|
import sys |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import weakref |
|
from typing import Union, TYPE_CHECKING, Optional, Tuple |
|
|
|
from transformers import T5EncoderModel, CLIPTextModel, CLIPTokenizer, T5Tokenizer |
|
from transformers.models.clip.modeling_clip import CLIPEncoder, CLIPAttention |
|
|
|
from toolkit.models.zipper_resampler import ZipperResampler, ZipperModule |
|
from toolkit.paths import REPOS_ROOT |
|
from toolkit.resampler import Resampler |
|
|
|
sys.path.append(REPOS_ROOT) |
|
|
|
from ipadapter.ip_adapter.attention_processor import AttnProcessor2_0 |
|
|
|
if TYPE_CHECKING: |
|
from toolkit.stable_diffusion_model import StableDiffusion |
|
from toolkit.custom_adapter import CustomAdapter |
|
|
|
|
|
class TEAugAdapterCLIPAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, attn_module: 'CLIPAttention', adapter: 'TEAugAdapter'): |
|
super().__init__() |
|
self.adapter_ref: weakref.ref = weakref.ref(adapter) |
|
self.attn_module_ref: weakref.ref = weakref.ref(attn_module) |
|
self.k_proj_adapter = nn.Linear(attn_module.embed_dim, attn_module.embed_dim) |
|
self.v_proj_adapter = nn.Linear(attn_module.embed_dim, attn_module.embed_dim) |
|
|
|
self.k_proj_adapter.weight.data = attn_module.k_proj.weight.data.clone() * 0.01 |
|
self.v_proj_adapter.weight.data = attn_module.v_proj.weight.data.clone() * 0.01 |
|
|
|
self.k_proj_adapter.bias.data = attn_module.k_proj.bias.data.clone() * 0.001 |
|
self.v_proj_adapter.bias.data = attn_module.v_proj.bias.data.clone() * 0.001 |
|
|
|
self.zipper = ZipperModule( |
|
in_size=attn_module.embed_dim, |
|
in_tokens=77 * 2, |
|
out_size=attn_module.embed_dim, |
|
out_tokens=77, |
|
hidden_size=attn_module.embed_dim, |
|
hidden_tokens=77, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.original_forward = attn_module.forward |
|
attn_module.forward = self.forward |
|
|
|
|
|
@property |
|
def is_active(self): |
|
return self.adapter_ref().is_active |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
causal_attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
attn_module = self.attn_module_ref() |
|
|
|
bsz, tgt_len, embed_dim = hidden_states.size() |
|
|
|
|
|
query_states = attn_module.q_proj(hidden_states) * attn_module.scale |
|
key_states = attn_module._shape(attn_module.k_proj(hidden_states), -1, bsz) |
|
value_states = attn_module._shape(attn_module.v_proj(hidden_states), -1, bsz) |
|
|
|
proj_shape = (bsz * attn_module.num_heads, -1, attn_module.head_dim) |
|
query_states = attn_module._shape(query_states, tgt_len, bsz).view(*proj_shape) |
|
key_states = key_states.view(*proj_shape) |
|
value_states = value_states.view(*proj_shape) |
|
|
|
src_len = key_states.size(1) |
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) |
|
|
|
if attn_weights.size() != (bsz * attn_module.num_heads, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz * attn_module.num_heads, tgt_len, src_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
|
|
if causal_attention_mask is not None: |
|
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" |
|
f" {causal_attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights.view(bsz, attn_module.num_heads, tgt_len, src_len) + causal_attention_mask |
|
attn_weights = attn_weights.view(bsz * attn_module.num_heads, tgt_len, src_len) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights.view(bsz, attn_module.num_heads, tgt_len, src_len) + attention_mask |
|
attn_weights = attn_weights.view(bsz * attn_module.num_heads, tgt_len, src_len) |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
if output_attentions: |
|
|
|
|
|
|
|
|
|
attn_weights_reshaped = attn_weights.view(bsz, attn_module.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights_reshaped.view(bsz * attn_module.num_heads, tgt_len, src_len) |
|
else: |
|
attn_weights_reshaped = None |
|
|
|
attn_probs = nn.functional.dropout(attn_weights, p=attn_module.dropout, training=self.training) |
|
|
|
attn_output = torch.bmm(attn_probs, value_states) |
|
|
|
if attn_output.size() != (bsz * attn_module.num_heads, tgt_len, attn_module.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, attn_module.num_heads, tgt_len, attn_module.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.view(bsz, attn_module.num_heads, tgt_len, attn_module.head_dim) |
|
attn_output = attn_output.transpose(1, 2) |
|
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) |
|
|
|
adapter: 'CustomAdapter' = self.adapter_ref().adapter_ref() |
|
if self.adapter_ref().is_active and adapter.conditional_embeds is not None: |
|
|
|
|
|
if adapter.is_unconditional_run: |
|
embeds = adapter.unconditional_embeds |
|
else: |
|
embeds = adapter.conditional_embeds |
|
|
|
if embeds.size(0) != bsz: |
|
embeds = torch.cat([adapter.unconditional_embeds, embeds], dim=0) |
|
|
|
key_states_raw = self.k_proj_adapter(embeds) |
|
key_states = attn_module._shape(key_states_raw, -1, bsz) |
|
value_states_raw = self.v_proj_adapter(embeds) |
|
value_states = attn_module._shape(value_states_raw, -1, bsz) |
|
key_states = key_states.view(*proj_shape) |
|
value_states = value_states.view(*proj_shape) |
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
attn_probs = nn.functional.dropout(attn_weights, p=attn_module.dropout, training=self.training) |
|
attn_output_adapter = torch.bmm(attn_probs, value_states) |
|
|
|
if attn_output_adapter.size() != (bsz * attn_module.num_heads, tgt_len, attn_module.head_dim): |
|
raise ValueError( |
|
f"`attn_output_adapter` should be of size {(bsz, attn_module.num_heads, tgt_len, attn_module.head_dim)}, but is" |
|
f" {attn_output_adapter.size()}" |
|
) |
|
|
|
attn_output_adapter = attn_output_adapter.view(bsz, attn_module.num_heads, tgt_len, attn_module.head_dim) |
|
attn_output_adapter = attn_output_adapter.transpose(1, 2) |
|
attn_output_adapter = attn_output_adapter.reshape(bsz, tgt_len, embed_dim) |
|
|
|
attn_output_adapter = self.zipper(torch.cat([attn_output_adapter, attn_output], dim=1)) |
|
|
|
|
|
attn_output = attn_output + attn_output_adapter |
|
|
|
attn_output = attn_module.out_proj(attn_output) |
|
|
|
return attn_output, attn_weights_reshaped |
|
|
|
class TEAugAdapter(torch.nn.Module): |
|
def __init__( |
|
self, |
|
adapter: 'CustomAdapter', |
|
sd: 'StableDiffusion', |
|
): |
|
super(TEAugAdapter, self).__init__() |
|
self.adapter_ref: weakref.ref = weakref.ref(adapter) |
|
self.sd_ref: weakref.ref = weakref.ref(sd) |
|
|
|
if isinstance(sd.text_encoder, list): |
|
raise ValueError("Dual text encoders is not yet supported") |
|
|
|
|
|
|
|
text_encoder: CLIPTextModel = sd.text_encoder |
|
dim = text_encoder.config.hidden_size |
|
|
|
clip_encoder: CLIPEncoder = text_encoder.text_model.encoder |
|
|
|
|
|
if hasattr(adapter.vision_encoder.config, 'hidden_sizes'): |
|
embedding_dim = adapter.vision_encoder.config.hidden_sizes[-1] |
|
else: |
|
embedding_dim = adapter.vision_encoder.config.hidden_size |
|
|
|
image_encoder_state_dict = adapter.vision_encoder.state_dict() |
|
|
|
in_tokens = 257 |
|
if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict: |
|
|
|
in_tokens = int(image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0]) |
|
|
|
if adapter.config.image_encoder_arch.startswith('convnext'): |
|
in_tokens = 16 * 16 |
|
embedding_dim = adapter.vision_encoder.config.hidden_sizes[-1] |
|
|
|
out_tokens = adapter.config.num_tokens if adapter.config.num_tokens > 0 else in_tokens |
|
self.image_proj_model = ZipperModule( |
|
in_size=embedding_dim, |
|
in_tokens=in_tokens, |
|
out_size=dim, |
|
out_tokens=out_tokens, |
|
hidden_size=dim, |
|
hidden_tokens=out_tokens, |
|
) |
|
|
|
attn_procs = {} |
|
for idx, layer in enumerate(clip_encoder.layers): |
|
name = f"clip_attention.{idx}" |
|
attn_procs[name] = TEAugAdapterCLIPAttention( |
|
layer.self_attn, |
|
self |
|
) |
|
|
|
self.adapter_modules = torch.nn.ModuleList(list(attn_procs.values())) |
|
|
|
|
|
@property |
|
def is_active(self): |
|
return self.adapter_ref().is_active |
|
|
|
|
|
def forward(self, input): |
|
|
|
input = self.image_proj_model(input) |
|
|
|
return input |
|
|