|
|
|
import math |
|
import torch |
|
from torch import Tensor |
|
|
|
|
|
def copy_stochastic_(target: Tensor, source: Tensor): |
|
|
|
result = torch.randint_like( |
|
source, |
|
dtype=torch.int32, |
|
low=0, |
|
high=(1 << 16), |
|
) |
|
|
|
|
|
result.add_(source.view(dtype=torch.int32)) |
|
|
|
|
|
result.bitwise_and_(-65536) |
|
|
|
|
|
target.copy_(result.view(dtype=torch.float32)) |
|
|
|
|
|
@torch.no_grad() |
|
def step_adafactor(self, closure=None): |
|
""" |
|
Performs a single optimization step |
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad |
|
if grad.dtype in {torch.float16, torch.bfloat16}: |
|
grad = grad.float() |
|
if grad.is_sparse: |
|
raise RuntimeError("Adafactor does not support sparse gradients.") |
|
|
|
state = self.state[p] |
|
grad_shape = grad.shape |
|
|
|
factored, use_first_moment = self._get_options(group, grad_shape) |
|
|
|
if len(state) == 0: |
|
state["step"] = 0 |
|
|
|
if use_first_moment: |
|
|
|
state["exp_avg"] = torch.zeros_like(grad) |
|
if factored: |
|
state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad) |
|
state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad) |
|
else: |
|
state["exp_avg_sq"] = torch.zeros_like(grad) |
|
|
|
state["RMS"] = 0 |
|
else: |
|
if use_first_moment: |
|
state["exp_avg"] = state["exp_avg"].to(grad) |
|
if factored: |
|
state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad) |
|
state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad) |
|
else: |
|
state["exp_avg_sq"] = state["exp_avg_sq"].to(grad) |
|
|
|
p_data_fp32 = p |
|
if p.dtype in {torch.float16, torch.bfloat16}: |
|
p_data_fp32 = p_data_fp32.float() |
|
|
|
state["step"] += 1 |
|
state["RMS"] = self._rms(p_data_fp32) |
|
lr = self._get_lr(group, state) |
|
|
|
beta2t = 1.0 - math.pow(state["step"], group["decay_rate"]) |
|
eps = group["eps"][0] if isinstance(group["eps"], list) else group["eps"] |
|
update = (grad ** 2) + eps |
|
if factored: |
|
exp_avg_sq_row = state["exp_avg_sq_row"] |
|
exp_avg_sq_col = state["exp_avg_sq_col"] |
|
|
|
exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=(1.0 - beta2t)) |
|
exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=(1.0 - beta2t)) |
|
|
|
|
|
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col) |
|
update.mul_(grad) |
|
else: |
|
exp_avg_sq = state["exp_avg_sq"] |
|
|
|
exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t)) |
|
update = exp_avg_sq.rsqrt().mul_(grad) |
|
|
|
update.div_((self._rms(update) / group["clip_threshold"]).clamp_(min=1.0)) |
|
update.mul_(lr) |
|
|
|
if use_first_moment: |
|
exp_avg = state["exp_avg"] |
|
exp_avg.mul_(group["beta1"]).add_(update, alpha=(1 - group["beta1"])) |
|
update = exp_avg |
|
|
|
if group["weight_decay"] != 0: |
|
p_data_fp32.add_(p_data_fp32, alpha=(-group["weight_decay"] * lr)) |
|
|
|
p_data_fp32.add_(-update) |
|
|
|
if p.dtype == torch.bfloat16: |
|
copy_stochastic_(p, p_data_fp32) |
|
elif p.dtype == torch.float16: |
|
p.copy_(p_data_fp32) |
|
|
|
return loss |
|
|