File size: 4,584 Bytes
f50aca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bffafcb
 
 
 
 
 
 
 
f50aca7
 
bffafcb
f50aca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0e07ab
 
f50aca7
 
 
 
a0e07ab
f50aca7
 
8305e3a
 
f50aca7
8305e3a
f50aca7
 
 
 
 
73aa0c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""mMARCO dataset."""

from collections import defaultdict
from gc import collect
import datasets


_CITATION = """
@misc{bonifacio2021mmarco,
      title={mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset},
      author={Luiz Henrique Bonifacio and Israel Campiotti and Vitor Jeronymo and Hugo Queiroz Abonizio and Roberto Lotufo and Rodrigo Nogueira},
      year={2021},
      eprint={2108.13897},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_URL = "https://github.com/unicamp-dl/mMARCO"

_DESCRIPTION = """
mMARCO translated datasets
"""


_BASE_URLS = {
    "collections": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/collections/",
    "queries-train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/train/",
    "queries-dev": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/dev/",
    "runs": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/runs/",
    "train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/triples.train.ids.small.tsv",
}

LANGUAGES = [
    "arabic",
    "chinese",
    "dutch",
    "english",
    "french",
    "german",
    "hindi",
    "indonesian",
    "italian",
    "japanese",
    "portuguese",
    "russian",
    "spanish",
    "vietnamese",
]


class MMarco(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name=language,
            description=f"{language.capitalize()} triples",
            version=datasets.Version("2.0.0"),
        )
        for language in LANGUAGES
    ]

    
    # size_per_lang = {lang: 398792 for lang in LANGUAGES}
    # $ cat triples.train.ids.small.tsv  | cut -f 1  | sort | uniq | wc -l 
    # 398792

    DEFAULT_CONFIG_NAME = "english"

    def _info(self):
        name = self.config.name
        assert name in LANGUAGES

        # features = {
        #     "query_id": datasets.Value("string"),
        #     "query": datasets.Value("string"),
        #     "positive_passages": [
        #         {'docid': datasets.Value('string'), 'text': datasets.Value('string')}
        #     ],
        #     "negative_passages": [
        #         {'docid': datasets.Value('string'), 'text': datasets.Value('string')}
        #     ],
        # }

        features = datasets.Features(
            {'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')}
        )
        return datasets.DatasetInfo(
            description=f"{_DESCRIPTION}\n{self.config.description}",
            features=datasets.Features(features),
            supervised_keys=None,
            homepage=_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        languages = [self.config.name] if self.config.name in LANGUAGES else LANGUAGES
        urls = {
            "collection": {lang: _BASE_URLS["collections"] + lang + "_collection.tsv" for lang in languages},
        }
        dl_path = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    # "files": dl_path["train"],
                    'files': dl_path["collection"],
                },
            )
        ]

    def _generate_examples(self, files):
        """Yields examples."""

        # languages = [self.config.name] if self.config.name in LANGUAGES else LANGUAGES

        # loading
        collection_path = files[self.config.name] 

        with open(collection_path, encoding="utf-8") as f:
            for line in f:
                doc_id, doc = line.rstrip().split("\t")
                # collection[doc_id] = doc
                yield doc_id, {"docid": doc_id, "title": "", "text": doc}