crystantine's picture
Upload 190 files
1ba389d verified
import math
import weakref
from toolkit.config_modules import AdapterConfig
import torch
import torch.nn as nn
from typing import TYPE_CHECKING, List, Dict, Any
from toolkit.models.clip_fusion import ZipperBlock
from toolkit.models.zipper_resampler import ZipperModule, ZipperResampler
import sys
from toolkit.paths import REPOS_ROOT
sys.path.append(REPOS_ROOT)
from ipadapter.ip_adapter.resampler import Resampler
from collections import OrderedDict
if TYPE_CHECKING:
from toolkit.lora_special import LoRAModule
from toolkit.stable_diffusion_model import StableDiffusion
class MLP(nn.Module):
def __init__(self, in_dim, out_dim, hidden_dim, dropout=0.1, use_residual=True):
super().__init__()
if use_residual:
assert in_dim == out_dim
self.layernorm = nn.LayerNorm(in_dim)
self.fc1 = nn.Linear(in_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, out_dim)
self.dropout = nn.Dropout(dropout)
self.use_residual = use_residual
self.act_fn = nn.GELU()
def forward(self, x):
residual = x
x = self.layernorm(x)
x = self.fc1(x)
x = self.act_fn(x)
x = self.fc2(x)
x = self.dropout(x)
if self.use_residual:
x = x + residual
return x
class LoRAGenerator(torch.nn.Module):
def __init__(
self,
input_size: int = 768, # projection dimension
hidden_size: int = 768,
head_size: int = 512,
num_heads: int = 1,
num_mlp_layers: int = 1,
output_size: int = 768,
dropout: float = 0.0
):
super().__init__()
self.input_size = input_size
self.num_heads = num_heads
self.simple = False
self.output_size = output_size
if self.simple:
self.head = nn.Linear(input_size, head_size, bias=False)
else:
self.lin_in = nn.Linear(input_size, hidden_size)
self.mlp_blocks = nn.Sequential(*[
MLP(hidden_size, hidden_size, hidden_size, dropout=dropout, use_residual=True) for _ in
range(num_mlp_layers)
])
self.head = nn.Linear(hidden_size, head_size, bias=False)
self.norm = nn.LayerNorm(head_size)
if num_heads == 1:
self.output = nn.Linear(head_size, self.output_size)
# for each output block. multiply weights by 0.01
with torch.no_grad():
self.output.weight.data *= 0.01
else:
head_output_size = output_size // num_heads
self.outputs = nn.ModuleList([nn.Linear(head_size, head_output_size) for _ in range(num_heads)])
# for each output block. multiply weights by 0.01
with torch.no_grad():
for output in self.outputs:
output.weight.data *= 0.01
# allow get device
@property
def device(self):
return next(self.parameters()).device
@property
def dtype(self):
return next(self.parameters()).dtype
def forward(self, embedding):
if len(embedding.shape) == 2:
embedding = embedding.unsqueeze(1)
x = embedding
if not self.simple:
x = self.lin_in(embedding)
x = self.mlp_blocks(x)
x = self.head(x)
x = self.norm(x)
if self.num_heads == 1:
x = self.output(x)
else:
out_chunks = torch.chunk(x, self.num_heads, dim=1)
x = []
for out_layer, chunk in zip(self.outputs, out_chunks):
x.append(out_layer(chunk))
x = torch.cat(x, dim=-1)
return x.squeeze(1)
class InstantLoRAMidModule(torch.nn.Module):
def __init__(
self,
index: int,
lora_module: 'LoRAModule',
instant_lora_module: 'InstantLoRAModule',
up_shape: list = None,
down_shape: list = None,
):
super(InstantLoRAMidModule, self).__init__()
self.up_shape = up_shape
self.down_shape = down_shape
self.index = index
self.lora_module_ref = weakref.ref(lora_module)
self.instant_lora_module_ref = weakref.ref(instant_lora_module)
self.do_up = instant_lora_module.config.ilora_up
self.do_down = instant_lora_module.config.ilora_down
self.do_mid = instant_lora_module.config.ilora_mid
self.down_dim = self.down_shape[1] if self.do_down else 0
self.mid_dim = self.up_shape[1] if self.do_mid else 0
self.out_dim = self.up_shape[0] if self.do_up else 0
self.embed = None
def down_forward(self, x, *args, **kwargs):
if not self.do_down:
return self.lora_module_ref().lora_down.orig_forward(x, *args, **kwargs)
# get the embed
self.embed = self.instant_lora_module_ref().img_embeds[self.index]
down_weight = self.embed[:, :self.down_dim]
batch_size = x.shape[0]
# unconditional
if down_weight.shape[0] * 2 == batch_size:
down_weight = torch.cat([down_weight] * 2, dim=0)
try:
if len(x.shape) == 4:
# conv
down_weight = down_weight.view(batch_size, -1, 1, 1)
if x.shape[1] != down_weight.shape[1]:
raise ValueError(f"Down weight shape not understood: {down_weight.shape} {x.shape}")
elif len(x.shape) == 2:
down_weight = down_weight.view(batch_size, -1)
if x.shape[1] != down_weight.shape[1]:
raise ValueError(f"Down weight shape not understood: {down_weight.shape} {x.shape}")
else:
down_weight = down_weight.view(batch_size, 1, -1)
if x.shape[2] != down_weight.shape[2]:
raise ValueError(f"Down weight shape not understood: {down_weight.shape} {x.shape}")
x = x * down_weight
x = self.lora_module_ref().lora_down.orig_forward(x, *args, **kwargs)
except Exception as e:
print(e)
raise ValueError(f"Down weight shape not understood: {down_weight.shape} {x.shape}")
return x
def up_forward(self, x, *args, **kwargs):
# do mid here
x = self.mid_forward(x, *args, **kwargs)
if not self.do_up:
return self.lora_module_ref().lora_up.orig_forward(x, *args, **kwargs)
# get the embed
self.embed = self.instant_lora_module_ref().img_embeds[self.index]
up_weight = self.embed[:, -self.out_dim:]
batch_size = x.shape[0]
# unconditional
if up_weight.shape[0] * 2 == batch_size:
up_weight = torch.cat([up_weight] * 2, dim=0)
try:
if len(x.shape) == 4:
# conv
up_weight = up_weight.view(batch_size, -1, 1, 1)
elif len(x.shape) == 2:
up_weight = up_weight.view(batch_size, -1)
else:
up_weight = up_weight.view(batch_size, 1, -1)
x = self.lora_module_ref().lora_up.orig_forward(x, *args, **kwargs)
x = x * up_weight
except Exception as e:
print(e)
raise ValueError(f"Up weight shape not understood: {up_weight.shape} {x.shape}")
return x
def mid_forward(self, x, *args, **kwargs):
if not self.do_mid:
return self.lora_module_ref().lora_down.orig_forward(x, *args, **kwargs)
batch_size = x.shape[0]
# get the embed
self.embed = self.instant_lora_module_ref().img_embeds[self.index]
mid_weight = self.embed[:, self.down_dim:self.down_dim + self.mid_dim * self.mid_dim]
# unconditional
if mid_weight.shape[0] * 2 == batch_size:
mid_weight = torch.cat([mid_weight] * 2, dim=0)
weight_chunks = torch.chunk(mid_weight, batch_size, dim=0)
x_chunks = torch.chunk(x, batch_size, dim=0)
x_out = []
for i in range(batch_size):
weight_chunk = weight_chunks[i]
x_chunk = x_chunks[i]
# reshape
if len(x_chunk.shape) == 4:
# conv
weight_chunk = weight_chunk.view(self.mid_dim, self.mid_dim, 1, 1)
else:
weight_chunk = weight_chunk.view(self.mid_dim, self.mid_dim)
# check if is conv or linear
if len(weight_chunk.shape) == 4:
padding = 0
if weight_chunk.shape[-1] == 3:
padding = 1
x_chunk = nn.functional.conv2d(x_chunk, weight_chunk, padding=padding)
else:
# run a simple linear layer with the down weight
x_chunk = x_chunk @ weight_chunk.T
x_out.append(x_chunk)
x = torch.cat(x_out, dim=0)
return x
class InstantLoRAModule(torch.nn.Module):
def __init__(
self,
vision_hidden_size: int,
vision_tokens: int,
head_dim: int,
num_heads: int, # number of heads in the resampler
sd: 'StableDiffusion',
config: AdapterConfig
):
super(InstantLoRAModule, self).__init__()
# self.linear = torch.nn.Linear(2, 1)
self.sd_ref = weakref.ref(sd)
self.dim = sd.network.lora_dim
self.vision_hidden_size = vision_hidden_size
self.vision_tokens = vision_tokens
self.head_dim = head_dim
self.num_heads = num_heads
self.config: AdapterConfig = config
# stores the projection vector. Grabbed by modules
self.img_embeds: List[torch.Tensor] = None
# disable merging in. It is slower on inference
self.sd_ref().network.can_merge_in = False
self.ilora_modules = torch.nn.ModuleList()
lora_modules = self.sd_ref().network.get_all_modules()
output_size = 0
self.embed_lengths = []
self.weight_mapping = []
for idx, lora_module in enumerate(lora_modules):
module_dict = lora_module.state_dict()
down_shape = list(module_dict['lora_down.weight'].shape)
up_shape = list(module_dict['lora_up.weight'].shape)
self.weight_mapping.append([lora_module.lora_name, [down_shape, up_shape]])
#
# module_size = math.prod(down_shape) + math.prod(up_shape)
# conv weight shape is (out_channels, in_channels, kernel_size, kernel_size)
# linear weight shape is (out_features, in_features)
# just doing in dim and out dim
in_dim = down_shape[1] if self.config.ilora_down else 0
mid_dim = down_shape[0] * down_shape[0] if self.config.ilora_mid else 0
out_dim = up_shape[0] if self.config.ilora_up else 0
module_size = in_dim + mid_dim + out_dim
output_size += module_size
self.embed_lengths.append(module_size)
# add a new mid module that will take the original forward and add a vector to it
# this will be used to add the vector to the original forward
instant_module = InstantLoRAMidModule(
idx,
lora_module,
self,
up_shape=up_shape,
down_shape=down_shape
)
self.ilora_modules.append(instant_module)
# replace the LoRA forwards
lora_module.lora_down.orig_forward = lora_module.lora_down.forward
lora_module.lora_down.forward = instant_module.down_forward
lora_module.lora_up.orig_forward = lora_module.lora_up.forward
lora_module.lora_up.forward = instant_module.up_forward
self.output_size = output_size
number_formatted_output_size = "{:,}".format(output_size)
print(f" ILORA output size: {number_formatted_output_size}")
# if not evenly divisible, error
if self.output_size % self.num_heads != 0:
raise ValueError("Output size must be divisible by the number of heads")
self.head_output_size = self.output_size // self.num_heads
if vision_tokens > 1:
self.resampler = Resampler(
dim=vision_hidden_size,
depth=4,
dim_head=64,
heads=12,
num_queries=num_heads, # output tokens
embedding_dim=vision_hidden_size,
max_seq_len=vision_tokens,
output_dim=head_dim,
apply_pos_emb=True, # this is new
ff_mult=4
)
self.proj_module = LoRAGenerator(
input_size=head_dim,
hidden_size=head_dim,
head_size=head_dim,
num_mlp_layers=1,
num_heads=self.num_heads,
output_size=self.output_size,
)
self.migrate_weight_mapping()
def migrate_weight_mapping(self):
return
# # changes the names of the modules to common ones
# keymap = self.sd_ref().network.get_keymap()
# save_keymap = {}
# if keymap is not None:
# for ldm_key, diffusers_key in keymap.items():
# # invert them
# save_keymap[diffusers_key] = ldm_key
#
# new_keymap = {}
# for key, value in self.weight_mapping:
# if key in save_keymap:
# new_keymap[save_keymap[key]] = value
# else:
# print(f"Key {key} not found in keymap")
# new_keymap[key] = value
# self.weight_mapping = new_keymap
# else:
# print("No keymap found. Using default names")
# return
def forward(self, img_embeds):
# expand token rank if only rank 2
if len(img_embeds.shape) == 2:
img_embeds = img_embeds.unsqueeze(1)
# resample the image embeddings
img_embeds = self.resampler(img_embeds)
img_embeds = self.proj_module(img_embeds)
if len(img_embeds.shape) == 3:
# merge the heads
img_embeds = img_embeds.mean(dim=1)
self.img_embeds = []
# get all the slices
start = 0
for length in self.embed_lengths:
self.img_embeds.append(img_embeds[:, start:start + length])
start += length
def get_additional_save_metadata(self) -> Dict[str, Any]:
# save the weight mapping
return {
"weight_mapping": self.weight_mapping,
"num_heads": self.num_heads,
"vision_hidden_size": self.vision_hidden_size,
"head_dim": self.head_dim,
"vision_tokens": self.vision_tokens,
"output_size": self.output_size,
"do_up": self.config.ilora_up,
"do_mid": self.config.ilora_mid,
"do_down": self.config.ilora_down,
}