|
import math |
|
from functools import partial |
|
|
|
from torch import nn |
|
import torch |
|
|
|
|
|
class AuraFlowPatchEmbed(nn.Module): |
|
def __init__( |
|
self, |
|
height=224, |
|
width=224, |
|
patch_size=16, |
|
in_channels=3, |
|
embed_dim=768, |
|
pos_embed_max_size=None, |
|
): |
|
super().__init__() |
|
|
|
self.num_patches = (height // patch_size) * (width // patch_size) |
|
self.pos_embed_max_size = pos_embed_max_size |
|
|
|
self.proj = nn.Linear(patch_size * patch_size * in_channels, embed_dim) |
|
self.pos_embed = nn.Parameter(torch.randn(1, pos_embed_max_size, embed_dim) * 0.1) |
|
|
|
self.patch_size = patch_size |
|
self.height, self.width = height // patch_size, width // patch_size |
|
self.base_size = height // patch_size |
|
|
|
def forward(self, latent): |
|
batch_size, num_channels, height, width = latent.size() |
|
latent = latent.view( |
|
batch_size, |
|
num_channels, |
|
height // self.patch_size, |
|
self.patch_size, |
|
width // self.patch_size, |
|
self.patch_size, |
|
) |
|
latent = latent.permute(0, 2, 4, 1, 3, 5).flatten(-3).flatten(1, 2) |
|
latent = self.proj(latent) |
|
try: |
|
return latent + self.pos_embed |
|
except RuntimeError: |
|
raise RuntimeError( |
|
f"Positional embeddings are too small for the number of patches. " |
|
f"Please increase `pos_embed_max_size` to at least {self.num_patches}." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def patch_auraflow_pos_embed(pos_embed): |
|
|
|
def new_forward(self, latent): |
|
batch_size, num_channels, height, width = latent.size() |
|
|
|
|
|
latent_size = height * width * num_channels / 16 |
|
pos_embed_size = self.pos_embed.shape[1] |
|
if latent_size < pos_embed_size: |
|
total_padding = int(pos_embed_size - math.floor(latent_size)) |
|
total_padding = total_padding // 16 |
|
pad_height = total_padding // 2 |
|
pad_width = total_padding - pad_height |
|
|
|
padding = (0, pad_width, 0, pad_height) |
|
latent = torch.nn.functional.pad(latent, padding, mode='reflect') |
|
elif latent_size > pos_embed_size: |
|
amount_to_remove = latent_size - pos_embed_size |
|
latent = latent[:, :, :-amount_to_remove] |
|
|
|
batch_size, num_channels, height, width = latent.size() |
|
|
|
latent = latent.view( |
|
batch_size, |
|
num_channels, |
|
height // self.patch_size, |
|
self.patch_size, |
|
width // self.patch_size, |
|
self.patch_size, |
|
) |
|
latent = latent.permute(0, 2, 4, 1, 3, 5).flatten(-3).flatten(1, 2) |
|
latent = self.proj(latent) |
|
try: |
|
return latent + self.pos_embed |
|
except RuntimeError: |
|
raise RuntimeError( |
|
f"Positional embeddings are too small for the number of patches. " |
|
f"Please increase `pos_embed_max_size` to at least {self.num_patches}." |
|
) |
|
|
|
pos_embed.forward = partial(new_forward, pos_embed) |
|
|