Datasets:
File size: 5,291 Bytes
175ab14 437b11b d4cf4ee 6ca3b86 437b11b e323613 6ca3b86 437b11b 175ab14 0dbfe66 437b11b 73c99eb fed37d3 d89aa13 437b11b 246e9b6 20507f3 246e9b6 d89aa13 20507f3 246e9b6 20507f3 246e9b6 437b11b fed37d3 ab2fbc1 fed37d3 ab2fbc1 fed37d3 d89aa13 fed37d3 ab2fbc1 fed37d3 437b11b fed37d3 41ea920 fed37d3 d89aa13 fed37d3 437b11b fed37d3 073fe77 9d7c5bf fed37d3 073fe77 fed37d3 d89aa13 fdc826b d89aa13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
---
license: cc-by-sa-3.0
task_categories:
- text-classification
- text-retrieval
task_ids:
- natural-language-inference
- document-retrieval
language:
- cs
tags:
- Fact-checking
pretty_name: CsFEVERv2
multilinguality: monolingual
source_datasets: fever
size_categories:
- 100K<n<1M
---
# Dataset Card for "CsFEVERv2"
## Dataset Description
CsFEVERv2 is a dataset for Czech fact-checking developed as part of a bachelor thesis at the Artificial Intelligence Center of the Faculty of Electrical Engineering of
the Czech technical university in Prague. The dataset consists of an **original** subset, which is only an iteration of CsFEVER with new data and better processing and
**f1**, **precision**, and **07** subsets filtered using an NLI model and optimized threshold values. The subset **wiki_pages** is a processed Wikipedia dump from
August 2022 with correct revids. This subset should be used to map evidence from datasets to Wikipedia texts. Additionaly preprocessed datasets **original_nli**, **f1_nli**, **precision_nli**, **07_nli**,
for training of NLI models are included.
The original subset can be used to generate other filtered datasets by filtering with other thresholds using predicted_label and predicted_score fields.
### Languages
Czech
## Dataset Usage Example
```python
from datasets import load_dataset
#load default (original) subset
dataset = load_dataset("ctu-aic/csfever_v2")
dataset = load_dataset("ctu-aic/csfever_v2", "original")
#load f1, f1_nli, precision, precision_nli, 07, and 07_nli subsets
dataset = load_dataset("ctu-aic/csfever_v2", "f1")
#load wiki_pages subset
dataset = load_dataset("ctu-aic/csfever_v2", "wiki_pages")
```
## Dataset Structure
### Data Instances
#### original
An example of 'train' looks as follows.
```json
{'id': 75397,
'label': 'SUPPORTS',
'predicted_label': 'SUPPORTS',
'predicted_score': 0.921731
'claim': 'Nikolaj Coster-Waldau pracoval pro Fox Broadcasting Company.',
'evidence': [ [ "Nikolaj Coster-Waldau", "Nikolaj Coster-Waldau" ], [ "Fox Broadcasting Company", "Fox Broadcasting Company" ] ]}
```
#### f1, precision, 07
An example of 'train' looks as follows.
```json
{'id': 75397,
'label': 'SUPPORTS',
'claim': 'Nikolaj Coster-Waldau pracoval pro Fox Broadcasting Company.',
'evidence': [ [ "Nikolaj Coster-Waldau", "Nikolaj Coster-Waldau" ], [ "Fox Broadcasting Company", "Fox Broadcasting Company" ] ]}
```
#### original_nli, f1_nli, precision_nli, 07_nli
An example of 'train' looks as follows.
```json
{'id': 155439,
'label': 2,
'claim': 'Newcastle United FC vyhrál pět ligových titulů.',
'evidence': "Ronnie Simpson. Ronnie Simpson (21. října 1930, Glasgow – 19. dubna 2004, Edinburgh) byl skotský fotbalový brankář..."}
```
#### wiki_pages
An example of 'wiki_pages' looks as follows.
```json
{'id': 80916,
'revid': 20561555,
'url': "https://cs.wikipedia.org/wiki?curid=80916",
'title': "Altruismus",
'text': "Altruismus (z lat. "alter", druhý, 3. pád "altrui", druhému) je moderní ..."}
```
### Data Fields
#### original
- `id`: a `int32` feature.
- `label`: a `string` feature.
- `predicted_label`: a `string` feature. (label predicted by NLI model)
- `predicted_score`: a `int32` feature. (confidence of predicted_label predicted by NLI model)
- `claim`: a `string` feature.
- `evidence`: a `sequence` feature.
#### f1, precision, 07
- `id`: a `int32` feature.
- `label`: a `string` feature.
- `claim`: a `string` feature.
- `evidence`: a `sequence` feature.
#### original_nli, f1_nli, precision_nli, 07_nli
- `id`: a `int32` feature.
- `label`: a `int32` feature.
- `claim`: a `string` feature.
- `evidence`: a `string` feature.
#### wiki_pages
- `id`: a `int32` feature.
- `revid`: a `int32` feature.
- `url`: a `string` feature.
- `title`: a `string` feature.
- `text`: a `string` feature.
### Data Splits
### Data Splits
#### original
| | train | dev | test |
|----------|-------:|-----:|------:|
| original | 118950 | 7458 | 7520 |
#### f1
| | train | dev | test |
|----|------:|-----:|-----:|
| f1 | 83438 | 5445 | 5328 |
#### precision
| | train | dev | test |
|-----------|-------:|-----:|------:|
| precision | 60828 | 4288 | 4236 |
#### 07
| | train | dev | test |
|----|-------:|-----:|------:|
| 07 | 108607 | 6685 | 6623 |
#### wiki_pages
| | wiki_pages |
|------------|-----------:|
| wiki_pages | 825078 |
# Citation
```bibtex
@article{Ullrich_2023,
doi = {10.1007/s10579-023-09654-3},
url = {https://doi.org/10.1007%2Fs10579-023-09654-3},
year = 2023,
month = {may},
publisher = {Springer Science and Business Media {LLC}},
author = {Herbert Ullrich and Jan Drchal and Martin Rýpar and Hana Vincourová and Václav Moravec},
title = {{CsFEVER} and {CTKFacts}: acquiring Czech data for fact verification},
journal = {Language Resources and Evaluation},
archivePrefix={arXiv},
eprint={2201.11115},
}
```
```bibtex
@thesis{Mlynar_2023,
author = {Mlynář, Tomáš},
type = {Bachelor's Thesis}
title = {Automated Fact Checking Based on Czech Wikipedia},
institution = {Czech Technical University in Prague, Faculty of Electrical Engineering},
date = {2023},
url = {http://hdl.handle.net/10467/109219}
}
```
|