File size: 5,083 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import torch
import torch.nn as nn
class ContextualAlphaMask(nn.Module):
def __init__(
self,
dim: int = 768,
):
super(ContextualAlphaMask, self).__init__()
self.dim = dim
half_dim = dim // 2
quarter_dim = dim // 4
self.fc1 = nn.Linear(self.dim, self.dim)
self.fc2 = nn.Linear(self.dim, half_dim)
self.norm1 = nn.LayerNorm(half_dim)
self.fc3 = nn.Linear(half_dim, half_dim)
self.fc4 = nn.Linear(half_dim, quarter_dim)
self.norm2 = nn.LayerNorm(quarter_dim)
self.fc5 = nn.Linear(quarter_dim, quarter_dim)
self.fc6 = nn.Linear(quarter_dim, 1)
# set fc6 weights to near zero
self.fc6.weight.data.normal_(mean=0.0, std=0.0001)
self.act_fn = nn.GELU()
def forward(self, x):
# x = (batch_size, 77, 768)
x = self.fc1(x)
x = self.act_fn(x)
x = self.fc2(x)
x = self.norm1(x)
x = self.act_fn(x)
x = self.fc3(x)
x = self.act_fn(x)
x = self.fc4(x)
x = self.norm2(x)
x = self.act_fn(x)
x = self.fc5(x)
x = self.act_fn(x)
x = self.fc6(x)
x = torch.sigmoid(x)
return x
class ZipperModule(nn.Module):
def __init__(
self,
in_size,
in_tokens,
out_size,
out_tokens,
hidden_size,
hidden_tokens,
use_residual=False,
):
super().__init__()
self.in_size = in_size
self.in_tokens = in_tokens
self.out_size = out_size
self.out_tokens = out_tokens
self.hidden_size = hidden_size
self.hidden_tokens = hidden_tokens
self.use_residual = use_residual
self.act_fn = nn.GELU()
self.layernorm = nn.LayerNorm(self.in_size)
self.conv1 = nn.Conv1d(self.in_tokens, self.hidden_tokens, 1)
# act
self.fc1 = nn.Linear(self.in_size, self.hidden_size)
# act
self.conv2 = nn.Conv1d(self.hidden_tokens, self.out_tokens, 1)
# act
self.fc2 = nn.Linear(self.hidden_size, self.out_size)
def forward(self, x):
residual = x
x = self.layernorm(x)
x = self.conv1(x)
x = self.act_fn(x)
x = self.fc1(x)
x = self.act_fn(x)
x = self.conv2(x)
x = self.act_fn(x)
x = self.fc2(x)
if self.use_residual:
x = x + residual
return x
class ZipperResampler(nn.Module):
def __init__(
self,
in_size,
in_tokens,
out_size,
out_tokens,
hidden_size,
hidden_tokens,
num_blocks=1,
is_conv_input=False,
):
super().__init__()
self.is_conv_input = is_conv_input
module_list = []
for i in range(num_blocks):
this_in_size = in_size
this_in_tokens = in_tokens
this_out_size = out_size
this_out_tokens = out_tokens
this_hidden_size = hidden_size
this_hidden_tokens = hidden_tokens
use_residual = False
# maintain middle sizes as hidden_size
if i == 0: # first block
this_in_size = in_size
this_in_tokens = in_tokens
if num_blocks == 1:
this_out_size = out_size
this_out_tokens = out_tokens
else:
this_out_size = hidden_size
this_out_tokens = hidden_tokens
elif i == num_blocks - 1: # last block
this_out_size = out_size
this_out_tokens = out_tokens
if num_blocks == 1:
this_in_size = in_size
this_in_tokens = in_tokens
else:
this_in_size = hidden_size
this_in_tokens = hidden_tokens
else: # middle blocks
this_out_size = hidden_size
this_out_tokens = hidden_tokens
this_in_size = hidden_size
this_in_tokens = hidden_tokens
use_residual = True
module_list.append(ZipperModule(
in_size=this_in_size,
in_tokens=this_in_tokens,
out_size=this_out_size,
out_tokens=this_out_tokens,
hidden_size=this_hidden_size,
hidden_tokens=this_hidden_tokens,
use_residual=use_residual
))
self.blocks = nn.ModuleList(module_list)
self.ctx_alpha = ContextualAlphaMask(
dim=out_size,
)
def forward(self, x):
if self.is_conv_input:
# flatten
x = x.view(x.size(0), x.size(1), -1)
# rearrange to (batch, tokens, size)
x = x.permute(0, 2, 1)
for block in self.blocks:
x = block(x)
alpha = self.ctx_alpha(x)
return x * alpha
|