Datasets:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# TODO: Address all TODOs and remove all explanatory comments | |
"""CsFEVERv2 dataset""" | |
import csv | |
import json | |
import os | |
import datasets | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
This new dataset is aimed on Czech fact-checking task. | |
""" | |
#TODO | |
_CITATION = "" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLS = { | |
"original": {"train": "./original/train.jsonl", | |
"dev" : "./original/dev.jsonl", | |
"test": "./original/test.jsonl"}, | |
"f1": {"train": "./f1/train.jsonl", | |
"dev" : "./f1/dev.jsonl", | |
"test": "./f1/test.jsonl"}, | |
"precision": {"train": "./precision/train.jsonl", | |
"dev" : "./precision/dev.jsonl", | |
"test": "./precision/test.jsonl"}, | |
"07": {"train": "./07/train.jsonl", | |
"dev" : "./07/dev.jsonl", | |
"test": "./07/test.jsonl"}, | |
"wiki_pages": "./wiki_pages/wiki_pages.jsonl", | |
"original_nli": {"train": "./original_nli/train.jsonl", | |
"dev" : "./original_nli/dev.jsonl", | |
"test": "./original_nli/test.jsonl"}, | |
} | |
_ORIGINAL_DESCRIPTION = "" | |
#Name of the dataset usually matches the script name with CamelCase instead of snake_case | |
class CsFEVERv2(datasets.GeneratorBasedBuilder): | |
"""CsFEVERv2""" | |
VERSION = datasets.Version("1.1.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="original", | |
version=VERSION, | |
description=_ORIGINAL_DESCRIPTION, | |
), | |
datasets.BuilderConfig( | |
name="f1", | |
version=VERSION, | |
description=_ORIGINAL_DESCRIPTION, | |
), | |
datasets.BuilderConfig( | |
name="precision", | |
version=VERSION, | |
description=_ORIGINAL_DESCRIPTION | |
), | |
datasets.BuilderConfig( | |
name="07", | |
version=VERSION, | |
description=_ORIGINAL_DESCRIPTION | |
), | |
datasets.BuilderConfig( | |
name="wiki_pages", | |
version=VERSION, | |
description=_ORIGINAL_DESCRIPTION | |
), | |
datasets.BuilderConfig( | |
name="original_nli", | |
version=VERSION, | |
description=_ORIGINAL_DESCRIPTION | |
), | |
] | |
DEFAULT_CONFIG_NAME = "original" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
def _info(self): | |
#This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
if self.config.name == "original": # This is the name of the configuration selected in BUILDER_CONFIGS above | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("int32"), | |
"label": datasets.Value("string"), | |
"predicted_label": datasets.Value("string"), | |
"predicted_score": datasets.Value("float"), | |
"claim": datasets.Value("string"), | |
"evidence": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), | |
# These are the features of your dataset like images, labels ... | |
} | |
) | |
elif self.config.name == "original_nli": # This is the name of the configuration selected in BUILDER_CONFIGS above | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("int32"), | |
"label": datasets.ClassLabel(num_classes=3, names=["SUPPORTS", "REFUTES", "NOT ENOUGH INFO"]), | |
"claim": datasets.Value("string"), | |
"evidence": datasets.Value("string"), | |
# These are the features of your dataset like images, labels ... | |
} | |
) | |
elif self.config.name == "wiki_pages": | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("int32"), | |
"revid": datasets.Value("int32"), | |
"url": datasets.Value("string"), | |
"title": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
# These are the features of your dataset like images, labels ... | |
} | |
) | |
else: # This is an example to show how to have different features for "first_domain" and "second_domain" | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("int32"), | |
"label": datasets.Value("string"), | |
"claim": datasets.Value("string"), | |
"evidence": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), | |
# These are the features of your dataset like images, labels ... | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
urls = _URLS[self.config.name] | |
data_dir = dl_manager.download_and_extract(urls) | |
if self.config.name == "wiki_pages": | |
return [datasets.SplitGenerator( | |
name="wiki_pages", | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": data_dir, | |
"split": "wiki_pages", | |
}, | |
)] | |
else: | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": data_dir["train"], | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": data_dir["dev"], | |
"split": "dev", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": data_dir["test"], | |
"split": "test" | |
}, | |
), | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath, split): | |
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
with open(filepath, encoding="utf-8") as f: | |
for key, row in enumerate(f): | |
data_point = json.loads(row) | |
if self.config.name == "original": | |
# Yields examples as (key, example) tuples | |
yield key, { | |
"id": data_point["id"], | |
"label": data_point["label"], | |
"predicted_label": data_point["predicted_label"], | |
"predicted_score": data_point["predicted_score"], | |
"claim": data_point["claim"], | |
"evidence": data_point["evidence"], | |
} | |
elif self.config.name == "original_nli": | |
yield key, { | |
"id": data_point["id"], | |
"label": data_point["label"], | |
"claim": data_point["claim"], | |
"evidence": data_point["evidence"], | |
} | |
elif self.config.name == "wiki_pages": | |
yield key, { | |
"id": data_point["id"], | |
"revid": data_point["revid"], | |
"url": data_point["url"], | |
"title": data_point["title"], | |
"text": data_point["text"], | |
} | |
else: | |
yield key, { | |
"id": data_point["id"], | |
"label": data_point["label"], | |
"claim": data_point["claim"], | |
"evidence": data_point["evidence"], | |
} |