from PIL import Image import numpy as np import torch def tensor_to_pil(img_tensor, batch_index=0): # Convert tensor of shape [batch_size, channels, height, width] at the batch_index to PIL Image img_tensor = img_tensor[batch_index].unsqueeze(0) i = 255. * img_tensor.cpu().numpy() img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8).squeeze()) return img def batch_tensor_to_pil(img_tensor): # Convert tensor of shape [batch_size, channels, height, width] to a list of PIL Images return [tensor_to_pil(img_tensor, i) for i in range(img_tensor.shape[0])] def pil_to_tensor(image): # Takes a PIL image and returns a tensor of shape [1, height, width, channels] image = np.array(image).astype(np.float32) / 255.0 image = torch.from_numpy(image).unsqueeze(0) if len(image.shape) == 3: # If the image is grayscale, add a channel dimension image = image.unsqueeze(-1) return image def batched_pil_to_tensor(images): # Takes a list of PIL images and returns a tensor of shape [batch_size, height, width, channels] return torch.cat([pil_to_tensor(image) for image in images], dim=0)