.unsqueeze(1)
# conditional_batch_size = adapter_hidden_states.shape[0]
# conditional_query = query
# for ip-adapter
vd_key = self.to_k_adapter(adapter_hidden_states)
vd_value = self.to_v_adapter(adapter_hidden_states)
vd_key = vd_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
vd_value = vd_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
vd_hidden_states = F.scaled_dot_product_attention(
query, vd_key, vd_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
vd_hidden_states = vd_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
vd_hidden_states = vd_hidden_states.to(query.dtype)
hidden_states = hidden_states + self.scale * vd_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class CustomFluxVDAttnProcessor2_0(torch.nn.Module):
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None,
adapter_hidden_size=None, has_bias=False, block_idx=0, **kwargs):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.hidden_size = hidden_size
self.adapter_hidden_size = adapter_hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.block_idx = block_idx
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
@property
def is_active(self):
return self.adapter_ref().is_active
# return False
@property
def unconditional_embeds(self):
return self.adapter_ref().adapter_ref().unconditional_embeds
@property
def conditional_embeds(self):
return self.adapter_ref().adapter_ref().conditional_embeds
def __call__(
self,
attn,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# begin ip adapter
if self.is_active and self.conditional_embeds is not None:
adapter_hidden_states = self.conditional_embeds
block_scaler = self.adapter_ref().block_scaler
if block_scaler is not None:
# add 1 to block scaler so we can decay its weight to 1.0
block_scaler = block_scaler[self.block_idx] + 1.0
if adapter_hidden_states.shape[0] < batch_size:
adapter_hidden_states = torch.cat([
self.unconditional_embeds,
adapter_hidden_states
], dim=0)
# if it is image embeds, we need to add a 1 dim at inx 1
if len(adapter_hidden_states.shape) == 2:
adapter_hidden_states = adapter_hidden_states.unsqueeze(1)
# conditional_batch_size = adapter_hidden_states.shape[0]
# conditional_query = query
# for ip-adapter
vd_key = self.to_k_adapter(adapter_hidden_states)
vd_value = self.to_v_adapter(adapter_hidden_states)
vd_key = vd_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
vd_value = vd_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
vd_hidden_states = F.scaled_dot_product_attention(
query, vd_key, vd_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
vd_hidden_states = vd_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
vd_hidden_states = vd_hidden_states.to(query.dtype)
# scale to block scaler
if block_scaler is not None:
orig_dtype = vd_hidden_states.dtype
if block_scaler.dtype != vd_hidden_states.dtype:
vd_hidden_states = vd_hidden_states.to(block_scaler.dtype)
vd_hidden_states = vd_hidden_states * block_scaler
if block_scaler.dtype != orig_dtype:
vd_hidden_states = vd_hidden_states.to(orig_dtype)
hidden_states = hidden_states + self.scale * vd_hidden_states
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
else:
return hidden_states
class VisionDirectAdapter(torch.nn.Module):
def __init__(
self,
adapter: 'CustomAdapter',
sd: 'StableDiffusion',
vision_model: Union[CLIPVisionModelWithProjection],
):
super(VisionDirectAdapter, self).__init__()
is_pixart = sd.is_pixart
is_flux = sd.is_flux
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.sd_ref: weakref.ref = weakref.ref(sd)
self.config: AdapterConfig = adapter.config
self.vision_model_ref: weakref.ref = weakref.ref(vision_model)
if adapter.config.clip_layer == "image_embeds":
self.token_size = vision_model.config.projection_dim
else:
self.token_size = vision_model.config.hidden_size
# init adapter modules
attn_procs = {}
unet_sd = sd.unet.state_dict()
attn_processor_keys = []
if is_pixart:
transformer: Transformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
attn_processor_keys.append(f"transformer_blocks.{i}.attn1")
# cross attention
attn_processor_keys.append(f"transformer_blocks.{i}.attn2")
elif is_flux:
transformer: FluxTransformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
attn_processor_keys.append(f"transformer_blocks.{i}.attn")
# single transformer blocks do not have cross attn, but we will do them anyway
for i, module in transformer.single_transformer_blocks.named_children():
attn_processor_keys.append(f"single_transformer_blocks.{i}.attn")
else:
attn_processor_keys = list(sd.unet.attn_processors.keys())
current_idx = 0
for name in attn_processor_keys:
if is_flux:
cross_attention_dim = None
else:
cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") else sd.unet.config['cross_attention_dim']
if name.startswith("mid_block"):
hidden_size = sd.unet.config['block_out_channels'][-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = sd.unet.config['block_out_channels'][block_id]
elif name.startswith("transformer") or name.startswith("single_transformer"):
if is_flux:
hidden_size = 3072
else:
hidden_size = sd.unet.config['cross_attention_dim']
else:
# they didnt have this, but would lead to undefined below
raise ValueError(f"unknown attn processor name: {name}")
if cross_attention_dim is None and not is_flux:
attn_procs[name] = AttnProcessor2_0()
else:
layer_name = name.split(".processor")[0]
if f"{layer_name}.to_k.weight._data" in unet_sd and is_flux:
# is quantized
to_k_adapter = torch.randn(hidden_size, hidden_size) * 0.01
to_v_adapter = torch.randn(hidden_size, hidden_size) * 0.01
to_k_adapter = to_k_adapter.to(self.sd_ref().torch_dtype)
to_v_adapter = to_v_adapter.to(self.sd_ref().torch_dtype)
else:
to_k_adapter = unet_sd[layer_name + ".to_k.weight"]
to_v_adapter = unet_sd[layer_name + ".to_v.weight"]
# add zero padding to the adapter
if to_k_adapter.shape[1] < self.token_size:
to_k_adapter = torch.cat([
to_k_adapter,
torch.randn(to_k_adapter.shape[0], self.token_size - to_k_adapter.shape[1]).to(
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
],
dim=1
)
to_v_adapter = torch.cat([
to_v_adapter,
torch.randn(to_v_adapter.shape[0], self.token_size - to_v_adapter.shape[1]).to(
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
],
dim=1
)
elif to_k_adapter.shape[1] > self.token_size:
to_k_adapter = to_k_adapter[:, :self.token_size]
to_v_adapter = to_v_adapter[:, :self.token_size]
# if is_pixart:
# to_k_bias = to_k_bias[:self.token_size]
# to_v_bias = to_v_bias[:self.token_size]
else:
to_k_adapter = to_k_adapter
to_v_adapter = to_v_adapter
# if is_pixart:
# to_k_bias = to_k_bias
# to_v_bias = to_v_bias
weights = {
"to_k_adapter.weight": to_k_adapter * 0.01,
"to_v_adapter.weight": to_v_adapter * 0.01,
}
# if is_pixart:
# weights["to_k_adapter.bias"] = to_k_bias
# weights["to_v_adapter.bias"] = to_v_bias\
if is_flux:
attn_procs[name] = CustomFluxVDAttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
adapter=self,
adapter_hidden_size=self.token_size,
has_bias=False,
block_idx=current_idx
)
else:
attn_procs[name] = VisionDirectAdapterAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
adapter=self,
adapter_hidden_size=self.token_size,
has_bias=False,
)
current_idx += 1
attn_procs[name].load_state_dict(weights)
if self.sd_ref().is_pixart:
# we have to set them ourselves
transformer: Transformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"]
module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"]
self.adapter_modules = torch.nn.ModuleList([
transformer.transformer_blocks[i].attn1.processor for i in range(len(transformer.transformer_blocks))
] + [
transformer.transformer_blocks[i].attn2.processor for i in range(len(transformer.transformer_blocks))
])
elif self.sd_ref().is_flux:
# we have to set them ourselves
transformer: FluxTransformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
module.attn.processor = attn_procs[f"transformer_blocks.{i}.attn"]
if not self.config.flux_only_double:
# do single blocks too even though they dont have cross attn
for i, module in transformer.single_transformer_blocks.named_children():
module.attn.processor = attn_procs[f"single_transformer_blocks.{i}.attn"]
if not self.config.flux_only_double:
self.adapter_modules = torch.nn.ModuleList(
[
transformer.transformer_blocks[i].attn.processor for i in
range(len(transformer.transformer_blocks))
] + [
transformer.single_transformer_blocks[i].attn.processor for i in
range(len(transformer.single_transformer_blocks))
]
)
else:
self.adapter_modules = torch.nn.ModuleList(
[
transformer.transformer_blocks[i].attn.processor for i in
range(len(transformer.transformer_blocks))
]
)
else:
sd.unet.set_attn_processor(attn_procs)
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())
num_modules = len(self.adapter_modules)
if self.config.train_scaler:
self.block_scaler = torch.nn.Parameter(torch.tensor([0.0] * num_modules).to(
dtype=torch.float32,
device=self.sd_ref().device_torch
))
self.block_scaler.data = self.block_scaler.data.to(torch.float32)
self.block_scaler.requires_grad = True
else:
self.block_scaler = None
if self.config.num_tokens is not None:
image_encoder_state_dict = self.adapter_ref().vision_encoder.state_dict()
# max_seq_len = CLIP tokens + CLS token
max_seq_len = 257
if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict:
# clip
max_seq_len = int(
image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0])
self.resampler = MLPR(
in_dim=self.token_size,
in_channels=max_seq_len,
out_dim=self.token_size,
out_channels=self.config.num_tokens,
hidden_dim=self.token_size,
hidden_channels=max_seq_len,
use_residual=False
)
def state_dict(self, destination=None, prefix='', keep_vars=False):
if self.config.train_scaler:
# only return the block scaler
if destination is None:
destination = OrderedDict()
destination[prefix + 'block_scaler'] = self.block_scaler
return destination
return super().state_dict(destination, prefix, keep_vars)
# make a getter to see if is active
@property
def is_active(self):
return self.adapter_ref().is_active
def forward(self, input):
# block scaler keeps moving dtypes. make sure it is float32 here
# todo remove this when we have a real solution
if self.block_scaler is not None and self.block_scaler.dtype != torch.float32:
self.block_scaler.data = self.block_scaler.data.to(torch.float32)
if self.config.num_tokens is not None:
input = self.resampler(input)
return input
def to(self, *args, **kwargs):
super().to(*args, **kwargs)
if self.block_scaler is not None:
if self.block_scaler.dtype != torch.float32:
self.block_scaler.data = self.block_scaler.data.to(torch.float32)
return self
def post_weight_update(self):
# force block scaler to be mean of 1
pass
|