File size: 10,864 Bytes
b1d4de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# File: api-inference-community-master-old/main.py import json import os import tempfile import time from io import BytesIO from mimetypes import guess_extension from typing import Any, Dict, List, Optional, Tuple import librosa import psutil import requests import soundfile import timm import torch import uvicorn from asteroid import separate from asteroid.models import BaseModel as AsteroidBaseModel from espnet2.bin.asr_inference import Speech2Text from espnet2.bin.tts_inference import Text2Speech from PIL import Image from starlette.applications import Starlette from starlette.background import BackgroundTask from starlette.middleware import Middleware from starlette.middleware.cors import CORSMiddleware from starlette.requests import Request from starlette.responses import FileResponse, JSONResponse from starlette.routing import Route from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor, Wav2Vec2ForCTC, Wav2Vec2Tokenizer HF_HEADER_COMPUTE_TIME = 'x-compute-time' AnyModel = Any AnyTokenizer = Any EXAMPLE_TTS_EN_MODEL_ID = 'julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train' EXAMPLE_TTS_ZH_MODEL_ID = 'julien-c/kan-bayashi_csmsc_tacotron2' EXAMPLE_ASR_EN_MODEL_ID = 'julien-c/mini_an4_asr_train_raw_bpe_valid' EXAMPLE_SEP_ENH_MODEL_ID = 'mhu-coder/ConvTasNet_Libri1Mix_enhsingle' EXAMPLE_SEP_SEP_MODEL_ID = 'julien-c/DPRNNTasNet-ks16_WHAM_sepclean' WAV2VEV2_MODEL_IDS = ['facebook/wav2vec2-base-960h', 'facebook/wav2vec2-large-960h-lv60-self', 'facebook/wav2vec2-large-xlsr-53-dutch', 'facebook/wav2vec2-large-xlsr-53-french', 'facebook/wav2vec2-large-xlsr-53-german', 'facebook/wav2vec2-large-xlsr-53-italian', 'facebook/wav2vec2-large-xlsr-53-spanish', 'facebook/wav2vec2-large-xlsr-53-portuguese'] SPEECH_TO_TEXT_MODEL_IDS = ['facebook/s2t-small-librispeech-asr', 'facebook/s2t-medium-librispeech-asr', 'facebook/s2t-large-librispeech-asr', 'facebook/s2t-small-mustc-en-de-st', 'facebook/s2t-small-mustc-en-es-st', 'facebook/s2t-small-mustc-en-fr-st', 'facebook/s2t-small-mustc-en-it-st', 'facebook/s2t-small-mustc-en-nl-st', 'facebook/s2t-small-mustc-en-pt-st', 'facebook/s2t-small-mustc-en-ro-st', 'facebook/s2t-small-mustc-en-ru-st'] with open('data/imagenet-simple-labels.json') as f: IMAGENET_LABELS: List[str] = json.load(f) TTS_MODELS: Dict[str, AnyModel] = {} ASR_MODELS: Dict[str, AnyModel] = {} SEP_MODELS: Dict[str, AnyModel] = {} ASR_HF_MODELS: Dict[str, Tuple[AnyModel, AnyTokenizer]] = {} TIMM_MODELS: Dict[str, torch.nn.Module] = {} def home(request: Request): return JSONResponse({'ok': True}) def health(_): process = psutil.Process(os.getpid()) mem_info = process.memory_info() return JSONResponse({**process.as_dict(attrs=['memory_percent']), 'rss': mem_info.rss}) def list_models(_): all_models = {**TTS_MODELS, **ASR_MODELS, **SEP_MODELS, **{k: v[0] for (k, v) in ASR_HF_MODELS.items()}, **TIMM_MODELS} return JSONResponse({k: v.__class__.__name__ for (k, v) in all_models.items()}) async def post_inference_tts(request: Request, model: AnyModel): start = time.time() try: body = await request.json() except: return JSONResponse(status_code=400, content='Invalid JSON body') print(body) text = body['text'] outputs = model(text) speech = outputs[0] with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp: soundfile.write(tmp.name, speech.numpy(), model.fs, 'PCM_16') return FileResponse(tmp.name, headers={HF_HEADER_COMPUTE_TIME: '{:.3f}'.format(time.time() - start)}, background=BackgroundTask(lambda f: os.unlink(f), tmp.name)) async def post_inference_asr(request: Request, model_id: str): start = time.time() content_type = request.headers['content-type'].split(';')[0] if content_type == 'application/json': body = await request.json() if 'url' not in body: return JSONResponse({'ok': False, 'message': f'Invalid json, no url key'}, status_code=400) url = body['url'] r = requests.get(url, stream=True) file_ext: Optional[str] = guess_extension(r.headers.get('content-type', ''), strict=False) blob = r.content else: file_ext: Optional[str] = guess_extension(content_type, strict=False) try: blob = await request.body() except Exception as exc: return JSONResponse({'ok': False, 'message': f'Invalid body: {exc}'}, status_code=400) with tempfile.NamedTemporaryFile(suffix=file_ext) as tmp: print(tmp, tmp.name) tmp.write(blob) tmp.flush() try: (speech, rate) = soundfile.read(tmp.name, dtype='float32') except: try: (speech, rate) = librosa.load(tmp.name, sr=16000) except Exception as exc: return JSONResponse({'ok': False, 'message': f'Invalid audio: {exc}'}, status_code=400) if len(speech.shape) > 1: speech = speech[:, 0] if rate != 16000: speech = librosa.resample(speech, rate, 16000) if model_id in ASR_HF_MODELS: if model_id in SPEECH_TO_TEXT_MODEL_IDS: (model, processor) = ASR_HF_MODELS.get(model_id) inputs = processor(speech, return_tensors='pt') generated_ids = model.generate(input_ids=inputs['features'], attention_mask=inputs['attention_mask']) text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] else: (model, tokenizer) = ASR_HF_MODELS.get(model_id) input_values = tokenizer(speech, return_tensors='pt').input_values logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) text = tokenizer.decode(predicted_ids[0]) else: model = ASR_MODELS.get(model_id) outputs = model(speech) (text, *_) = outputs[0] print(text) return JSONResponse({'text': text}, headers={HF_HEADER_COMPUTE_TIME: '{:.3f}'.format(time.time() - start)}) async def post_inference_sep(request: Request, model: AnyModel): start = time.time() try: body = await request.body() with tempfile.NamedTemporaryFile() as tmp: tmp.write(body) tmp.flush() (wav, fs) = separate._load_audio(tmp.name) except Exception as exc: return JSONResponse({'ok': False, 'message': f'Invalid body: {exc}'}, status_code=400) wav = separate._resample(wav[:, 0], orig_sr=fs, target_sr=int(model.sample_rate)) (est_srcs,) = separate.numpy_separate(model, wav.reshape((1, 1, -1))) est = est_srcs[0] with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp: soundfile.write(tmp.name, est, int(model.sample_rate), 'PCM_16') return FileResponse(tmp.name, headers={HF_HEADER_COMPUTE_TIME: '{:.3f}'.format(time.time() - start)}, background=BackgroundTask(lambda f: os.unlink(f), tmp.name)) async def post_inference_timm(request: Request, model: torch.nn.Module): start = time.time() content_type = request.headers['content-type'] if content_type == 'application/json': body = await request.json() if 'url' not in body: return JSONResponse({'ok': False, 'message': f'Invalid json, no url key'}, status_code=400) url = body['url'] img = Image.open(requests.get(url, stream=True).raw) else: try: body = await request.body() img = Image.open(BytesIO(body)) except Exception as exc: print(exc) return JSONResponse({'ok': False, 'message': f'Unable to open image from request'}, status_code=400) img = img.convert('RGB') config = model.default_cfg if isinstance(config['input_size'], tuple): img_size = config['input_size'][-2:] else: img_size = config['input_size'] transform = timm.data.transforms_factory.transforms_imagenet_eval(img_size=img_size, interpolation=config['interpolation'], mean=config['mean'], std=config['std']) input_tensor = transform(img) input_tensor = input_tensor.unsqueeze(0) with torch.no_grad(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) (values, indices) = torch.topk(probs, k=5) labels = [IMAGENET_LABELS[i] for i in indices] return JSONResponse([{'label': label, 'score': float(values[i])} for (i, label) in enumerate(labels)], headers={HF_HEADER_COMPUTE_TIME: '{:.3f}'.format(time.time() - start)}) async def post_inference(request: Request) -> JSONResponse: model_id = request.path_params['model_id'] if model_id in TTS_MODELS: model = TTS_MODELS.get(model_id) return await post_inference_tts(request, model) if model_id in ASR_MODELS or model_id in ASR_HF_MODELS: return await post_inference_asr(request, model_id) if model_id in SEP_MODELS: model = SEP_MODELS.get(model_id) return await post_inference_sep(request, model) if model_id in TIMM_MODELS: model = TIMM_MODELS.get(model_id) return await post_inference_timm(request, model) return JSONResponse(status_code=404, content='Unknown or unsupported model') routes = [Route('/', home), Route('/health', health), Route('/models', list_models), Route('/models/{model_id:path}', post_inference, methods=['POST'])] middlewares = [Middleware(CORSMiddleware, allow_origins=['*'], allow_methods=['*'], allow_headers=['*'], expose_headers=['*'])] app = Starlette(debug=True, routes=routes, middleware=middlewares) if __name__ == '__main__': start_time = time.time() for model_id in (EXAMPLE_TTS_EN_MODEL_ID, EXAMPLE_TTS_ZH_MODEL_ID): model = Text2Speech.from_pretrained(model_id, device='cpu') TTS_MODELS[model_id] = model for model_id in (EXAMPLE_ASR_EN_MODEL_ID,): model = Speech2Text.from_pretrained(model_id, device='cpu') ASR_MODELS[model_id] = model for model_id in (EXAMPLE_SEP_ENH_MODEL_ID, EXAMPLE_SEP_SEP_MODEL_ID): model = AsteroidBaseModel.from_pretrained(model_id) SEP_MODELS[model_id] = model for model_id in WAV2VEV2_MODEL_IDS: model = Wav2Vec2ForCTC.from_pretrained(model_id) tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_id) ASR_HF_MODELS[model_id] = (model, tokenizer) for model_id in SPEECH_TO_TEXT_MODEL_IDS: model = Speech2TextForConditionalGeneration.from_pretrained(model_id) processor = Speech2TextProcessor.from_pretrained(model_id) ASR_HF_MODELS[model_id] = (model, processor) TIMM_MODELS['julien-c/timm-dpn92'] = timm.create_model('dpn92', pretrained=True).eval() TIMM_MODELS['sgugger/resnet50d'] = timm.create_model('resnet50d', pretrained=True).eval() print('models.loaded', time.time() - start_time) uvicorn.run(app, host='0.0.0.0', port=8000, timeout_keep_alive=0) |