Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 10,074 Bytes
c9fb4e3
636abfe
 
c9fb4e3
636abfe
 
c9fb4e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
636abfe
 
c9fb4e3
636abfe
 
 
 
c9fb4e3
 
 
 
 
 
 
8305ae0
 
 
 
c9fb4e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4073ed7
c9fb4e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8047130
c9fb4e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b9c2dd
c9fb4e3
 
 
8305ae0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
---
language:
- en
license: cdla-permissive-2.0
size_categories:
- n<1K
dataset_info:
  features:
  - name: id
    dtype: string
  - name: canvas_width
    dtype: int64
  - name: canvas_height
    dtype: int64
  - name: num_frames
    dtype: int64
  - name: num_sprites
    dtype: int64
  - name: matrix
    sequence:
      sequence:
        sequence: float32
  - name: opacity
    sequence:
      sequence: float32
  - name: texture
    sequence: image
  splits:
  - name: val
    num_bytes: 19533468.0
    num_examples: 154
  - name: test
    num_bytes: 19297578.0
    num_examples: 145
  download_size: 35711401
  dataset_size: 38831046.0
configs:
- config_name: default
  data_files:
  - split: val
    path: data/val-*
  - split: test
    path: data/test-*
tags:
- animation
- sprites
- graphics
---


# Crello Animation

## Table of Contents

- [Crello Animation](#crello-animation)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Usage](#usage)
    - [Supported Tasks](#supported-tasks)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Splits](#data-splits)
    - [Visualization](#visualization)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source](#source)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Paper:** Fast Sprite Decomposition from Animated Graphics
- **Point of Contact:** [Tomoyuki Suzuki](https://github.com/tomoyukun)

### Dataset Summary

The Crello Animation dataset is a collection of animated graphics. Animated graphics are videos composed of multiple sprites, with each sprite rendered by animating a texture. The textures are static images, and the animations involve time-varying affine warping and opacity. The original templates were collected from [create.vista.com](https://create.vista.com/) and converted to a low-resolution format suitable for machine learning analysis.

### Usage

```python
import datasets

dataset = datasets.load_dataset("cyberagent/crello-animation")
```

### Supported Tasks

Sprite decomposition task is studied in Suzuki et al., "Fast Sprite Decomposition from Animated Graphics" (to be published in ECCV 2024).

## Dataset Structure

### Data Instances

Each instance has the following attributes.

| Attribute     | Type    | Shape                        | Description                            |
| ------------- | ------- | ---------------------------- | -------------------------------------- |
| id            | string  | ()                           | Template ID from crello.com            |
| canvas_width  | int64   | ()                           | Canvas pixel width                     |
| canvas_height | int64   | ()                           | Canvas pixel height                    |
| num_frames    | int64   | ()                           | The number of frames                   |
| num_sprites   | int64   | ()                           | The number of sprites                  |
| texture       | image   | (num_sprites)                | List of textures (256x256 RGBA images) |
| matrix        | float32 | (num_sprites, num_frames, 9) | List of time-varying warping matrices  |
| opacity       | float32 | (num_sprites, num_frames)    | List of time-varying opacities         |

NOTE:

- The `matrix` is normalized to a canonical space taking coordinates in the range
  [-1, 1], assuming rendering with PyTorch functions (see [Visualization](#visualization) for details).
- Currently, the `num_frames` is fixed to 50, which corresponds to 5 seconds at 10 fps.
- The first sprite in each example is the static background, and its `matrix` and `opacity` are always the identity matrix and 1, respectively.

### Data Splits

The Crello Animation dataset has val and test split.
Note that the dataset is primarily intended for evaluation purposes rather than training since it is not large.

| Split | Count |
| ----- | ----- |
| val   | 154   |
| test  | 145   |

### Visualization

Each example can be rendered using PyTorch functions as follows.
We plan to add rendering example code using libraries other than PyTorch, such as [skia-python](https://kyamagu.github.io/skia-python/).

```python
import datasets
import numpy as np
import torch
from einops import rearrange, repeat
from PIL import Image


def render_layers(
    textures: torch.Tensor, matrices: torch.Tensor, opacities: torch.Tensor, canvas_height: int, canvas_width: int
):
    """Render multiple layers using PyTorch functions."""
    tex_expand = repeat(textures, "l h w c -> (l t) c h w", t=matrices.shape[1])
    grid = torch.nn.functional.affine_grid(
        torch.linalg.inv(matrices.reshape(-1, 3, 3))[:, :2],
        (tex_expand.shape[0], tex_expand.shape[1], canvas_height, canvas_width),
        align_corners=True,
    )
    tex_warped = torch.nn.functional.grid_sample(tex_expand, grid, align_corners=True)
    tex_warped = rearrange(tex_warped, "(l t) c h w -> l t h w c", l=len(textures))
    tex_warped[..., -1] = tex_warped[..., -1] * opacities[:, :, None, None]
    return tex_warped


def alpha_blend_torch(fg: torch.Tensor, bg: torch.Tensor, norm_value: float = 255.0) -> torch.Tensor:
    """Blend two images as torch.Tensor."""
    fg_alpha = fg[..., 3:4] / norm_value
    bg_alpha = bg[..., 3:4] / norm_value
    alpha = fg_alpha + bg_alpha * (1 - fg_alpha)
    fg_rgb = fg[..., :3]
    bg_rgb = bg[..., :3]
    rgb = fg_rgb * fg_alpha + bg_rgb * bg_alpha * (1 - fg_alpha)
    return torch.cat([rgb, alpha * norm_value], dim=-1)


def render(
    textures: torch.Tensor, matrices: torch.Tensor, opacities: torch.Tensor, canvas_height: int, canvas_width: int
) -> torch.Tensor:
    """Render example using PyTorch functions."""
    layers = render_layers(textures, matrices, opacities, canvas_height, canvas_width)
    backdrop = layers[0]
    for layer in layers[1:]:
        backdrop = alpha_blend_torch(layer, backdrop)
    return backdrop


ds = datasets.load_dataset("cyberagent/crello-animation")
example = ds["val"][0]

canvas_height = example["canvas_height"]
canvas_width = example["canvas_width"]
matrices_tr = torch.tensor(example["matrix"])
opacities_tr = torch.tensor(example["opacity"])
textures_tr = torch.tensor(np.array([np.array(t) for t in example["texture"]])).float()

frames_tr = render(textures_tr, matrices_tr, opacities_tr, canvas_height, canvas_width)
frames = [Image.fromarray(frame_np.astype(np.uint8)) for frame_np in frames_tr.numpy()]

```

## Dataset Creation

### Curation Rationale

The Crello Animation is created with the aim of promoting general machine-learning research on animated graphics, such as sprite decomposition.

### Source Data

#### Initial Data Collection and Normalization

The dataset is initially scraped from the former `crello.com` and pre-processed to the above format.

#### Who are the source language producers?

While [create.vista.com](https://create.vista.com/) owns those templates, the templates seem to be originally created by a specific group of design studios.

### Personal and Sensitive Information

The dataset does not contain any personal information about the creator but may contain a picture of people in the design template.

## Considerations for Using the Data

### Social Impact of Dataset

This dataset is constructed for general machine-learning research on animated graphics. If used effectively, it is expected to contribute to the development of technologies that support creative tasks by designers, such as sprite decomposition.

### Discussion of Biases

The templates contained in the dataset reflect the biases appearing in the source data, which could present gender biases in specific design categories.

### Other Known Limitations

Due to the unknown data specification of the source data, textures and animation parameters do not necessarily accurately reproduce the original design templates. The original template is accessible at the following URL if still available.

    https://create.vista.com/artboard/?template=<template_id>

## Additional Information

### Dataset Curators

The Crello Animation dataset was developed by [Tomoyuki Suzuki](https://github.com/tomoyukun).

### Licensing Information

The origin of the dataset is [create.vista.com](https://create.vista.com) (formally, `crello.com`).
The distributor ("We") do not own the copyrights of the original design templates.
By using the Crello dataset, the user of this dataset ("You") must agree to the
[VistaCreate License Agreements](https://create.vista.com/faq/legal/licensing/license_agreements/).

The dataset is distributed under [CDLA-Permissive-2.0 license](https://cdla.dev/permissive-2-0/).

NOTE: We do not re-distribute the original files as we are not allowed by terms.

### Citation Information

To be published in ECCV 2024.

```
@inproceedings{suzuki2024fast,
  title={Fast Sprite Decomposition from Animated Graphics},
  author={Suzuki, Tomoyuki and Kikuchi, Kotaro and Yamaguchi, Kota},
  booktitle={ECCV},
  year={2024}
}
```

### Releases

1.0.0: v1 release (July 9, 2024)

### Acknowledgments

Thanks to [Kota Yamaguchi](https://github.com/kyamagu) for providing the [Crello dataset](https://huggingface.co/datasets/cyberagent/crello) that served as a valuable reference for this project.