File size: 7,261 Bytes
c6e3750 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import re
import math
import unidecode
import copy
from pprint import pp
from lexical_diversity import lex_div as ld
from dtaidistance import dtw
from fastdtw import fastdtw
import numpy as np
import encode_lines as encode
def measure_lex_div(p1, mode="mtld"):
"""
Measure of lexical diversity of a set of lines
Parameters
----------
p1 : list(str)
list of lines of paragraph or song as strings
mode : str, optional
lexical diversity metric, by default "mtld"
Returns
-------
float
lexical diversity score
"""
lines = " ".join(p1)
flem_tokens = ld.flemmatize(unidecode.unidecode(lines))
if mode == "avg_ttr":
lex_div = ld.ttr(flem_tokens) / len(flem_tokens)
elif mode == "mtld":
lex_div = ld.mtld(flem_tokens)
elif mode == "avg_mtld":
lex_div = ld.mtld_ma_wrap(flem_tokens)
return lex_div
def measure_meter(p1, p2):
"""
Measure: meter consistency
Meter consistency between two lines or paragraphs is defined as the negative
exponential of the edit distance between their stress encodings.
Note that this mapping limits the "maximal" error, as extremely high syllable differences
will incur exponentially lower loss. The score is scaled between 0 and 100
Parameters
----------
p1 : list
paragraph as a list of line strings
p2 : list
comparison paragraph as a list of line strings
Returns
-------
float
score of meter consistency
"""
# encode into syllabic stress indicators
p1 = [encode.encode_line_meter_count(line) for line in p1]
p2 = [encode.encode_line_meter_count(line) for line in p2]
p1_string = "".join(line_stress for line_stress in p1).replace(" ", "").strip()
p2_string = "".join(line_stress for line_stress in p2).replace(" ", "").strip()
p1_string = re.sub(r"\s+", "", p1_string, flags=re.UNICODE)
p2_string = re.sub(r"\s+", "", p2_string, flags=re.UNICODE)
edit_dist = levenshteinDistance(p1_string, p2_string)
return edit_dist # min(100, 100 / (edit_dist + 2e-7)) # math.exp(-0.1 * avg_edit_distance)
def measure_syllable(p1: list, p2: list):
"""
Measure: syllable consistency
We perform an altered version of the syllable DTW described in the methods
section of https://staff.aist.go.jp/m.goto/PAPER/TIEICE202309watanabe.pdf.
By recognizing that sometimes entire lines are out of "sync" between paragraphs,
we first minize the DTW via sliding window between the two paragraphs, then compute
the DTW line-by-line at the minimized offset.
Syllable consistency between two lines or paragraphs is defined as the
negative exponential of the DTW distance between two paragraph syllables.
Note that this mapping limits the "maximal" error, as extremely high syllable differences
will incur exponentially lower loss. The score is scaled between 0 and 100
Parameters
----------
p1 : list
paragraph as a list of line strings
p2 : list
comparison paragraph as a list of line strings
Returns
-------
float
length-normalized syllabic consistency score
"""
score = 0
# encode p1 and p2 into syllable counts
enc_fn = encode.encode_line_syllable_count
def encode_paragraph(par):
out = []
for line in par:
encoded_line = enc_fn(line).split(" ")
encoded_line = [word for word in encoded_line if word]
if len(encoded_line) == 0:
out.append([0])
else:
out.append(list(map(int, encoded_line)))
return out
p1, p2 = encode_paragraph(p1), encode_paragraph(p2)
# find and shift/crop p1 and p2 to the best matching offset
_, p1_c, p2_c = min_dtw_offset(p1, p2, return_cropped=True, use_short_window=True)
for i in range(len(p1_c)):
score += abs(sum(p1_c[i]) - sum(p2_c[i]))
return score # min(100, 100 / (score + 2e-7)) # math.exp(-0.1 * score)
def min_dtw_offset(p1, p2, return_cropped=True, use_short_window=True):
"""
Use a sliding window (of lines) to find the line index offset which minimizes
the syllabic DTW between two paragraphs.
In addition to outside sliding window, setting inner_window > 0 allows for
an moving inner window across the smaller signal to find a cropping
Parameters
----------
p1 : list
list of lists of song lines encoded as syllable counts
p2 : list
list of song lines encoded as syllable counts
return_cropped : bool, optional
whether to return the cropped min window for p1 and p2 ro the offset, by
default True
use_short_window : bool, optional
whether to compare at smaller or larger paragraphs length, by default true
Note: if False, p1 and p2 will not be the same length
Returns
-------
int
dtw minimizing offset value of smaller signal in larger signal
list
(p1) cropped or uncropped p1, squared with zeros
list
(p2) cropped or uncropped p2, squared with zeros
"""
switched = False
if len(p1) < len(p2):
switched = True
p1, p2 = p2, p1
# crop or pad to same number of lines
win_length = len(p2) if use_short_window else len(p1)
# square by padding line lengths with zeros
sig1, sig2 = copy.deepcopy(p1), copy.deepcopy(p2)
max_val = max(max(len(l) for l in sig1), max(len(l) for l in sig2))
for i in range(len(p1)):
sig1[i] += [0] * (max_val - len(sig1[i]))
for i in range(len(p2)):
sig2[i] += [0] * (max_val - len(sig2[i]))
sig1, sig2 = np.sum(np.array(sig1), axis=1), np.sum(np.array(sig2), axis=1)
# compute dtw with a sliding window to find the best offset
sig1, sig2 = np.pad(sig1, (win_length, win_length)), sig2.astype(np.double)
min_idx, min_error = 0, np.inf
for j in range(sig1.shape[0] - win_length):
sig1_win = sig1[j : j + sig1.shape[0]].astype(np.double)
error = dtw.distance_fast(sig1_win, sig2, inner_dist="euclidean")
if error < min_error:
min_error = error
min_idx = j
# crop to window
if return_cropped:
p1 = [[0]] * win_length + p1 + [[0]] * win_length
p1 = p1[min_idx : min_idx + win_length]
if switched:
p1, p2 = p2, p1
return min_idx - win_length, p1, p2
def levenshteinDistance(s1, s2):
"""
DP edit distance implementation
credit to https://stackoverflow.com/questions/2460177
Parameters
----------
s1 : str
first string to compare
s2 : str
second string to compare
Returns
-------
int
edit distance between two strings (absolute)
"""
if len(s1) > len(s2):
s1, s2 = s2, s1
distances = range(len(s1) + 1)
for i2, c2 in enumerate(s2):
distances_ = [i2 + 1]
for i1, c1 in enumerate(s1):
if c1 == c2:
distances_.append(distances[i1])
else:
distances_.append(
1 + min((distances[i1], distances[i1 + 1], distances_[-1]))
)
distances = distances_
return distances[-1]
|