|
from collections import defaultdict, Counter |
|
import copy, pprint, re |
|
import itertools |
|
from tqdm import tqdm |
|
|
|
import scoring_metrics as metrics |
|
import text_processing_utils as text_utils |
|
|
|
|
|
class ScoreAccumulator(object): |
|
def __init__( |
|
self, |
|
measures=["diversity"], |
|
default_matching="", |
|
require_prompt=False, |
|
require_target=True, |
|
verbose=True, |
|
): |
|
""" |
|
Score accumulation object for measuring model inference performance |
|
on a dataset of songs. |
|
|
|
Capable of measuring: |
|
Lexical diversity : "diversity" |
|
Meter consistency : "meter" |
|
Syllabic consistency : "syllable" |
|
|
|
Parameters |
|
---------- |
|
measures : list, optional |
|
list of measures to calculate for each song, by default ["diversity"] |
|
default_matching : str |
|
string defining the default stanza or line matching for comparison |
|
require_prompt : bool, optional |
|
whether to require the model prompt for each song, by default False |
|
require_target : bool, optional |
|
whether to requre a target response for each song, by default True |
|
""" |
|
self.measures = measures |
|
self.default_matching = default_matching |
|
self.require_prompt = require_prompt |
|
self.require_target = require_target |
|
self.verbose = verbose |
|
|
|
self.__total_score = Counter({measure: 0 for measure in self.measures}) |
|
self.__total_target_score = Counter({measure: 0 for measure in self.measures}) |
|
self._database = {} |
|
|
|
self.measure_functions = { |
|
"diversity": metrics.measure_lex_div, |
|
"meter": metrics.measure_meter, |
|
"syllable": metrics.measure_syllable, |
|
} |
|
|
|
supported_meas = {"diversity", "meter", "syllable"} |
|
for measure in self.measures: |
|
if measure not in {"diversity", "meter", "syllable"}: |
|
raise NotImplementedError(f"Only measures {supported_meas} supported.") |
|
|
|
def get_total_pred_score(self, measure): |
|
""" |
|
Return current score totals of model predictions for a given |
|
measure |
|
|
|
Parameters |
|
---------- |
|
measure : str |
|
measure to get score for |
|
|
|
Returns |
|
------- |
|
float |
|
average (by song) cumulative score |
|
""" |
|
measure_score = self.__total_score[measure] |
|
return measure_score / len(self._database) |
|
|
|
def get_total_target_score(self, measure): |
|
""" |
|
Return current score total of target responses for a given |
|
measure |
|
|
|
Parameters |
|
---------- |
|
measure : str |
|
measure to get score for |
|
|
|
Returns |
|
------- |
|
float |
|
average (by song) cumulative score |
|
""" |
|
measure_score = self.__total_target_score[measure] |
|
return measure_score / len(self._database) |
|
|
|
def get_ids(self): |
|
return list(self._database.keys()) |
|
|
|
def get_prompts(self, ids=[]): |
|
if ids: |
|
return [self._database[id]["prompt"] for id in ids] |
|
return [self._database[songid]["prompt"] for songid in self.get_ids] |
|
|
|
def get_preds(self, ids=[]): |
|
if ids: |
|
return [self._database[id]["model_response"] for id in ids] |
|
return [self._database[songid]["model_response"] for songid in self.get_ids] |
|
|
|
def get_targets(self, ids=[]): |
|
if ids: |
|
return [self._database[id]["target_response"] for id in ids] |
|
return [self._database[songid]["target_response"] for songid in self.get_ids] |
|
|
|
def get_pred_scores(self, ids=[]): |
|
if ids: |
|
return [self._database[id]["pred_scores"] for id in ids] |
|
return [self._database[songid]["pred_scores"] for songid in self.get_ids] |
|
|
|
def get_target_scores(self, ids=[]): |
|
if ids: |
|
return [self._database[id]["target_scores"] for id in ids] |
|
return [self._database[songid]["target_scores"] for songid in self.get_ids] |
|
|
|
def score_all_songs(self, song_database): |
|
""" |
|
Scores all songs in a song database (a list of song dictionaries) and adds |
|
them to accumulators database. |
|
|
|
Parameters |
|
---------- |
|
song_database : list |
|
list of song dictionaries containing {id, prompt, model_response, and |
|
target_response} keys |
|
""" |
|
|
|
|
|
for song_dict in tqdm(song_database, position=0): |
|
self.score_song(song_dict) |
|
|
|
def score_song(self, song_dict): |
|
""" |
|
Adds song to accumulator and scores song. |
|
Song dicts are formatted as follows: |
|
{ |
|
id: unique id number, |
|
prompt: prompt string, #if required |
|
model_response: response from model, |
|
target_response: ground truth text #if required |
|
} |
|
|
|
Parameters |
|
---------- |
|
song_dict : dict |
|
dict containing model predictions and targets for song |
|
""" |
|
song_dict = copy.deepcopy(song_dict) |
|
try: |
|
id = song_dict["id"] |
|
pred = song_dict["model_response"] |
|
if self.require_prompt: |
|
song_dict["prompt"] |
|
if self.require_target: |
|
target = song_dict["target_response"] |
|
except Exception as e: |
|
raise AssertionError(f"Provided song dict formatted incorrectly: {e}") |
|
|
|
assert id not in self._database, f"Multiple entries found for unique id: {id}" |
|
|
|
scores = { |
|
"pred_scores": {measure: 0 for measure in self.measures}, |
|
"target_scores": {measure: 0 for measure in self.measures}, |
|
} |
|
pred_stanzas, pred_matching = self.get_stanzas(pred, get_matching=True) |
|
target_stanzas, target_matching = self.get_stanzas(target, get_matching=True) |
|
for measure in ( |
|
tqdm(self.measures, position=1, leave=0) if self.verbose else self.measures |
|
): |
|
scores["pred_scores"][measure] = self.measure_stanzas( |
|
pred_stanzas, |
|
self.measure_functions[measure], |
|
matching=pred_matching if measure != "diversity" else "", |
|
) |
|
scores["target_scores"][measure] = self.measure_stanzas( |
|
target_stanzas, |
|
self.measure_functions[measure], |
|
matching=target_matching if measure != "diversity" else "", |
|
) |
|
|
|
self.__total_score += Counter(scores["pred_scores"]) |
|
self.__total_target_score += Counter(scores["target_scores"]) |
|
|
|
song_dict.pop("id") |
|
song_dict.update(scores) |
|
self._database[id] = song_dict |
|
|
|
def get_stanzas(self, song_text, get_matching=False): |
|
""" |
|
Given the raw text of a song, gets the stanza paragraphs according to |
|
their in-text label as {hook, verse, chorus, bridge, intro, outro} |
|
|
|
Parameters |
|
---------- |
|
song_text : str |
|
raw song text |
|
get_matching : bool, optional, |
|
whether to return a matching |
|
|
|
Returns |
|
------- |
|
list : str |
|
raw text, stripped of their stanza identifiers, split into stanzas |
|
""" |
|
stanza_pairs = text_utils.get_stanzas(song_text) |
|
|
|
matching_map = {} |
|
matching_str = "" |
|
match_idx = 0 |
|
|
|
stanzas = [] |
|
for i, (kword, stanza) in enumerate(stanza_pairs): |
|
assert match_idx < 10, "Stanza keywords are too complex, please simplify" |
|
stanzas.append( |
|
[n for n in stanza.split("\n") if len(re.sub(r"\s+", "", n)) > 0] |
|
) |
|
|
|
if i == 0: |
|
matching_map[kword] = str(match_idx) |
|
matching_str = str(match_idx) |
|
match_idx += 1 |
|
elif kword in matching_map: |
|
matching_str += "-" + matching_map[kword] |
|
else: |
|
matching_map[kword] = str(match_idx) |
|
matching_str += "-" + matching_map[kword] |
|
match_idx += 1 |
|
|
|
if get_matching: |
|
return stanzas, matching_str |
|
else: |
|
return stanzas |
|
|
|
def build_matches(self, stanzas, matching=""): |
|
""" |
|
Builds matchings between stanzas given a matching string. If no matching |
|
string provided, matchings are just the stanzas themselves. |
|
|
|
Parameters |
|
---------- |
|
stanzas : list |
|
list of input strings (stanzas) for different stanzas in a song |
|
matching : str, optional |
|
string defining the stanza or line matching for comparison, by default "" |
|
|
|
Returns |
|
------- |
|
list |
|
list of "matched" stanza pairings |
|
""" |
|
if matching == "": |
|
return [(s,) for s in stanzas] |
|
matching = matching.split("-") |
|
assert len(matching) == len(stanzas), "Incorrect matching to stanzas" |
|
|
|
matches_dict = defaultdict(lambda: []) |
|
pairings = [] |
|
|
|
|
|
for i, p in enumerate(stanzas): |
|
matches_dict[matching[i]].append(p) |
|
|
|
|
|
for matches in matches_dict.values(): |
|
for p1, p2 in itertools.combinations(matches, 2): |
|
pairings.append([p1, p2]) |
|
|
|
return pairings |
|
|
|
def measure_stanzas(self, stanzas, measure_function, matching=""): |
|
""" |
|
Computes and returns a measure of a list of stanzas (string segments made up of numerous |
|
lines). If measure is a consistency score, a comparison stanza is required. |
|
|
|
Comparison metrics will be computed along the cartesian product of stanzas with matching |
|
keys. |
|
|
|
For example, given: |
|
stanzas = ["line1", "line2", "line3", "line4"] |
|
matching = "a-b-a-b" |
|
-> Comparisons computed between [("line1", "line3"), ("line2", "line4")] |
|
|
|
Parameters |
|
---------- |
|
stanzas : list |
|
list of input strings (stanzas) for different stanzas in a song |
|
measure_function : function |
|
callable function that takes in a pairing and returns a float |
|
matching : str |
|
string defining the stanza or line matching for comparison |
|
|
|
Returns |
|
------- |
|
float |
|
averaged (across measurings) measure score |
|
""" |
|
pairings = self.build_matches(stanzas, matching) |
|
|
|
if len(pairings) == 0: |
|
|
|
return 0 |
|
|
|
score = 0 |
|
|
|
for pairing in pairings: |
|
score += measure_function(*pairing) |
|
|
|
final_score = score / len(pairings) |
|
|
|
return final_score |
|
|