Crystina
commited on
Commit
·
c6a4d24
1
Parent(s):
c2202cb
init
Browse files
mmarco.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""mMARCO dataset."""
|
18 |
+
|
19 |
+
from gc import collect
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
|
23 |
+
_CITATION = """
|
24 |
+
@misc{bonifacio2021mmarco,
|
25 |
+
title={mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset},
|
26 |
+
author={Luiz Henrique Bonifacio and Israel Campiotti and Vitor Jeronymo and Hugo Queiroz Abonizio and Roberto Lotufo and Rodrigo Nogueira},
|
27 |
+
year={2021},
|
28 |
+
eprint={2108.13897},
|
29 |
+
archivePrefix={arXiv},
|
30 |
+
primaryClass={cs.CL}
|
31 |
+
}
|
32 |
+
"""
|
33 |
+
|
34 |
+
_URL = "https://github.com/unicamp-dl/mMARCO"
|
35 |
+
|
36 |
+
_DESCRIPTION = """
|
37 |
+
mMARCO translated datasets
|
38 |
+
"""
|
39 |
+
|
40 |
+
|
41 |
+
_BASE_URLS = {
|
42 |
+
"collections": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/collections/",
|
43 |
+
"queries-train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/train/",
|
44 |
+
"queries-dev": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/dev/",
|
45 |
+
"runs": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/runs/",
|
46 |
+
"train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/triples.train.ids.small.tsv",
|
47 |
+
}
|
48 |
+
|
49 |
+
LANGUAGES = [
|
50 |
+
"arabic",
|
51 |
+
"chinese",
|
52 |
+
"dutch",
|
53 |
+
"english",
|
54 |
+
"french",
|
55 |
+
"german",
|
56 |
+
"hindi",
|
57 |
+
"indonesian",
|
58 |
+
"italian",
|
59 |
+
"japanese",
|
60 |
+
"portuguese",
|
61 |
+
"russian",
|
62 |
+
"spanish",
|
63 |
+
"vietnamese",
|
64 |
+
]
|
65 |
+
|
66 |
+
|
67 |
+
class MMarco(datasets.GeneratorBasedBuilder):
|
68 |
+
|
69 |
+
BUILDER_CONFIGS = (
|
70 |
+
[
|
71 |
+
datasets.BuilderConfig(
|
72 |
+
name=language,
|
73 |
+
description=f"{language.capitalize()} triples",
|
74 |
+
version=datasets.Version("2.0.0"),
|
75 |
+
)
|
76 |
+
for language in LANGUAGES
|
77 |
+
]
|
78 |
+
+ [
|
79 |
+
datasets.BuilderConfig(
|
80 |
+
name=f"collection-{language}",
|
81 |
+
description=f"{language.capitalize()} collection version v2",
|
82 |
+
version=datasets.Version("2.0.0"),
|
83 |
+
)
|
84 |
+
for language in LANGUAGES
|
85 |
+
]
|
86 |
+
+ [
|
87 |
+
datasets.BuilderConfig(
|
88 |
+
name=f"queries-{language}",
|
89 |
+
description=f"{language.capitalize()} queries version v2",
|
90 |
+
version=datasets.Version("2.0.0"),
|
91 |
+
)
|
92 |
+
for language in LANGUAGES
|
93 |
+
]
|
94 |
+
+ [
|
95 |
+
datasets.BuilderConfig(
|
96 |
+
name=f"runs-{language}",
|
97 |
+
description=f"{language.capitalize()} runs version v2",
|
98 |
+
version=datasets.Version("2.0.0"),
|
99 |
+
)
|
100 |
+
for language in LANGUAGES
|
101 |
+
]
|
102 |
+
+ [
|
103 |
+
datasets.BuilderConfig(
|
104 |
+
name=f"all",
|
105 |
+
description=f"All training data version v2",
|
106 |
+
version=datasets.Version("2.0.0"),
|
107 |
+
)
|
108 |
+
]
|
109 |
+
)
|
110 |
+
|
111 |
+
DEFAULT_CONFIG_NAME = "english"
|
112 |
+
|
113 |
+
def _info(self):
|
114 |
+
name = self.config.name
|
115 |
+
assert name in LANGUAGES + ["all"], f"Does not support languge {name}. Must be one of {LANGUAGES}."
|
116 |
+
|
117 |
+
features = {
|
118 |
+
"query_id": datasets.Value("string"),
|
119 |
+
"query": datasets.Value("string"),
|
120 |
+
"positive_passages": [
|
121 |
+
{'docid': datasets.Value('string'), 'text': datasets.Value('string')}
|
122 |
+
],
|
123 |
+
"negative_passages": [
|
124 |
+
{'docid': datasets.Value('string'), 'text': datasets.Value('string')}
|
125 |
+
],
|
126 |
+
}
|
127 |
+
|
128 |
+
return datasets.DatasetInfo(
|
129 |
+
description=f"{_DESCRIPTION}\n{self.config.description}",
|
130 |
+
features=datasets.Features(features),
|
131 |
+
supervised_keys=None,
|
132 |
+
homepage=_URL,
|
133 |
+
citation=_CITATION,
|
134 |
+
)
|
135 |
+
|
136 |
+
def _split_generators(self, dl_manager):
|
137 |
+
"""Returns SplitGenerators."""
|
138 |
+
languages = [self.config.name] if self.config.name in LANGUAGES else LANGUAGES
|
139 |
+
urls = {
|
140 |
+
"collection": {lang: _BASE_URLS["collections"] + lang + "_collection.tsv" for lang in languages},
|
141 |
+
"queries": {lang: _BASE_URLS["queries-train"] + lang + "_queries.train.tsv" for lang in languages},
|
142 |
+
"train": _BASE_URLS["train"],
|
143 |
+
}
|
144 |
+
dl_path = dl_manager.download_and_extract(urls)
|
145 |
+
|
146 |
+
return [
|
147 |
+
datasets.SplitGenerator(
|
148 |
+
name=datasets.Split.TRAIN,
|
149 |
+
gen_kwargs={
|
150 |
+
"files": dl_path["train"],
|
151 |
+
"args": {
|
152 |
+
"collection": dl_path["collection"],
|
153 |
+
"queries": dl_path["queries"],
|
154 |
+
},
|
155 |
+
},
|
156 |
+
)
|
157 |
+
]
|
158 |
+
|
159 |
+
def _generate_examples(self, files, args=None):
|
160 |
+
"""Yields examples."""
|
161 |
+
|
162 |
+
languages = [self.config.name] if self.config.name in LANGUAGES else LANGUAGES
|
163 |
+
|
164 |
+
# loading
|
165 |
+
lang2collection = {}
|
166 |
+
lang2query = {}
|
167 |
+
for lang in languages:
|
168 |
+
collection_path, queries_path = args["collection"][lang], args["queries"][lang]
|
169 |
+
|
170 |
+
collection = {}
|
171 |
+
with open(collection_path, encoding="utf-8") as f:
|
172 |
+
for line in f:
|
173 |
+
doc_id, doc = line.rstrip().split("\t")
|
174 |
+
collection[doc_id] = doc
|
175 |
+
|
176 |
+
queries = {}
|
177 |
+
with open(queries_path, encoding="utf-8") as f:
|
178 |
+
for line in f:
|
179 |
+
query_id, query = line.rstrip().split("\t")
|
180 |
+
queries[query_id] = query
|
181 |
+
|
182 |
+
lang2collection[lang] = collection
|
183 |
+
lang2query[lang] = queries
|
184 |
+
|
185 |
+
with open(files, encoding="utf-8") as f:
|
186 |
+
# todo: group the queries
|
187 |
+
|
188 |
+
for (idx, line) in enumerate(f):
|
189 |
+
query_id, pos_id, neg_id = line.rstrip().split("\t")
|
190 |
+
for lang in languages:
|
191 |
+
features = {
|
192 |
+
"query_id": query_id,
|
193 |
+
"query": queries[query_id],
|
194 |
+
"positive_passages": [{
|
195 |
+
"docid": pos_id,
|
196 |
+
"text": collection[pos_id],
|
197 |
+
}],
|
198 |
+
"negative_passages": [{
|
199 |
+
"docid": neg_id,
|
200 |
+
"text": collection[neg_id],
|
201 |
+
}],
|
202 |
+
}
|
203 |
+
yield f"{lang}-{query_id}", features
|