#based off https://github.com/catid/dora/blob/main/dora.py import math import torch import torch.nn as nn import torch.nn.functional as F from typing import TYPE_CHECKING, Union, List from optimum.quanto import QBytesTensor, QTensor from toolkit.network_mixins import ToolkitModuleMixin, ExtractableModuleMixin if TYPE_CHECKING: from toolkit.lora_special import LoRASpecialNetwork # diffusers specific stuff LINEAR_MODULES = [ 'Linear', 'LoRACompatibleLinear' # 'GroupNorm', ] CONV_MODULES = [ 'Conv2d', 'LoRACompatibleConv' ] def transpose(weight, fan_in_fan_out): if not fan_in_fan_out: return weight if isinstance(weight, torch.nn.Parameter): return torch.nn.Parameter(weight.T) return weight.T class DoRAModule(ToolkitModuleMixin, ExtractableModuleMixin, torch.nn.Module): # def __init__(self, d_in, d_out, rank=4, weight=None, bias=None): def __init__( self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4, alpha=1, dropout=None, rank_dropout=None, module_dropout=None, network: 'LoRASpecialNetwork' = None, use_bias: bool = False, **kwargs ): self.can_merge_in = False """if alpha == 0 or None, alpha is rank (no scaling).""" ToolkitModuleMixin.__init__(self, network=network) torch.nn.Module.__init__(self) self.lora_name = lora_name self.scalar = torch.tensor(1.0) self.lora_dim = lora_dim if org_module.__class__.__name__ in CONV_MODULES: raise NotImplementedError("Convolutional layers are not supported yet") if type(alpha) == torch.Tensor: alpha = alpha.detach().float().numpy() # without casting, bf16 causes error alpha = self.lora_dim if alpha is None or alpha == 0 else alpha self.scale = alpha / self.lora_dim # self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える eng: treat as constant self.multiplier: Union[float, List[float]] = multiplier # wrap the original module so it doesn't get weights updated self.org_module = [org_module] self.dropout = dropout self.rank_dropout = rank_dropout self.module_dropout = module_dropout self.is_checkpointing = False d_out = org_module.out_features d_in = org_module.in_features std_dev = 1 / torch.sqrt(torch.tensor(self.lora_dim).float()) # self.lora_up = nn.Parameter(torch.randn(d_out, self.lora_dim) * std_dev) # lora_A # self.lora_down = nn.Parameter(torch.zeros(self.lora_dim, d_in)) # lora_B self.lora_up = nn.Linear(self.lora_dim, d_out, bias=False) # lora_B # self.lora_up.weight.data = torch.randn_like(self.lora_up.weight.data) * std_dev self.lora_up.weight.data = torch.zeros_like(self.lora_up.weight.data) # self.lora_A[adapter_name] = nn.Linear(self.in_features, r, bias=False) # self.lora_B[adapter_name] = nn.Linear(r, self.out_features, bias=False) self.lora_down = nn.Linear(d_in, self.lora_dim, bias=False) # lora_A # self.lora_down.weight.data = torch.zeros_like(self.lora_down.weight.data) self.lora_down.weight.data = torch.randn_like(self.lora_down.weight.data) * std_dev # m = Magnitude column-wise across output dimension weight = self.get_orig_weight() weight = weight.to(self.lora_up.weight.device, dtype=self.lora_up.weight.dtype) lora_weight = self.lora_up.weight @ self.lora_down.weight weight_norm = self._get_weight_norm(weight, lora_weight) self.magnitude = nn.Parameter(weight_norm.detach().clone(), requires_grad=True) def apply_to(self): self.org_forward = self.org_module[0].forward self.org_module[0].forward = self.forward # del self.org_module def get_orig_weight(self): weight = self.org_module[0].weight if isinstance(weight, QTensor) or isinstance(weight, QBytesTensor): return weight.dequantize().data.detach() else: return weight.data.detach() def get_orig_bias(self): if hasattr(self.org_module[0], 'bias') and self.org_module[0].bias is not None: return self.org_module[0].bias.data.detach() return None # def dora_forward(self, x, *args, **kwargs): # lora = torch.matmul(self.lora_A, self.lora_B) # adapted = self.get_orig_weight() + lora # column_norm = adapted.norm(p=2, dim=0, keepdim=True) # norm_adapted = adapted / column_norm # calc_weights = self.magnitude * norm_adapted # return F.linear(x, calc_weights, self.get_orig_bias()) def _get_weight_norm(self, weight, scaled_lora_weight) -> torch.Tensor: # calculate L2 norm of weight matrix, column-wise weight = weight + scaled_lora_weight.to(weight.device) weight_norm = torch.linalg.norm(weight, dim=1) return weight_norm def apply_dora(self, x, scaled_lora_weight): # ref https://github.com/huggingface/peft/blob/1e6d1d73a0850223b0916052fd8d2382a90eae5a/src/peft/tuners/lora/layer.py#L192 # lora weight is already scaled # magnitude = self.lora_magnitude_vector[active_adapter] weight = self.get_orig_weight() weight = weight.to(scaled_lora_weight.device, dtype=scaled_lora_weight.dtype) weight_norm = self._get_weight_norm(weight, scaled_lora_weight) # see section 4.3 of DoRA (https://arxiv.org/abs/2402.09353) # "[...] we suggest treating ||V +∆V ||_c in # Eq. (5) as a constant, thereby detaching it from the gradient # graph. This means that while ||V + ∆V ||_c dynamically # reflects the updates of ∆V , it won’t receive any gradient # during backpropagation" weight_norm = weight_norm.detach() dora_weight = transpose(weight + scaled_lora_weight, False) return (self.magnitude / weight_norm - 1).view(1, -1) * F.linear(x.to(dora_weight.dtype), dora_weight)