File size: 230,815 Bytes
b1d4de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
# File: datatrove-main/src/datatrove/data.py
""""""
from dataclasses import dataclass, field
from typing import Generator, NewType

class MediaType:
    IMAGE = 0
    VIDEO = 1
    AUDIO = 2

@dataclass
class Media:
    type: int
    url: str
    alt: str | None = None
    local_path: str | None = None

@dataclass
class Document:
    text: str
    id: str
    media: list[Media] = field(default_factory=list)
    metadata: dict[str, str | int | float | bool] = field(default_factory=dict)
DocumentsPipeline = NewType('DocumentsPipeline', Generator[Document, None, None] | None)

# File: datatrove-main/src/datatrove/executor/base.py
import dataclasses
import json
import random
import time
from abc import ABC, abstractmethod
from collections import deque
from collections.abc import Sequence
from typing import Callable
from datatrove.io import DataFolderLike, get_datafolder
from datatrove.pipeline.base import PipelineStep
from datatrove.utils.logging import add_task_logger, close_task_logger, get_random_str, get_timestamp, log_pipeline, logger
from datatrove.utils.stats import PipelineStats

class PipelineExecutor(ABC):

    @abstractmethod
    def __init__(self, pipeline: list[PipelineStep | Callable], logging_dir: DataFolderLike=None, skip_completed: bool=True, randomize_start_duration: int=0):
        self.pipeline: list[PipelineStep | Callable] = pipeline
        self.logging_dir = get_datafolder(logging_dir if logging_dir else f'logs/{get_timestamp()}_{get_random_str()}')
        self.skip_completed = skip_completed
        self.randomize_start_duration = randomize_start_duration

    @abstractmethod
    def run(self):
        pass

    @property
    @abstractmethod
    def world_size(self) -> int:
        return 0

    def _run_for_rank(self, rank: int, local_rank: int=0) -> PipelineStats:
        if self.is_rank_completed(rank):
            logger.info(f'Skipping rank={rank!r} as it has already been completed.')
            return PipelineStats()
        logfile = add_task_logger(self.logging_dir, rank, local_rank)
        log_pipeline(self.pipeline)
        if self.randomize_start_duration > 0:
            time.sleep(random.randint(0, self.randomize_start_duration))
        try:
            pipelined_data = None
            for pipeline_step in self.pipeline:
                if callable(pipeline_step):
                    pipelined_data = pipeline_step(pipelined_data, rank, self.world_size)
                elif isinstance(pipeline_step, Sequence) and (not isinstance(pipeline_step, str)):
                    pipelined_data = pipeline_step
                else:
                    raise ValueError
            if pipelined_data:
                deque(pipelined_data, maxlen=0)
            logger.success(f'Processing done for rank={rank!r}')
            stats = PipelineStats(self.pipeline)
            with self.logging_dir.open(f'stats/{rank:05d}.json', 'w') as f:
                stats.save_to_disk(f)
            logger.info(stats.get_repr(f'Task {rank}'))
            self.mark_rank_as_completed(rank)
        except Exception as e:
            logger.exception(e)
            raise e
        finally:
            close_task_logger(logfile)
        return stats

    def is_rank_completed(self, rank: int) -> bool:
        return self.skip_completed and self.logging_dir.isfile(f'completions/{rank:05d}')

    def mark_rank_as_completed(self, rank: int):
        self.logging_dir.open(f'completions/{rank:05d}', 'w').close()

    def get_incomplete_ranks(self, ranks=None) -> list[int]:
        completed = set(self.logging_dir.list_files('completions'))
        return list(filter(lambda rank: not self.skip_completed or f'completions/{rank:05d}' not in completed, ranks if ranks is not None else range(self.world_size)))

    def to_json(self, indent=4) -> str:
        data = self.__dict__
        data['pipeline'] = [{a: b for (a, b) in x.__dict__.items() if a != 'stats'} for x in data['pipeline']]
        return json.dumps(data, indent=indent)

    def save_executor_as_json(self, indent: int=4):
        with self.logging_dir.open('executor.json', 'w') as f:
            json.dump(self, f, cls=ExecutorJSONEncoder, indent=indent)

class ExecutorJSONEncoder(json.JSONEncoder):

    def default(self, o):
        if dataclasses.is_dataclass(o):
            return dataclasses.asdict(o)
        if isinstance(o, PipelineExecutor):
            return o.__dict__ | {'world_size': o.world_size}
        if isinstance(o, PipelineStep):
            return {a: b for (a, b) in o.__dict__.items() if a != 'stats'}
        return str(o)

# File: datatrove-main/src/datatrove/executor/local.py
import time
from copy import deepcopy
from functools import partial
from typing import Callable
import multiprocess
from datatrove.executor.base import PipelineExecutor
from datatrove.io import DataFolderLike
from datatrove.pipeline.base import PipelineStep
from datatrove.utils.logging import logger
from datatrove.utils.stats import PipelineStats

class LocalPipelineExecutor(PipelineExecutor):

    def __init__(self, pipeline: list[PipelineStep | Callable], tasks: int=1, workers: int=-1, logging_dir: DataFolderLike=None, depends: 'LocalPipelineExecutor'=None, skip_completed: bool=True, start_method: str='forkserver', local_tasks: int=-1, local_rank_offset: int=0, randomize_start_duration: int=0):
        super().__init__(pipeline, logging_dir, skip_completed, randomize_start_duration)
        self.tasks = tasks
        self.workers = workers if workers != -1 else tasks
        self.start_method = start_method
        self.local_tasks = local_tasks if local_tasks != -1 else tasks
        self.local_rank_offset = local_rank_offset
        self.depends = depends
        if self.local_rank_offset + self.local_tasks > self.tasks:
            raise ValueError(f'Local tasks go beyond the total tasks (local_rank_offset + local_tasks = {self.local_rank_offset + self.local_tasks} > {self.tasks} = tasks)')
        self._launched = False

    def _launch_run_for_rank(self, rank: int, ranks_q, completed=None, completed_lock=None) -> PipelineStats:
        local_rank = ranks_q.get()
        try:
            return self._run_for_rank(rank, local_rank)
        finally:
            if completed and completed_lock:
                with completed_lock:
                    completed.value += 1
                    logger.info(f'{completed.value}/{self.world_size} tasks completed.')
            ranks_q.put(local_rank)

    def run(self):
        assert not self.depends or isinstance(self.depends, LocalPipelineExecutor), 'depends= must be a LocalPipelineExecutor'
        if self.depends:
            if not self.depends._launched:
                logger.info(f'Launching dependency job "{self.depends}"')
                self.depends.run()
            while (incomplete := len(self.depends.get_incomplete_ranks())) > 0:
                logger.info(f'Dependency job still has {incomplete}/{self.depends.world_size} tasks. Waiting...')
                time.sleep(2 * 60)
        self._launched = True
        if all(map(self.is_rank_completed, range(self.local_rank_offset, self.local_rank_offset + self.local_tasks))):
            logger.info(f'Not doing anything as all {self.local_tasks} tasks have already been completed.')
            return
        self.save_executor_as_json()
        mg = multiprocess.Manager()
        ranks_q = mg.Queue()
        for i in range(self.workers):
            ranks_q.put(i)
        ranks_to_run = self.get_incomplete_ranks(range(self.local_rank_offset, self.local_rank_offset + self.local_tasks))
        if (skipped := (self.local_tasks - len(ranks_to_run))) > 0:
            logger.info(f'Skipping {skipped} already completed tasks')
        if self.workers == 1:
            pipeline = self.pipeline
            stats = []
            for rank in ranks_to_run:
                self.pipeline = deepcopy(pipeline)
                stats.append(self._launch_run_for_rank(rank, ranks_q))
        else:
            completed_counter = mg.Value('i', skipped)
            completed_lock = mg.Lock()
            ctx = multiprocess.get_context(self.start_method)
            with ctx.Pool(self.workers) as pool:
                stats = list(pool.imap_unordered(partial(self._launch_run_for_rank, ranks_q=ranks_q, completed=completed_counter, completed_lock=completed_lock), ranks_to_run))
        stats = sum(stats, start=PipelineStats())
        with self.logging_dir.open('stats.json', 'wt') as statsfile:
            stats.save_to_disk(statsfile)
        logger.success(stats.get_repr(f'All {self.local_tasks} tasks'))
        return stats

    @property
    def world_size(self) -> int:
        return self.tasks

# File: datatrove-main/src/datatrove/executor/slurm.py
from __future__ import annotations
import json
import math
import os
import signal
import subprocess
import sys
import tempfile
import textwrap
import time
from copy import deepcopy
from typing import Callable
import dill
from dill import CONTENTS_FMODE
from datatrove.executor.base import PipelineExecutor
from datatrove.io import DataFolderLike
from datatrove.pipeline.base import PipelineStep
from datatrove.utils.logging import get_random_str, get_timestamp, logger

def requeue_handler(signum, _frame):
    signame = signal.Signals(signum).name
    logger.warning(f'Received signal {signum} ({signame}). Requeueing and exiting...')
    subprocess.run(['scontrol', 'requeue', os.environ.get('SLURM_JOB_ID')])
    sys.exit(15)

class SlurmPipelineExecutor(PipelineExecutor):

    def __init__(self, pipeline: list[PipelineStep | Callable], tasks: int, time: str, partition: str, cpus_per_task: int=1, mem_per_cpu_gb: int=2, workers: int=-1, job_name: str='data_processing', qos: str='normal', env_command: str=None, condaenv: str=None, venv_path: str=None, sbatch_args: dict | None=None, max_array_size: int=1001, depends: SlurmPipelineExecutor | None=None, depends_job_id: str | None=None, logging_dir: DataFolderLike=None, skip_completed: bool=True, slurm_logs_folder: str=None, max_array_launch_parallel: bool=False, stagger_max_array_jobs: int=0, run_on_dependency_fail: bool=False, randomize_start_duration: int=0, requeue_signals: tuple[str] | None=('SIGUSR1',), mail_type: str='ALL', mail_user: str=None, requeue: bool=True, srun_args: dict=None, tasks_per_job: int=1):
        super().__init__(pipeline, logging_dir, skip_completed, randomize_start_duration)
        self.tasks = tasks
        self.workers = workers
        self.partition = partition
        self.cpus_per_task = cpus_per_task
        self.mem_per_cpu_gb = mem_per_cpu_gb
        self.tasks_per_job = tasks_per_job
        self.time = time
        self.job_name = job_name
        self.qos = qos
        self.env_command = env_command
        self.condaenv = condaenv
        self.venv_path = venv_path
        self.depends = depends
        self.depends_job_id = depends_job_id
        self._sbatch_args = sbatch_args if sbatch_args else {}
        self.max_array_size = max_array_size
        self.max_array_launch_parallel = max_array_launch_parallel
        self.stagger_max_array_jobs = stagger_max_array_jobs
        self.run_on_dependency_fail = run_on_dependency_fail
        self.randomize_start_duration = randomize_start_duration
        self.job_id = None
        self.requeue_signals = requeue_signals
        self.mail_type = mail_type
        self.mail_user = mail_user
        self.srun_args = srun_args
        self.slurm_logs_folder = slurm_logs_folder if slurm_logs_folder else f'slurm_logs/{self.job_name}/{get_timestamp()}_{get_random_str()}' if not self.logging_dir.is_local() else self.logging_dir.resolve_paths('slurm_logs')
        self.requeue = requeue

    def run(self):
        if 'SLURM_ARRAY_TASK_ID' in os.environ:
            slurm_rank = int(os.environ['SLURM_ARRAY_TASK_ID']) + self.max_array_size * int(os.environ.get('RUN_OFFSET', 0))
            ranks_to_run_range = (slurm_rank * self.tasks_per_job, (slurm_rank + 1) * self.tasks_per_job)
            with self.logging_dir.open('ranks_to_run.json', 'r') as ranks_to_run_file:
                all_ranks = json.load(ranks_to_run_file)
            if ranks_to_run_range[0] >= len(all_ranks):
                return
            for ss in self.requeue_signals or []:
                signal.signal(signal.Signals[ss], requeue_handler)
            for rank_to_run in range(*ranks_to_run_range):
                if rank_to_run >= len(all_ranks):
                    break
                rank = all_ranks[rank_to_run]
                self._run_for_rank(rank)
        else:
            self.launch_job()

    def launch_merge_stats(self):
        launch_slurm_job(self.get_launch_file_contents({**self.get_sbatch_args(), 'cpus-per-task': 1, 'mem-per-cpu': '1G', 'dependency': f'afterok:{self.job_id}'}, f"merge_stats {self.logging_dir.resolve_paths('stats')} -o {self.logging_dir.resolve_paths('stats.json')}"))

    @property
    def dependency(self) -> str:
        dependency = []
        if self.depends_job_id:
            dependency.append(f"{('afterany' if self.run_on_dependency_fail else 'afterok')}:{self.depends_job_id}")
        if self.job_id and (not self.max_array_launch_parallel):
            dependency.append(f'afterany:{self.job_id}')
        return ','.join(dependency)

    def launch_job(self):
        assert not self.depends or isinstance(self.depends, SlurmPipelineExecutor), 'depends= must be a SlurmPipelineExecutor'
        if self.depends:
            if not self.depends.job_id:
                logger.info(f'Launching dependency job "{self.depends.job_name}"')
                self.depends.launch_job()
            if self.depends.job_id != -1:
                self.depends_job_id = self.depends.job_id
            self.depends = None
        ranks_to_run = self.get_incomplete_ranks()
        if len(ranks_to_run) == 0:
            logger.info(f'Skipping launch of {self.job_name} as all {self.tasks} tasks have already been completed.')
            self.job_id = -1
            return
        executor = deepcopy(self)
        with self.logging_dir.open('executor.pik', 'wb') as executor_f:
            dill.dump(executor, executor_f, fmode=CONTENTS_FMODE)
        self.save_executor_as_json()
        with self.logging_dir.open('ranks_to_run.json', 'w') as ranks_to_run_file:
            json.dump(ranks_to_run, ranks_to_run_file)
        nb_jobs_to_launch = math.ceil(len(ranks_to_run) / self.tasks_per_job)
        max_array = min(nb_jobs_to_launch, self.max_array_size) if self.max_array_size != -1 else nb_jobs_to_launch
        srun_args_str = ' '.join([f'--{k}={v}' for (k, v) in self.srun_args.items()]) if self.srun_args else ''
        launch_file_contents = self.get_launch_file_contents(self.get_sbatch_args(max_array), f"srun {srun_args_str} -l launch_pickled_pipeline {self.logging_dir.resolve_paths('executor.pik')}")
        with self.logging_dir.open('launch_script.slurm', 'w') as launchscript_f:
            launchscript_f.write(launch_file_contents)
        logger.info(f'''Launching Slurm job {self.job_name} ({len(ranks_to_run)} tasks) with launch script "{self.logging_dir.resolve_paths('launch_script.slurm')}"''')
        launched_jobs = 0
        while launched_jobs * max_array < nb_jobs_to_launch:
            if launched_jobs and self.max_array_launch_parallel and (self.stagger_max_array_jobs > 0):
                time.sleep(self.stagger_max_array_jobs)
            args = [f'--export=ALL,RUN_OFFSET={launched_jobs}']
            if self.dependency:
                args.append(f'--dependency={self.dependency}')
            self.job_id = launch_slurm_job(launch_file_contents, *args)
            launched_jobs += 1
        logger.info(f'Slurm job launched successfully with (last) id={self.job_id}.')
        self.launch_merge_stats()

    def get_sbatch_args(self, max_array: int=1) -> dict:
        os.makedirs(self.slurm_logs_folder, exist_ok=True)
        slurm_logfile = os.path.join(self.slurm_logs_folder, '%A_%a.out')
        sbatch_args = {'cpus-per-task': self.cpus_per_task, 'mem-per-cpu': f'{self.mem_per_cpu_gb}G', 'partition': self.partition, 'job-name': self.job_name, 'time': self.time, 'output': slurm_logfile, 'error': slurm_logfile, 'array': f"0-{max_array - 1}{(f'%{self.workers}' if self.workers != -1 else '')}", **({'mail-type': self.mail_type, 'mail-user': self.mail_user} if self.mail_user else {}), **self._sbatch_args}
        if self.requeue:
            sbatch_args['requeue'] = ''
        if self.qos:
            sbatch_args['qos'] = self.qos
        return sbatch_args

    def get_launch_file_contents(self, sbatch_args: dict, run_script: str) -> str:
        args = '\n'.join([f'#SBATCH --{k}={v}' if v else f'#SBATCH --{k}' for (k, v) in sbatch_args.items()])
        env_command = self.env_command if self.env_command else f'conda init bash\n        conda activate {self.condaenv}\n        source ~/.bashrc' if self.condaenv else f'source {self.venv_path}' if self.venv_path else ''
        return '#!/bin/bash\n' + args + textwrap.dedent(f'\n        echo "Starting data processing job {self.job_name}"\n        {env_command}\n        set -xe\n        export PYTHONUNBUFFERED=TRUE\n        {run_script}\n        ')

    @property
    def world_size(self) -> int:
        return self.tasks

def launch_slurm_job(launch_file_contents, *args):
    with tempfile.NamedTemporaryFile('w') as f:
        f.write(launch_file_contents)
        f.flush()
        return subprocess.check_output(['sbatch', *args, f.name]).decode('utf-8').split()[-1]

# File: datatrove-main/src/datatrove/io.py
import os.path
from glob import has_magic
from typing import IO, Callable, TypeAlias
from fsspec import AbstractFileSystem
from fsspec import open as fsspec_open
from fsspec.callbacks import NoOpCallback, TqdmCallback
from fsspec.core import get_fs_token_paths, strip_protocol, url_to_fs
from fsspec.implementations.cached import CachingFileSystem
from fsspec.implementations.dirfs import DirFileSystem
from fsspec.implementations.local import LocalFileSystem
from huggingface_hub import HfFileSystem, cached_assets_path
from datatrove.utils._import_utils import check_required_dependencies
from datatrove.utils.logging import logger

class OutputFileManager:

    def __init__(self, fs, mode: str='wt', compression: str | None='infer'):
        self.fs = fs
        self.mode = mode
        self.compression = compression
        self._output_files = {}

    def get_file(self, filename):
        if filename not in self._output_files:
            self._output_files[filename] = self.fs.open(filename, mode=self.mode, compression=self.compression)
        return self._output_files[filename]

    def get_open_files(self):
        return self._output_files

    def pop(self, filename):
        file = self.get_file(filename)
        self._output_files.pop(filename)
        return file

    def write(self, filename, data):
        self.get_file(filename).write(data)

    def __enter__(self):
        return self

    def close(self):
        for file in self._output_files.values():
            file.close()
        self._output_files.clear()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.close()

class DataFolder(DirFileSystem):

    def __init__(self, path: str, fs: AbstractFileSystem | None=None, auto_mkdir: bool=True, **storage_options):
        super().__init__(path=path, fs=fs if fs else url_to_fs(path, **storage_options)[0])
        self.auto_mkdir = auto_mkdir

    def list_files(self, subdirectory: str='', recursive: bool=True, glob_pattern: str | None=None, include_directories: bool=False) -> list[str]:
        if glob_pattern and (not has_magic(glob_pattern)):
            glob_pattern = f'*{glob_pattern}'
        extra_options = {}
        if isinstance(_get_true_fs(self.fs), HfFileSystem):
            extra_options['expand_info'] = False
        if include_directories and (not glob_pattern):
            extra_options['withdirs'] = True
        return sorted([f for (f, info) in (self.find(subdirectory, maxdepth=1 if not recursive else None, detail=True, **extra_options) if not glob_pattern else self.glob(self.fs.sep.join([subdirectory, glob_pattern]) if subdirectory else glob_pattern, maxdepth=1 if not recursive else None, detail=True, **extra_options)).items() if include_directories or info['type'] != 'directory'])

    def get_shard(self, rank: int, world_size: int, **kwargs) -> list[str]:
        return self.list_files(**kwargs)[rank::world_size]

    def resolve_paths(self, paths) -> list[str] | str:
        if isinstance(paths, str):
            if isinstance(self.fs, LocalFileSystem):
                return self.fs._strip_protocol(self._join(paths))
            return self.fs.unstrip_protocol(self._join(paths))
        return list(map(self.resolve_paths, paths))

    def get_output_file_manager(self, **kwargs) -> OutputFileManager:
        return OutputFileManager(self, **kwargs)

    def open_files(self, paths, mode='rb', **kwargs):
        return [self.open(path, mode=mode, **kwargs) for path in paths]

    def open(self, path, mode='rb', *args, **kwargs):
        if self.auto_mkdir and ('w' in mode or 'a' in mode):
            self.fs.makedirs(self.fs._parent(self._join(path)), exist_ok=True)
        return super().open(path, *args, mode=mode, **kwargs)

    def is_local(self):
        return isinstance(self.fs, LocalFileSystem)

def get_datafolder(data: DataFolder | str | tuple[str, dict] | tuple[str, AbstractFileSystem]) -> DataFolder:
    if isinstance(data, DataFolder):
        return data
    if isinstance(data, str):
        return DataFolder(data)
    if isinstance(data, tuple) and isinstance(data[0], str) and isinstance(data[1], dict):
        return DataFolder(data[0], **data[1])
    if isinstance(data, tuple) and isinstance(data[0], str) and isinstance(data[1], AbstractFileSystem):
        return DataFolder(data[0], fs=data[1])
    raise ValueError('You must pass a DataFolder instance, a str path, a (str path, fs_init_kwargs) or (str path, fs object)')

def open_file(file: IO | str, mode='rt', **kwargs):
    if isinstance(file, str):
        return fsspec_open(file, mode, **kwargs)
    return file

def file_exists(path: str):
    (fs, a, fpath) = get_fs_token_paths(path)
    return fs.exists(fpath[0])

def download_file(remote_path: str, local_path: str, progress: bool=True):
    (fs, _, paths) = get_fs_token_paths(remote_path)
    fs.get_file(paths[0], local_path, callback=TqdmCallback(tqdm_kwargs={'desc': f'↓ Downloading {os.path.basename(remote_path)}', 'unit': 'B', 'unit_scale': True, 'unit_divisor': 1024, 'miniters': 1}) if progress else NoOpCallback())

def safely_create_file(file_to_lock: str, do_processing: Callable):
    check_required_dependencies('io', ['fasteners'])
    from fasteners import InterProcessLock
    completed_file = f'{file_to_lock}.completed'
    if os.path.exists(completed_file):
        return
    with InterProcessLock(f'{file_to_lock}.lock'):
        if not os.path.exists(completed_file):
            do_processing()
            open(completed_file, 'a').close()

def cached_asset_path_or_download(remote_path: str, progress: bool=True, namespace: str='default', subfolder: str='default', desc: str='file'):
    download_dir = cached_assets_path(library_name='datatrove', namespace=namespace, subfolder=subfolder)
    local_path = os.path.join(download_dir, strip_protocol(remote_path).replace('/', '_'))

    def do_download_file():
        logger.info(f'⬇️ Downloading {desc} from "{remote_path}"...')
        download_file(remote_path, local_path, progress)
        logger.info(f'⬇️ Downloaded {desc} to "{local_path}".')
    safely_create_file(local_path, do_download_file)
    return local_path
DataFolderLike: TypeAlias = str | tuple[str, dict] | DataFolder
DataFileLike: TypeAlias = str | tuple[str, dict]

def get_shard_from_paths_file(paths_file: DataFileLike, rank: int, world_size):
    kwargs = {}
    if isinstance(paths_file, tuple):
        (paths_file, kwargs) = paths_file
    with open_file(paths_file, mode='rt', **kwargs) as f:
        for (pathi, path) in enumerate(f):
            if (pathi - rank) % world_size == 0:
                yield path.strip()

def _get_true_fs(fs: AbstractFileSystem):
    if isinstance(fs, CachingFileSystem):
        return fs.fs
    return fs

# File: datatrove-main/src/datatrove/pipeline/base.py
from abc import ABC, abstractmethod
from itertools import chain
from datatrove.data import Document, DocumentsPipeline
from datatrove.utils._import_utils import check_required_dependencies
from datatrove.utils.stats import Stats

class PipelineStep(ABC):
    name: str = None
    type: str = None

    def __new__(cls, *args, **kwargs):
        required_dependencies = chain.from_iterable((getattr(t, '_requires_dependencies', []) for t in cls.mro()))
        if required_dependencies:
            check_required_dependencies(cls.__name__, required_dependencies)
        return super().__new__(cls)

    def __init__(self):
        super().__init__()
        self.stats = Stats(str(self))

    def stat_update(self, *labels, value: int=1, unit: str=None):
        for label in labels:
            self.stats[label].update(value, unit)

    def update_doc_stats(self, document: Document):
        self.stat_update('doc_len', value=len(document.text), unit='doc')
        if (token_count := document.metadata.get('token_count', None)):
            self.stat_update('doc_len_tokens', value=token_count, unit='doc')

    def track_time(self, unit: str=None):
        if unit:
            self.stats.time_stats.unit = unit
        return self.stats.time_stats

    def __repr__(self):
        return f'{self.type}: {self.name}'

    @abstractmethod
    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        if data:
            yield from data

    def __call__(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        return self.run(data, rank, world_size)

# File: datatrove-main/src/datatrove/pipeline/decont/n_grams.py
""""""
import os
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor
from dataclasses import dataclass, field
from typing import Tuple
import numpy as np
from datatrove.data import Document, DocumentsPipeline
from datatrove.io import DataFolderLike, file_exists, get_datafolder, open_file
from datatrove.pipeline.base import PipelineStep
from datatrove.pipeline.filters.base_filter import BaseFilter
from datatrove.pipeline.writers.disk_base import DiskWriter
from datatrove.utils.binaryio import read_np_from_file
from datatrove.utils.hashing import HashConfig, create_hash_func
from datatrove.utils.logging import logger
from datatrove.utils.text import TextNormConfig, ngrams, simplify_text
from datatrove.utils.typeshelper import Languages
from datatrove.utils.word_tokenizers import load_word_tokenizer

@dataclass
class NGramsDecontConfig:
    n_grams: int = 12
    find_query_ngrams: bool = False
    find_overlap_ngrams: bool = True
    norm_config: TextNormConfig = field(default_factory=TextNormConfig)
    hash_config: HashConfig = field(default_factory=HashConfig)

class NGramsDecontIndexer(PipelineStep):
    type = '🦠 - DECONT'
    name = '💥 N-grams build index'
    _requires_dependencies = ['lighteval']

    def __init__(self, output_folder: DataFolderLike, lighteval_tasks: str | list[str] | None=None, custom_lighteval_tasks: str | None=None, config: NGramsDecontConfig=None, language: str=Languages.english):
        super().__init__()
        self.output_folder = get_datafolder(output_folder)
        if isinstance(lighteval_tasks, str):
            if file_exists(lighteval_tasks):
                with open_file(lighteval_tasks, 'rt') as f:
                    self.lighteval_tasks = f.read().strip().splitlines()
            else:
                self.lighteval_tasks = [lighteval_tasks]
        else:
            self.lighteval_tasks = lighteval_tasks
        self.custom_lighteval_tasks = custom_lighteval_tasks
        self.config = config or NGramsDecontConfig()
        self.tokenizer = load_word_tokenizer(language)
        self.hash_func = create_hash_func(self.config.hash_config)

    def compute_hashes(self, label: str, query: str | None=None) -> list[int]:
        label_tokens = self.tokenizer.word_tokenize(simplify_text(label, self.config.norm_config))
        ngrams_to_compute = list(ngrams(label_tokens, self.config.n_grams))
        if query is not None:
            query_tokens = self.tokenizer.word_tokenize(simplify_text(query, self.config.norm_config))
            if self.config.find_query_ngrams:
                ngrams_to_compute.extend(ngrams(query_tokens, self.config.n_grams))
            if self.config.find_overlap_ngrams:
                ''
                ngrams_to_compute.extend([query_tokens[-self.config.n_grams + 1 + i:] + label_tokens[:i + 1] for i in range(self.config.n_grams - 1) if len(query_tokens) >= self.config.n_grams - 1 - i and len(label_tokens) >= i + 1])
        return list(map(self.hash_func, map(' '.join, ngrams_to_compute)))

    def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1):
        if world_size != 1:
            raise ValueError('Decontamination index building requires a single worker.')
        hashes = defaultdict(set)
        if data:
            for doc in data:
                if not self.config.find_query_ngrams and 'query' not in doc.metadata:
                    raise ValueError("only_label_ngrams is False but could not find 'query' field in documents metadata")
                hashes[doc.metadata.get('task', 'input')].update(self.compute_hashes(doc.text, doc.metadata.get('query', None)))
        from lighteval.tasks.lighteval_task import LightevalTask
        from lighteval.tasks.registry import Registry
        task_dict = Registry(cache_dir=os.getenv('HF_HOME')).get_task_dict(self.lighteval_tasks, custom_tasks=self.custom_lighteval_tasks)
        LightevalTask.load_datasets(task_dict.values())
        for (task_name, task) in task_dict.items():
            for eval_doc in task.eval_docs():
                try:
                    golds = eval_doc.get_golds()
                    query = eval_doc.query
                except Exception as e:
                    logger.warning(f'Error while fetching doc data: {e}')
                    continue
                for gold in golds:
                    hashes[task_name].update(self.compute_hashes(gold, query))
        for (task_name, task_hashes) in hashes.items():
            hashes_array = np.array(list(task_hashes), dtype=self.config.hash_config.np_descr)
            logger.info(f'Saving {len(task_hashes)} hashes for {task_name}')
            with self.output_folder.open(f"{task_name.replace(' ', '_')}.index.hashes", mode='wb') as f:
                if self.output_folder.is_local():
                    hashes_array.tofile(f)
                else:
                    f.write(hashes_array.tobytes())

class NGramsDecontFilter(BaseFilter):
    type = '🦠 - DECONT'
    name = '💥 N-grams decontaminate'

    def __init__(self, index_folder: DataFolderLike, config: NGramsDecontConfig=None, exclusion_writer: DiskWriter=None, language: str=Languages.english):
        super().__init__()
        self.index_folder = get_datafolder(index_folder)
        self.config = config or NGramsDecontConfig()
        self.exclusion_writer = exclusion_writer
        self.language = language
        self._index_hashes = None
        self.hash_func = create_hash_func(self.config.hash_config)
        self.tokenizer = load_word_tokenizer(language)

    def load_index_hashes(self):

        def load_index_from_file(file):
            with self.index_folder.open(file, mode='rb') as f:
                return (file, read_np_from_file(f, np.dtype(self.config.hash_config.np_descr), self.index_folder.is_local()).tolist())
        with ThreadPoolExecutor() as pool:
            hashes = pool.map(load_index_from_file, self.index_folder.list_files())
        self._index_hashes = {}
        for (filename, hashlist) in hashes:
            taskname = filename.removesuffix('.index.hashes')
            logger.info(f'Loading {len(hashlist)} hashes for {taskname}')
            for hash in hashlist:
                self._index_hashes[hash] = taskname

    def filter(self, doc: Document) -> bool | Tuple[bool, str]:
        if self._index_hashes is None:
            self.load_index_hashes()
        text_tokens = self.tokenizer.word_tokenize(simplify_text(doc.text, self.config.norm_config))
        ngrams_to_compute = list(ngrams(text_tokens, self.config.n_grams))
        for n_gram in map(' '.join, ngrams_to_compute):
            task = self._index_hashes.get(self.hash_func(n_gram), None)
            if task is not None:
                doc.metadata['contaminated_ngram'] = n_gram
                doc.metadata['contaminated_task'] = task
                self.stat_update(f'contaminated_{task}')
                if ':' in task:
                    self.stat_update(f"contaminated_tg_{task[:task.index(':')]}")
                return (False, 'contaminated')
        return True

# File: datatrove-main/src/datatrove/pipeline/dedup/__init__.py
from .bloom_filter import SingleBloomFilter
from .exact_substrings import ESDatasetToSequence, ESMergeSequences, ESRangeRemover
from .minhash import MinhashBuildIndex, MinhashConfig, MinhashDedupBuckets, MinhashDedupCluster, MinhashDedupFilter, MinhashDedupSignature
from .sentence_dedup import SentDedupConfig, SentenceDedupFilter, SentenceDedupSignature, SentenceFindDedups
from .url_dedup import UrlDedupConfig, UrlDedupFilter, UrlDedupSignature, UrlFindDedups

# File: datatrove-main/src/datatrove/pipeline/dedup/bloom_filter.py
import contextlib
import math
from dataclasses import dataclass, field
import numpy as np
from datatrove.data import Document, DocumentsPipeline
from datatrove.io import DataFolderLike, get_datafolder
from datatrove.pipeline.base import PipelineStep
from datatrove.pipeline.writers.disk_base import DiskWriter
from datatrove.utils.hashing import HashConfig, create_hash_func
from datatrove.utils.logging import logger
from datatrove.utils.text import TextNormConfig, ngrams, simplify_text
from datatrove.utils.typeshelper import Languages, StatHints
from datatrove.utils.word_tokenizers import load_word_tokenizer
_mersenne_prime = np.uint64((1 << 61) - 1)
MAX_HASH = 1 << 32 - 1

@dataclass
class BloomFilterConfig:
    m_bytes: int
    k: int = None
    expected_elements: int = None
    duplicate_threshold: float = 0.8
    n_grams: int = 13
    seed: int = 0
    norm_config: TextNormConfig = field(default_factory=TextNormConfig)
    hash_config: HashConfig = field(default_factory=lambda : HashConfig(precision=32))

    @property
    def m(self):
        return self.m_bytes * 8

    def __post_init__(self):
        if self.k is None:
            self.k = get_optimal_k(self.m, expected_elements=self.expected_elements)

def get_optimal_k(size_in_bytes: int, expected_elements: int) -> int:
    assert expected_elements, f'if expected_elements={expected_elements!r} then k must be given'
    m = size_in_bytes * 8
    k = m / expected_elements * np.log(2)
    return math.ceil(k)

def get_false_positive_prob(size_in_bytes: int, n: int, k: int) -> float:
    m = size_in_bytes * 8
    return (1.0 - (1.0 - 1.0 / m) ** (k * n)) ** k

class SingleBloomFilter(PipelineStep):
    type = '🫂 - DEDUPS'
    name = '\U0001fab7 Bloom-filter'

    def __init__(self, output_folder: DataFolderLike, config: BloomFilterConfig, save_bloom_filter: bool=False, exclusion_writer: DiskWriter=None, language: str=Languages.english):
        super().__init__()
        self.output_folder = get_datafolder(output_folder)
        self.tokenizer = load_word_tokenizer(language)
        self.config = config
        self.bit_vector = bytearray([0] * self.config.m_bytes)
        self.save_bloom_filter = save_bloom_filter
        self.exclusion_writer = exclusion_writer
        assert self.config.hash_config.precision == 32, 'Bloom filter only supports 32-bit hashes'
        self.hash_fc = create_hash_func(self.config.hash_config)
        assert self.config.m < MAX_HASH
        self.total_shingles = 0
        self._parameters = None
        assert self.config.m_bytes < MAX_HASH, f'MAX_HASH={MAX_HASH!r} is smaller than self.config.m_bytes={self.config.m_bytes!r}'
        if self.config.expected_elements:
            fp = get_false_positive_prob(self.config.m_bytes, n=self.config.expected_elements, k=self.config.k)
            if fp > 0.05:
                logger.warning(f'False probability = {fp:.3}')
            else:
                logger.info(f'False probability = {fp:.3}')
        self.language = language

    @property
    def parameters(self):
        if self._parameters is None:
            gen = np.random.RandomState(self.config.seed)
            self._parameters = (gen.randint(1, _mersenne_prime, dtype=np.uint64, size=(1, self.config.k)), gen.randint(0, _mersenne_prime, dtype=np.uint64, size=(1, self.config.k)))
        return self._parameters

    def get_shingles(self, text: str) -> np.ndarray:
        return np.fromiter([self.hash_fc(' '.join(x)) for x in ngrams(self.tokenizer.word_tokenize(simplify_text(text, self.config.norm_config)), self.config.n_grams)], dtype=np.uint64).reshape((-1, 1))

    def get_indexes(self, shingles: np.ndarray) -> list[list[int]]:
        (a, b) = self.parameters
        phv = np.bitwise_and((shingles * a + b) % _mersenne_prime, self.config.m_bytes)
        return phv.tolist()

    def update_bf(self, indexes: list[int]):
        for index in indexes:
            (byte_index, bit_index) = divmod(index, 8)
            mask = 1 << bit_index
            self.bit_vector[byte_index] |= mask

    def query(self, indexes: list[int]) -> bool:
        for idx in indexes:
            (byte_index, bit_index) = divmod(idx, 8)
            mask = 1 << bit_index
            if self.bit_vector[byte_index] & mask == 0:
                return False
        return True

    def step(self, doc: Document) -> bool:
        shingles = self.get_shingles(doc.text)
        self.total_shingles += shingles.size
        if shingles.size == 0:
            return True
        shingle_indexes = self.get_indexes(shingles)
        duplicate_shingles = 0
        indexes_to_update = []
        for indexes in shingle_indexes:
            if self.query(indexes):
                duplicate_shingles += 1
            else:
                indexes_to_update.extend(indexes)
        self.update_bf(indexes_to_update)
        if duplicate_shingles / len(shingles) > self.config.duplicate_threshold:
            self.stat_update(StatHints.dropped)
            return False
        return True

    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1):
        with self.exclusion_writer if self.exclusion_writer else contextlib.nullcontext() as writer:
            for (doc_idx, doc) in enumerate(data):
                with self.track_time():
                    self.stat_update(StatHints.total)
                    if not self.step(doc):
                        self.stat_update(StatHints.dropped)
                        if self.exclusion_writer:
                            writer.write(doc, rank)
                        continue
                self.stat_update(StatHints.forwarded)
                yield doc
            if self.save_bloom_filter:
                with self.output_folder.open('bloom_filter.bloom', mode='wb') as f:
                    f.write(self.bit_vector)
        logger.info(f'self.total_shingles={self.total_shingles!r}')
        logger.info(f'False probability = {get_false_positive_prob(self.config.m_bytes, n=self.total_shingles, k=self.config.k):.3}')
        logger.info(f'Optimal K given total shingles = {get_optimal_k(self.config.m_bytes, self.total_shingles)}')

# File: datatrove-main/src/datatrove/pipeline/dedup/exact_substrings.py
""""""
import struct
from typing import BinaryIO, Generator
import numpy as np
from datatrove.io import DataFolderLike, get_datafolder
from datatrove.pipeline.base import DocumentsPipeline, PipelineStep
from datatrove.utils.logging import logger
from ...utils.tokenization import PipelineStepWithTokenizer
from ...utils.typeshelper import ExtensionHelperES as EH
from ...utils.typeshelper import Languages
from ...utils.word_tokenizers import load_word_tokenizer
SEPARATOR_BYTES = 12

def prepare_doc(tokenizer, doc: str, rank: int, doc_id: int):
    tokens = tokenizer.encode(doc).ids
    tokens = np.fromiter(tokens, dtype=np.uint16, count=len(tokens))
    b_doc = b'\xff\xff' + struct.pack('<I', doc_id) + b'\xff\xff' + struct.pack('<I', rank) + tokens.tobytes()
    return b_doc

class ESDatasetToSequence(PipelineStepWithTokenizer):
    type = '🫂 - DEDUP'
    name = '🪞 - exact-substrings stage 1'

    def __init__(self, output_folder: DataFolderLike, tokenizer_name_or_path: str='gpt2'):
        super().__init__()
        self.output_folder = get_datafolder(output_folder)
        self.tokenizer_name_or_path = tokenizer_name_or_path

    def save_sizes(self, doc_lens: list[int], rank: int):
        with self.output_folder.open(f'{rank:05d}{EH.stage_1_sequence_size}', mode='wb') as f_lens:
            f_lens.write(struct.pack('Q' * len(doc_lens), *doc_lens))

    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1):
        doc_lens = []
        with self.output_folder.open(f'{rank:05d}{EH.stage_1_sequence}', mode='wb') as f_sequence:
            i = -1
            for (i, doc) in enumerate(data):
                with self.stats.time_stats:
                    b_doc = prepare_doc(tokenizer=self.tokenizer, doc=doc.text, rank=rank, doc_id=i)
                    doc_lens.append(len(b_doc))
                    f_sequence.write(b_doc)
        assert i < 2 ** 32, 'doc ID overflow'
        assert i + 1 == len(doc_lens), f'i={i!r} but len(doc_lens)={len(doc_lens)!r}'
        self.save_sizes(doc_lens, rank)

class ESMergeSequences(PipelineStep):
    type = '🫂 - DEDUP'
    name = '🪞 - exact-substrings stage 2'

    def __init__(self, data_folder: DataFolderLike, tasks_stage_1: int, bytes_per_batch: int=int(500000000.0)):
        super().__init__()
        self.data_folder = get_datafolder(data_folder)
        self.tasks_stage_1 = tasks_stage_1
        self.bytes_per_batch = bytes_per_batch

    def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1):
        bytes_per_sequence = [0]
        with self.stats.time_stats:
            assert world_size == 1, f"world_size={world_size!r} can't be greater than 1!"
            all_files: list[str] = self.data_folder.list_files(glob_pattern=EH.stage_1_sequence)
            assert len(all_files) == self.tasks_stage_1
            with self.data_folder.open(f'dataset{EH.stage_2_big_sequence}', mode='wb') as f_sequence:
                for file in all_files:
                    len_sequence = 0
                    with self.data_folder.open(file, 'rb') as f:
                        while True:
                            sequence = f.read(self.bytes_per_batch)
                            f_sequence.write(sequence)
                            len_sequence += len(sequence)
                            if len(sequence) != self.bytes_per_batch:
                                break
                        bytes_per_sequence.append(bytes_per_sequence[-1] + len_sequence)
                with self.data_folder.open(f'bytes_offsets{EH.stage_2_bytes_offset}', mode='wb') as f_bytes:
                    f_bytes.write(np.array([bytes_per_sequence], np.uint32).tobytes())

def read_bytes(x):
    return np.frombuffer(x[SEPARATOR_BYTES:], dtype=np.uint16).tolist()

def sequence_reader(file: BinaryIO, size_file: BinaryIO) -> Generator[list, None, None]:
    with size_file as f_size:
        with file as f:
            while True:
                n_bytes = f_size.read(struct.calcsize('<Q'))
                if len(n_bytes) == 0:
                    break
                assert len(n_bytes) == 8
                n_bytes = struct.unpack('<Q', n_bytes)[0]
                yield f.read(n_bytes)

class ESRangeRemover(PipelineStepWithTokenizer):
    type = '🫂 - DEDUP'
    name = '🪞 - exact-substrings stage 3'

    def __init__(self, sequence_folder: DataFolderLike, tokenizer_name_or_path: str='gpt2', min_doc_words: int=50, language: str=Languages.english):
        super().__init__()
        self.sequence_folder = get_datafolder(sequence_folder)
        self.tokenizer_name_or_path = tokenizer_name_or_path
        self.min_doc_words = min_doc_words
        self.sequence_bytes_offset = None
        self.dup_ranges = None
        self.rank = None
        self.exhausted_ranges = False
        self.bytes_counter = 0
        self.range_idx = 0
        self.language = language
        self.word_tokenizer = load_word_tokenizer(language)

    def reset(self):
        self.bytes_counter = 0
        self.range_idx = 0
        self.exhausted_ranges = False
        self.sequence_bytes_offset = None
        self.dup_ranges = None
        self.rank = None

    def get_sequence_bytes_offset(self):
        offset_array_file: str = self.sequence_folder.list_files(glob_pattern=EH.stage_2_bytes_offset)[0]
        with self.sequence_folder.open(offset_array_file, 'rb') as f:
            offset_array = f.read()
        self.sequence_bytes_offset = np.frombuffer(offset_array, dtype=np.uint32)
        logger.info(f'self.rank={self.rank!r}, -> self.sequence_bytes_offset[self.rank]={self.sequence_bytes_offset[self.rank]!r}')

    def get_bytearange(self, bytes_range_file: BinaryIO):
        with bytes_range_file as f:
            dup_ranges = f.read()
        dup_ranges = dup_ranges.split('\n')
        i = 0
        for (i, x) in enumerate(dup_ranges):
            if x == 'out':
                break
        dup_ranges = dup_ranges[i + 1:-1]
        rank_dup_ranges = []
        for br in dup_ranges:
            (a, b) = br.split(' ')
            (a, b) = (int(a), int(b))
            if b > self.sequence_bytes_offset[self.rank + 1] + SEPARATOR_BYTES:
                break
            if b > self.sequence_bytes_offset[self.rank] + SEPARATOR_BYTES:
                (a, b) = (a - self.sequence_bytes_offset[self.rank], b - self.sequence_bytes_offset[self.rank])
                rank_dup_ranges.append((a, b))
        self.dup_ranges = rank_dup_ranges

    def get_all_files(self, rank: int, world_size: int):
        self.get_sequence_bytes_offset()
        sequence_file = self.sequence_folder.get_shard(rank, world_size, glob_pattern=EH.stage_1_sequence)
        docs_sizes_file = self.sequence_folder.get_shard(rank, world_size, glob_pattern=EH.stage_1_sequence_size)
        byte_range_file = self.sequence_folder.list_files(glob_pattern=EH.stage_3_bytes_ranges)
        assert all([len(sequence_file) == 1, len(docs_sizes_file) == 1, len(byte_range_file) == 1]), f'Need to run with n_tasks = n_files. len(sequence_file)={len(sequence_file)!r}, len(sequence_file)={len(sequence_file)!r}, len(byte_range_file)={len(byte_range_file)!r}'
        (sequence_file, docs_sizes_file, byte_range_file) = (sequence_file[0], docs_sizes_file[0], byte_range_file[0])
        self.get_bytearange(self.sequence_folder.open(byte_range_file, 'rt'))
        return (sequence_file, docs_sizes_file)

    def normalize_range(self, a, b, bytes_len):
        (a, b) = (a - self.bytes_counter, b - self.bytes_counter)
        a = max(SEPARATOR_BYTES, a)
        b = min(bytes_len, b)
        assert SEPARATOR_BYTES <= a < b <= bytes_len, f'SEPARATOR_BYTES={SEPARATOR_BYTES!r} < a={a!r} < b={b!r} < bytes_len={bytes_len!r} is NOT satisfied'
        if b % 2 == 1:
            b -= 1
        if a % 2 == 1:
            a += 1
        b = max(a, b)
        return (a, b)

    def get_duplicate_range(self, bytes_len: int):
        ranges = []
        upper_limit = self.bytes_counter + bytes_len + SEPARATOR_BYTES
        if self.exhausted_ranges:
            return ranges
        while True:
            (a, b) = (self.dup_ranges[self.range_idx][0], self.dup_ranges[self.range_idx][1])
            left = a < self.bytes_counter and self.bytes_counter + SEPARATOR_BYTES < b <= upper_limit
            centre = self.bytes_counter <= a < b <= upper_limit
            right = self.bytes_counter <= a < upper_limit - SEPARATOR_BYTES and upper_limit < b
            outside = a < self.bytes_counter < upper_limit < b
            if not any([left, centre, right, outside]):
                break
            assert sum([left, centre, right, outside]) == 1, f'left={left!r}, centre={centre!r}, right={right!r}, outside={outside!r}'
            if left:
                self.range_idx += 1
                a = self.bytes_counter
            if centre:
                self.range_idx += 1
            if right:
                ranges.append(self.normalize_range(a, upper_limit, bytes_len))
                break
            if outside:
                ranges.append(self.normalize_range(self.bytes_counter, upper_limit, bytes_len))
                break
            ranges.append(self.normalize_range(a, b, bytes_len))
            if self.range_idx == len(self.dup_ranges):
                self.exhausted_ranges = True
                break
        return ranges

    def remove_duplicate(self, doc, bytes_content):
        n_bytes = len(bytes_content)
        duplicates_ranges = self.get_duplicate_range(n_bytes)
        duplicates = []
        for (byte_a, byte_b) in duplicates_ranges:
            dup_sentence = self.tokenizer.decode(np.frombuffer(bytes_content[byte_a:byte_b], dtype=np.uint16).tolist())
            duplicates.append(dup_sentence)
        if duplicates:
            text = doc.text
            for d in duplicates:
                text = text.replace(d, '')
            doc.text = text
        self.bytes_counter += len(bytes_content)
        if len(self.word_tokenizer.word_tokenize(doc.text)) < self.min_doc_words:
            return False
        return True

    def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        self.reset()
        self.rank = rank
        (sequence_file, size_file) = self.get_all_files(rank=self.rank, world_size=world_size)
        if not self.dup_ranges:
            return
        for (doc, doc_content) in zip(data, sequence_reader(self.sequence_folder.open(sequence_file, 'rb'), self.sequence_folder.open(size_file, 'rb'))):
            with self.stats.time_stats:
                assert doc.text == self.tokenizer.decode(read_bytes(doc_content), skip_special_tokens=False), f'{doc.text}\n\n{self.tokenizer.decode(read_bytes(doc_content))}'
                to_yield = self.remove_duplicate(doc, doc_content)
            if to_yield:
                self.update_doc_stats(doc)
                yield doc
        assert self.bytes_counter == self.sequence_bytes_offset[rank + 1] - self.sequence_bytes_offset[rank], f'got self.bytes_counter={self.bytes_counter!r}, expected = {self.sequence_bytes_offset[rank + 1] - self.sequence_bytes_offset[rank]}'
        assert self.exhausted_ranges, 'One or more duplicate ranges have not been used'

# File: datatrove-main/src/datatrove/pipeline/dedup/minhash.py
import contextlib
import heapq
import os
import re
import struct
from dataclasses import dataclass, field
from pathlib import Path
from typing import Generator
import numpy as np
from fsspec.spec import AbstractBufferedFile
from datatrove.data import DocumentsPipeline
from datatrove.io import DataFolderLike, get_datafolder
from datatrove.pipeline.base import PipelineStep
from datatrove.pipeline.writers.disk_base import DiskWriter
from datatrove.utils.binaryio import read_tuples_from_file, seek_to_start
from datatrove.utils.hashing import HashConfig, create_hash_func
from datatrove.utils.logging import logger
from datatrove.utils.text import TextNormConfig, ngrams, simplify_text
from datatrove.utils.typeshelper import Languages, StatHints
from datatrove.utils.word_tokenizers import load_word_tokenizer
_mersenne_prime = np.uint64((1 << 61) - 1)
''
SENTINEL = (1 << 32) - 1

@dataclass
class MinhashConfig:
    n_grams: int = 5
    num_buckets: int = 14
    hashes_per_bucket: int = 8
    seed: int = 1
    norm_config: TextNormConfig = field(default_factory=TextNormConfig)
    hash_config: HashConfig = field(default_factory=HashConfig)

    def __str__(self):
        return f'{self.n_grams}ng_{self.num_buckets}bs_{self.hashes_per_bucket}hs_{self.hash_config}'

@dataclass(order=True)
class HashSig:
    sig: tuple[int]
    file_id: int
    file_stem: str
    doc_id: int
    reader_id: int

    def is_from_index(self):
        return self.reader_id != self.file_id

def read_sigs(file: AbstractBufferedFile, reader_id: int, config: MinhashConfig, index_file: bool=False, min_hash: int=0, max_hash: int=_mersenne_prime, ensure_order: bool=True, lines_to_buffer: int=5) -> Generator:
    line_format = f"{config.hashes_per_bucket}{config.hash_config.struct_format}{('I' if not index_file else '')}"
    with file as f:
        if f.size == 0:
            return
        seek_to_start(f, min_hash, line_format, config.hash_config.struct_format)
        last = None
        file_stem = Path(file.path).name.removesuffix('.minhash.sig')
        for data in read_tuples_from_file(f, line_format, lines_to_buffer=lines_to_buffer):
            sigdata = data if index_file else data[:-1]
            assert sigdata[0] >= min_hash and (ensure_order is False or last is None or sigdata >= last), f'Hash order error. f.tell()={f.tell()!r}, min_hash={min_hash!r}, sigdata={sigdata!r}, last={last!r}'
            if sigdata[0] >= max_hash:
                break
            last = sigdata
            yield (HashSig(sig=sigdata, doc_id=-1, file_id=-1, reader_id=reader_id, file_stem=file_stem) if index_file else HashSig(sig=sigdata, doc_id=data[-1], file_id=reader_id, reader_id=reader_id, file_stem=file_stem))

class MinhashDedupSignature(PipelineStep):
    type = '🫂 - DEDUP'
    name = '🎯 MinHash stage 1'

    def __init__(self, output_folder: DataFolderLike, config: MinhashConfig=None, language: str=Languages.english):
        super().__init__()
        self.output_folder = get_datafolder(output_folder)
        self.config = config or MinhashConfig()
        self.num_hashes = self.config.num_buckets * self.config.hashes_per_bucket
        self._parameters = None
        self._hash_func = create_hash_func(self.config.hash_config)
        self.language = language
        self.word_tokenizer = load_word_tokenizer(language)

    @property
    def parameters(self):
        if self._parameters is None:
            gen = np.random.RandomState(self.config.seed)
            self._parameters = (gen.randint(1, _mersenne_prime, dtype=np.uint64, size=(1, self.num_hashes)), gen.randint(0, _mersenne_prime, dtype=np.uint64, size=(1, self.num_hashes)))
        return self._parameters

    def get_signature(self, shingles: np.ndarray) -> list[list[int]]:
        (a, b) = self.parameters
        phv = (shingles * a + b) % _mersenne_prime
        if self.config.hash_config.precision == 32:
            phv = np.bitwise_and(phv, self.config.hash_config.max)
        return [x.tolist() for x in np.split(np.min(phv, axis=0).astype(self.config.hash_config.np_dtype), self.config.num_buckets)]

    def get_shingles(self, text: str) -> np.ndarray:
        return np.fromiter([self._hash_func(' '.join(x)) for x in ngrams(self.word_tokenizer.word_tokenize(simplify_text(text, self.config.norm_config)), self.config.n_grams)], dtype=np.uint64).reshape((-1, 1))

    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1):
        buckets = [self.output_folder.open(f'bucket_{bi:03d}/{rank:05d}.minhash.sig', mode='wb') for bi in range(self.config.num_buckets)]
        with self.track_time():
            for (doc_idx, doc) in enumerate(data):
                self.stat_update(StatHints.total)
                shingles = self.get_shingles(doc.text)
                if shingles.size != 0:
                    sig = self.get_signature(shingles)
                    for (bi, (bucket, bucket_sig)) in enumerate(zip(buckets, sig)):
                        bucket.write(struct.pack(f'<{self.config.hashes_per_bucket}{self.config.hash_config.struct_format}I', *bucket_sig, doc_idx))
            for file in buckets:
                file.close()
            logger.info('Sorting buckets...')
            for bi in range(len(buckets)):
                sigs = sorted(read_sigs(self.output_folder.open(f'bucket_{bi:03d}/{rank:05d}.minhash.sig', mode='rb'), -1, self.config, ensure_order=False, lines_to_buffer=-1))
                with self.output_folder.open(f'bucket_{bi:03d}/{rank:05d}.minhash.sig', mode='wb') as fo:
                    for sig in sigs:
                        fo.write(struct.pack(f'<{self.config.hashes_per_bucket}{self.config.hash_config.struct_format}I', *sig.sig, sig.doc_id))

class MinhashDedupBuckets(PipelineStep):
    type = '🫂 - DEDUP'
    name = '🎯 MinHash stage 2'

    def __init__(self, input_folder: DataFolderLike, output_folder: DataFolderLike, index_folder: DataFolderLike=None, config: MinhashConfig=None, only_dedup_in_index: bool=True, create_index_name: str=None, lines_to_buffer: int=5):
        super().__init__()
        self.input_folder = get_datafolder(input_folder)
        self.output_folder = get_datafolder(output_folder)
        self.index_folder = get_datafolder(index_folder) if index_folder else None
        self.config = config or MinhashConfig()
        self.only_dedup_in_index = only_dedup_in_index
        self.create_index_name = create_index_name
        self.lines_to_buffer = lines_to_buffer

    def get_worker_hash_range(self, sig_files, rank, world_size):
        workers_per_bucket = world_size // self.config.num_buckets
        (bucket, bucket_worker) = divmod(rank, workers_per_bucket)
        (hash_min, hash_max) = (0, _mersenne_prime if self.config.hash_config.precision == 64 else self.config.hash_config.max)
        if workers_per_bucket > 1 and len(sig_files):
            with self.input_folder.open(sig_files[0], mode='rb') as f:
                line_size = struct.calcsize(f'{self.config.hashes_per_bucket}{self.config.hash_config.struct_format}I')
                (L, rem) = divmod(f.size, line_size)
                assert rem == 0, 'file size not divisible by line size'
                assert L >= workers_per_bucket, f'tried to use workers_per_bucket={workers_per_bucket!r} but there are only {L} lines'
                if bucket_worker > 0:
                    f.seek(line_size * (L // workers_per_bucket) * bucket_worker, os.SEEK_SET)
                    hash_min = struct.unpack(self.config.hash_config.struct_format, f.read(struct.calcsize(self.config.hash_config.struct_format)))[0]
                if bucket_worker + 1 < workers_per_bucket:
                    f.seek(line_size * (L // workers_per_bucket) * (bucket_worker + 1), os.SEEK_SET)
                    hash_max = struct.unpack(self.config.hash_config.struct_format, f.read(struct.calcsize(self.config.hash_config.struct_format)))[0]
        return (hash_min, hash_max)

    def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1):
        assert data is None, 'You should not use an input block before MinhashDedupBuckets'
        assert world_size % self.config.num_buckets == 0, 'Number of tasks must be divisible by num_buckets'
        workers_per_bucket = world_size // self.config.num_buckets
        (bucket, bucket_worker) = divmod(rank, workers_per_bucket)
        with self.track_time():
            sig_files = self.input_folder.list_files(subdirectory=f'bucket_{bucket:03d}')
            (hash_min, hash_max) = self.get_worker_hash_range(sig_files, rank, world_size)
            logger.info(f'Running worker {bucket_worker + 1}/{workers_per_bucket} on bucket {bucket:03d}. Hash range: {[hash_min, hash_max]}')
            sig_readers = [read_sigs(file, file_i, self.config, min_hash=hash_min, max_hash=hash_max, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.input_folder.open_files(sig_files, mode='rb'))]
            own_index_regex = re.compile(f'bucket_{bucket:03d}/{self.create_index_name}_\\d{{2}}.minhash.index')
            index_files = [filename for filename in self.index_folder.list_files(subdirectory=f'bucket_{bucket:03d}') if not self.create_index_name or not own_index_regex.fullmatch(filename)] if self.index_folder else None
            if index_files:
                logger.info(f"Found {len(index_files)} index file(s): {', '.join(index_files)}")
                sig_readers.extend([read_sigs(file, len(sig_readers) + file_i, self.config, index_file=True, min_hash=hash_min, max_hash=hash_max, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.index_folder.open_files(index_files, mode='rb'))])
            pq = [x for x in [next(sig_reader, None) for sig_reader in sig_readers] if x is not None]
            heapq.heapify(pq)
            logger.info('Finished initializing signatures priority queue.')
            out_index = None
            if self.index_folder and self.create_index_name:
                out_index = self.index_folder.open(f'bucket_{bucket:03d}/{self.create_index_name}_{bucket_worker:02d}.minhash.index', mode='wb')
            with self.output_folder.open(f'{bucket:05d}_{bucket_worker:02d}.dups', mode='wb') as out_f:
                last: HashSig | None = None
                while pq:
                    v: HashSig = heapq.heappop(pq)
                    assert last is None or v >= last, f'Sig queue sort error. v={v!r} < last={last!r}'
                    if not v.is_from_index():
                        if last and last.sig == v.sig:
                            if last.is_from_index():
                                out_f.write(struct.pack('<4I', SENTINEL, SENTINEL, int(v.file_stem), v.doc_id))
                                self.stat_update('index_match', 'total_matches')
                            elif not index_files or not self.only_dedup_in_index:
                                out_f.write(struct.pack('<4I', int(last.file_stem), last.doc_id, int(v.file_stem), v.doc_id))
                                self.stat_update('total_matches')
                        elif out_index:
                            out_index.write(struct.pack(f'<%d{self.config.hash_config.struct_format}' % self.config.hashes_per_bucket, *v.sig))
                    last = v
                    next_sig = next(sig_readers[v.reader_id], None)
                    if next_sig:
                        assert next_sig >= v, f'Next sig sort error. next_sig={next_sig!r} < v={v!r}'
                        heapq.heappush(pq, next_sig)
                if out_index:
                    out_index.close()

class MinhashDedupCluster(PipelineStep):
    type = '🫂 - DEDUP'
    name = '🎯 MinHash stage 3'

    def __init__(self, input_folder: DataFolderLike, output_folder: DataFolderLike, config: MinhashConfig=None, save_cluster_id: bool=False, ignore_index_matches: bool=False, lines_to_buffer: int=5):
        super().__init__()
        self.input_folder = get_datafolder(input_folder)
        self.output_folder = get_datafolder(output_folder)
        self.config = config or MinhashConfig()
        self.save_cluster_id = save_cluster_id
        self.ignore_index_matches = ignore_index_matches
        self.lines_to_buffer = lines_to_buffer

    def run(self, data: DocumentsPipeline=None, _: int=0, world_size: int=1):
        dup_files = self.input_folder.list_files(glob_pattern='*.dups')
        assert len(dup_files) % self.config.num_buckets == 0, 'Number of .dups files should be divisible by number of buckets'
        assert world_size == 1, 'World size must be 1 for clustering'
        union_set = {}

        def parent(x):
            if x not in union_set or union_set[x] == x:
                return x
            union_set[x] = parent(union_set[x])
            return union_set[x]
        with self.track_time():
            for dup_file in dup_files:
                with self.input_folder.open(dup_file, 'rb') as dupf:
                    for (f1, d1, f2, d2) in read_tuples_from_file(dupf, '4I', lines_to_buffer=self.lines_to_buffer):
                        (a, b) = ((f1, d1), (f2, d2))
                        if self.ignore_index_matches and a == (SENTINEL, SENTINEL):
                            continue
                        union_set[parent(b)] = parent(a)
            ci = 0
            cluster_ids = {}
            with self.output_folder.get_output_file_manager(mode='wb') as output_mg:
                for node in sorted(union_set.keys()):
                    self.stat_update('duplicates')
                    (file, doc) = node
                    p = parent(node)
                    if node != p:
                        output_mg.write(f'{file:06d}.remove', struct.pack('<I', doc))
                        self.stat_update('to_remove')
                    if self.save_cluster_id:
                        if p not in cluster_ids:
                            cluster_ids[p] = ci
                            ci += 1
                            self.stat_update('clusters')
                        output_mg.write(f'{file:06d}.clusters', struct.pack('<I', doc))
                        output_mg.write(f'{file:06d}.clusters', struct.pack('<I', cluster_ids[p]))

class MinhashDedupFilter(PipelineStep):
    type = '🫂 - DEDUP'
    name = '🎯 MinHash stage 4'

    def __init__(self, input_folder: DataFolderLike, exclusion_writer: DiskWriter=None, load_cluster_ids: bool=False, lines_to_buffer: int=5):
        super().__init__()
        self.data_folder = get_datafolder(input_folder)
        self.exclusion_writer = exclusion_writer
        self.load_cluster_ids = load_cluster_ids
        self.lines_to_buffer = lines_to_buffer

    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1):
        clusters_data = self.data_folder.get_shard(rank, world_size, glob_pattern='*.clusters')
        assert not self.load_cluster_ids or len(clusters_data) <= 1, f'Must have exactly one .clusters file per task. Found {len(clusters_data)} files.'
        if not self.data_folder.isfile(f'{rank:06d}.remove'):
            logger.warning(f'No .remove file for rank={rank!r}.')
            for doc in data:
                self.stat_update(StatHints.total, StatHints.forwarded)
                yield doc
            return
        with self.data_folder.open(f'{rank:06d}.remove', 'rb') as f:
            with self.exclusion_writer if self.exclusion_writer else contextlib.nullcontext() as exc_writer:

                def get_next():
                    data = f.read(struct.calcsize('I'))
                    if data:
                        return struct.unpack('<I', data)[0]

                def load_clusters():
                    if clusters_data:
                        with self.data_folder.open(clusters_data[0], 'rb') as clustersf:
                            yield from read_tuples_from_file(clustersf, '2I', lines_to_buffer=self.lines_to_buffer)
                if self.load_cluster_ids:
                    cluster_loader = load_clusters()
                    next_cluster = next(cluster_loader, None)
                next_removal = get_next()
                for (idx, doc) in enumerate(data):
                    with self.track_time():
                        if self.load_cluster_ids:
                            if next_cluster and idx == next_cluster[0]:
                                doc.metadata['minhash_cluster'] = next_cluster[1]
                                next_cluster = next(cluster_loader, None)
                        self.stat_update(StatHints.total)
                        if next_removal == idx:
                            self.stat_update(StatHints.dropped)
                            if self.exclusion_writer:
                                exc_writer.write(doc, rank)
                            next_removal = get_next()
                            continue
                        self.stat_update(StatHints.forwarded)
                    yield doc

class MinhashBuildIndex(PipelineStep):
    type = '🫂 - DEDUP'
    name = '🎯 MinHash build index'

    def __init__(self, input_folder: DataFolderLike, output_folder: DataFolderLike, index_name: str, config: MinhashConfig=None, lines_to_buffer: int=5):
        super().__init__()
        self.input_folder = input_folder
        self.output_folder = output_folder
        self.config = config or MinhashConfig()
        self.index_name = index_name
        self.lines_to_buffer = lines_to_buffer

    def run(self, data: DocumentsPipeline=None, bucket: int=0, world_size: int=1):
        assert data is None, 'You should not use an input block before MinhashBuildIndex'
        assert world_size == self.config.num_buckets, 'You must run exactly one task per bucket'
        sig_files = self.input_folder.list_files(subdirectory=f'bucket_{bucket:03d}')
        sig_readers = [read_sigs(file, file_i, self.config, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.input_folder.open_files(sig_files, mode='rb'))]
        pq = [next(sig_reader) for sig_reader in sig_readers]
        heapq.heapify(pq)
        out_f = self.output_folder.open(f'bucket_{bucket:03d}/{self.index_name}.minhash.index', mode='wb')
        last: HashSig | None = None
        with self.track_time():
            while pq:
                v: HashSig = heapq.heappop(pq)
                if not last or last.sig != v.sig:
                    out_f.write(struct.pack(f'<%d{self.config.hash_config.struct_format}' % self.config.hashes_per_bucket, *v.sig))
                last = v
                next_sig = next(sig_readers[v.file_id], None)
                if next_sig:
                    heapq.heappush(pq, next_sig)
        out_f.close()

# File: datatrove-main/src/datatrove/pipeline/dedup/sentence_dedup.py
""""""
import contextlib
import dataclasses
import heapq
import struct
from concurrent.futures import ThreadPoolExecutor
from dataclasses import dataclass, field
from pathlib import Path
from typing import BinaryIO, Generator
import numpy as np
from fsspec.spec import AbstractBufferedFile
from tqdm import tqdm
from datatrove.data import Document, DocumentsPipeline
from datatrove.io import DataFolderLike, get_datafolder
from datatrove.pipeline.base import PipelineStep
from datatrove.utils.binaryio import read_np_from_file, read_tuples_from_file
from datatrove.utils.hashing import HashConfig, create_hash_func
from datatrove.utils.logging import logger
from datatrove.utils.text import SPLIT_TEXT_SENTENCES, TextNormConfig, ngrams, simplify_text, split_into_parts
from datatrove.utils.typeshelper import ExtensionHelperSD, Languages, StatHints
from ...utils.word_tokenizers import load_word_tokenizer
from ..writers.disk_base import DiskWriter

@dataclass
class SentDedupConfig:
    n_sentences: int = 3
    split_sentences: bool = True
    only_dedup_in_index: bool = True
    min_doc_words: int = 50
    min_num_sentences: int = 3
    min_words_to_remove_span: int = 0
    norm_config: TextNormConfig = field(default_factory=TextNormConfig)
    hash_config: HashConfig = field(default_factory=HashConfig)

@dataclass(order=True)
class HashSig:
    hash_value: int
    doc_id: int
    file_id: int = None
    sent_id: int = None
    file_stem: str = None

    def is_from_index(self):
        return self.doc_id == self.sent_id == -1

class SentenceDedupSignature(PipelineStep):
    type = '🫂 - DEDUPS'
    name = '💥 sentence-deduplication stage 1'

    def __init__(self, output_folder: DataFolderLike, finder_workers: int=1, config: SentDedupConfig=None, language: str=Languages.english):
        super().__init__()
        self.output_folder = get_datafolder(output_folder)
        if finder_workers <= 0:
            raise ValueError('finder_workers must be >= 1')
        elif finder_workers > 1:
            logger.warning(f'Remember to also set the name of tasks of the finder block to finder_workers={finder_workers!r}!')
        self.finder_workers = finder_workers
        self.config = config or SentDedupConfig()
        self.hash_fc = create_hash_func(config.hash_config)
        self.language = language
        self.tokenizer = load_word_tokenizer(language)

    def save_hashes(self, rank: int, signatures):
        signatures = np.array(signatures, dtype=[('hash', self.config.hash_config.np_descr), ('doc', '<u4'), ('sent', '<u2')])
        signatures.sort(axis=0)
        hashes_per_worker = self.config.hash_config.max // self.finder_workers
        left_idx = 0
        for hash_i in range(self.finder_workers):
            with self.output_folder.open(f'{hash_i:04d}/{rank:05d}{ExtensionHelperSD.stage_1_signature}', mode='wb') as f:
                right_hash = (hash_i + 1) * hashes_per_worker if hash_i != self.finder_workers - 1 else self.config.hash_config.max
                right_idx = left_idx + signatures['hash'][left_idx:].searchsorted(right_hash, side='right')
                if right_idx > left_idx:
                    if self.output_folder.is_local():
                        signatures[left_idx:right_idx].tofile(f)
                    else:
                        f.write(signatures[left_idx:right_idx].tobytes())
                left_idx = right_idx
                if right_idx >= len(signatures):
                    break

    def get_hashes(self, doc: Document, doc_idx: int) -> list[None] | list[tuple[int, int, int]]:
        sentences = self.tokenizer.sent_tokenize(doc.text) if self.config.split_sentences else doc.text.splitlines()
        if len(sentences) < self.config.n_sentences:
            return []
        sentences_tokens = [simplify_text(sent, self.config.norm_config) for sent in sentences]
        n_sent_grams: list = [' '.join(x) for x in ngrams(sentences_tokens, self.config.n_sentences)]
        hashes = [(self.hash_fc(n_sent_gram), doc_idx, sentence_idx) for (sentence_idx, n_sent_gram) in enumerate(n_sent_grams) if n_sent_gram.strip() != '']
        return hashes

    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1):
        signatures = []
        for (doc_idx, doc) in enumerate(data):
            with self.stats.time_stats:
                self.stat_update(StatHints.total)
                signatures.extend(self.get_hashes(doc, doc_idx))
        self.save_hashes(rank, signatures)

def read_sigs(file: AbstractBufferedFile, file_id: int, config: SentDedupConfig, index_file: bool=False, lines_to_buffer: int=5) -> Generator[HashSig, None, None]:
    line_format = f'{config.hash_config.struct_format}IH' if not index_file else config.hash_config.struct_format
    file_stem = Path(file.path).name.removesuffix(ExtensionHelperSD.stage_1_signature)
    last = None
    with file as f:
        for data in read_tuples_from_file(f, line_format, lines_to_buffer=lines_to_buffer):
            assert last is None or data[0] >= last, f'Hash order error. f.tell()={f.tell()!r}, data[0]={data[0]!r}, last={last!r}'
            last = data[0]
            yield (HashSig(hash_value=data[0], doc_id=-1, file_id=file_id, sent_id=-1, file_stem=file_stem) if index_file else HashSig(file_id=file_id, hash_value=data[0], doc_id=data[1], sent_id=data[2], file_stem=file_stem))

class SentenceFindDedups(PipelineStep):
    type = '🫂 - DEDUPS'
    name = '💥 sentence-deduplication stage 2'

    def __init__(self, data_folder: DataFolderLike, output_folder: DataFolderLike, index_folder: DataFolderLike=None, config: SentDedupConfig=None, lines_to_buffer: int=5):
        super().__init__()
        self.data_folder = get_datafolder(data_folder)
        self.output_folder = get_datafolder(output_folder)
        self.index_folder = get_datafolder(index_folder) if index_folder else None
        self.config = config or SentDedupConfig()
        self.lines_to_buffer = lines_to_buffer

    def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1):
        with self.stats.time_stats:
            if world_size == 1:
                sig_files = self.data_folder.list_files(glob_pattern='*/*' + ExtensionHelperSD.stage_1_signature)
                if any((not sig_file.startswith('0000/') for sig_file in sig_files)):
                    raise ValueError(f'world_size={world_size!r} but found sig files for different hash buckets. Set tasks=finder_workers')
            else:
                sig_files = self.data_folder.list_files(subdirectory=f'{rank:04d}', glob_pattern=ExtensionHelperSD.stage_1_signature)
            sig_readers = [read_sigs(file, file_i, config=self.config, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(sig_files))]
            index_files = self.index_folder.list_files() if self.index_folder else None
            if index_files:
                logger.info(f"Found index file(s): {', '.join(index_files)}")
                sig_readers.extend([read_sigs(file, len(sig_readers) + file_i, config=self.config, index_file=True, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(index_files))])
            logger.info(f'Initializing pq with {len(sig_readers)} files.')
            with ThreadPoolExecutor() as executor:
                pq = [x for x in tqdm(executor.map(lambda x: next(x, None), sig_readers), total=len(sig_readers), desc='Initializing pq...') if x]
            heapq.heapify(pq)
            logger.info('PQ initialized.')
            output_mg = self.output_folder.get_output_file_manager(mode='wb')
            packer = struct.Struct('<IH')
            last: HashSig | None = None
            while pq:
                v: HashSig = heapq.heappop(pq)
                if last and last.hash_value == v.hash_value and (not v.is_from_index()):
                    out_filename = f'{rank:04d}/{v.file_stem}{ExtensionHelperSD.stage_2_duplicates}'
                    if last.is_from_index() or not index_files or (not self.config.only_dedup_in_index):
                        output_mg.write(out_filename, packer.pack(v.doc_id, v.sent_id))
                last = v
                new_v = next(sig_readers[v.file_id], None)
                if new_v:
                    heapq.heappush(pq, new_v)
        output_mg.close()

class SentenceDedupFilter(PipelineStep):
    type = '🫂 - DEDUPS'
    name = '💥 sentence-deduplication stage 3'

    def __init__(self, data_folder: DataFolderLike, config: SentDedupConfig=None, exclusion_writer: DiskWriter=None, language: str=Languages.english):
        super().__init__()
        self.data_folder = get_datafolder(data_folder)
        self.config = config or SentDedupConfig()
        self.tokenizer = load_word_tokenizer(language)
        self.exclusion_writer = exclusion_writer
        self.language = language

    def read_duplicates(self, file: BinaryIO) -> np.ndarray:
        return read_np_from_file(file, dtype=np.dtype([('doc', '<u4'), ('sent', '<u2')]), is_local_file=self.data_folder.is_local())

    def remove_dup_sentences(self, doc: Document, du_lines: np.ndarray) -> tuple[str, str]:
        sentence_spans = list(self.tokenizer.span_tokenize(doc.text)) if self.config.split_sentences else doc.text.splitlines()
        kept_sentences = []
        original_formatted = []
        last_s = 0
        du_line_idx = 0
        drop_until = 0
        removed_span = []
        for (idx, s) in enumerate(sentence_spans):
            line_text = doc.text[last_s:s[1]] if self.config.split_sentences else s
            if du_line_idx < len(du_lines):
                if du_lines[du_line_idx] < idx:
                    raise ValueError('Error with duplicate line index')
                elif du_lines[du_line_idx] == idx:
                    drop_until = idx + self.config.n_sentences
                    du_line_idx += 1
            if idx >= drop_until:
                if removed_span:
                    original_formatted.append('<<<')
                    if self.config.min_words_to_remove_span > 0 and len(self.tokenizer.word_tokenize('\n'.join(removed_span))) < self.config.min_words_to_remove_span:
                        kept_sentences.extend(removed_span)
                    removed_span.clear()
                kept_sentences.append(line_text)
            elif not removed_span:
                removed_span.append(line_text)
                original_formatted.append('>>>')
            original_formatted.append(line_text)
            if self.config.split_sentences:
                last_s = s[1]
        if removed_span:
            original_formatted.append('<<<')
            if self.config.min_words_to_remove_span > 0 and len(self.tokenizer.word_tokenize('\n'.join(removed_span))) < self.config.min_words_to_remove_span:
                kept_sentences.extend(removed_span)
        if len(kept_sentences) < len(sentence_spans):
            self.stat_update('removed_sentences', value=len(sentence_spans) - len(kept_sentences))
        self.stat_update('original_sentences', value=len(sentence_spans))
        merge_char = '' if self.config.split_sentences else '\n'
        return (merge_char.join(kept_sentences).lstrip(), merge_char.join(original_formatted))

    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        folders = self.data_folder.list_files(include_directories=True, recursive=False)
        files = [f for f in [f'{folder}/{rank:05d}{ExtensionHelperSD.stage_2_duplicates}' for folder in folders] if self.data_folder.exists(f)]
        logger.info(f'Loading duplicate indexes from {len(files)} results files.')
        all_dups = np.array([], dtype=[('doc', '<u4'), ('sent', '<u2')])
        if files:
            with ThreadPoolExecutor() as pool:
                all_dups = np.concatenate(list(tqdm(pool.map(self.read_duplicates, self.data_folder.open_files(files)), total=len(files))), axis=0)
            all_dups.sort()
        (_, doc_starts) = np.unique(all_dups['doc'], return_index=True)
        logger.info('Loaded duplicate indexes.')
        dups_doc_i = 0
        with self.exclusion_writer if self.exclusion_writer else contextlib.nullcontext() as writer:
            for (doc_idx, doc) in enumerate(data):
                self.stat_update(StatHints.total)
                with self.stats.time_stats:
                    if dups_doc_i >= len(doc_starts) or all_dups['doc'][doc_starts[dups_doc_i]] > doc_idx:
                        (filtered_text, original_formatted) = (doc.text, None)
                    else:
                        (sents_span_l, sents_span_r) = (doc_starts[dups_doc_i], doc_starts[dups_doc_i + 1] if dups_doc_i + 1 < len(doc_starts) else None)
                        (filtered_text, original_formatted) = self.remove_dup_sentences(doc, all_dups['sent'][sents_span_l:sents_span_r])
                        dups_doc_i += 1
                if (filtered_text == doc.text or ((self.config.min_doc_words <= 0 or len(self.tokenizer.word_tokenize(filtered_text)) >= self.config.min_doc_words) and (self.config.min_num_sentences <= 0 or len(split_into_parts(filtered_text, SPLIT_TEXT_SENTENCES, self.language)) >= self.config.min_num_sentences))) and filtered_text:
                    self.update_doc_stats(doc)
                    if not filtered_text == doc.text and writer:
                        writer.write(dataclasses.replace(doc, text=original_formatted), rank=rank)
                    doc.text = filtered_text
                    yield doc
                elif writer:
                    doc.text = original_formatted
                    writer.write(doc, rank=rank)

class SentenceDedupBuildIndex(PipelineStep):
    type = '🫂 - DEDUP'
    name = '💥 sentence-deduplication build index'

    def __init__(self, data_folder: DataFolderLike, output_folder: DataFolderLike, index_name: str, config: SentDedupConfig=None, lines_to_buffer: int=5):
        super().__init__()
        self.data_folder = get_datafolder(data_folder)
        self.output_folder = get_datafolder(output_folder)
        self.index_name = index_name
        self.lines_to_buffer = lines_to_buffer
        self.config = config or SentDedupConfig()

    def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1):
        assert world_size == 1, 'SentenceDedupBuildIndex can only run on a single worker.'
        with self.stats.time_stats:
            sig_files = self.data_folder.list_files(glob_pattern=ExtensionHelperSD.stage_1_signature)
            sig_readers = [read_sigs(file, file_i, self.config, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(sig_files))]
            pq = [next(sig_reader) for sig_reader in sig_readers]
            heapq.heapify(pq)
            with self.output_folder.open(f'{self.index_name}.{ExtensionHelperSD.index}', mode='wb') as out_f:
                last = None
                while pq:
                    v: HashSig = heapq.heappop(pq)
                    if last != v.hash_value:
                        out_f.write(struct.pack(f'<{self.config.hash_config.struct_format}', v.hash_value))
                    last = v.hash_value
                    new_v = next(sig_readers[v.file_id], None)
                    if new_v:
                        heapq.heappush(pq, new_v)

# File: datatrove-main/src/datatrove/pipeline/dedup/url_dedup.py
""""""
import contextlib
import heapq
import struct
from concurrent.futures import ThreadPoolExecutor
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import BinaryIO, Callable, Generator
import numpy as np
from fsspec.spec import AbstractBufferedFile
from tqdm import tqdm
from datatrove.data import Document, DocumentsPipeline
from datatrove.io import DataFolderLike, get_datafolder
from datatrove.pipeline.base import PipelineStep
from datatrove.utils.binaryio import read_np_from_file, read_tuples_from_file
from datatrove.utils.hashing import HashConfig, create_hash_func
from datatrove.utils.logging import logger
from datatrove.utils.typeshelper import ExtensionHelperSD, StatHints
from ..writers.disk_base import DiskWriter

@dataclass
class UrlDedupConfig:
    url_normalizer: Callable[[str], str] | None = None
    document_priority: Callable[[Document], int] | None = None
    hash_config: HashConfig = field(default_factory=HashConfig)
    only_dedup_in_index: bool = True

@dataclass(order=False)
class HashSig:
    hash_value: int
    priority: int
    doc_id: int
    file_id: int
    file_stem: str

    def is_from_index(self):
        return self.doc_id == -1 and self.priority == 1

    def __lt__(self, other: 'HashSig') -> bool:
        return (self.hash_value, -self.priority, self.doc_id) < (other.hash_value, -other.priority, other.doc_id)

def get_sig_dtype(config: HashConfig) -> np.dtype:
    return np.dtype([('hash', config.np_dtype), ('priority', '<u2'), ('doc', '<u4')])

class UrlDedupSignature(PipelineStep):
    type = '🫂 - DEDUPS'
    name = '💥 url-deduplication stage 1'

    def __init__(self, output_folder: DataFolderLike, finder_workers: int=1, config: UrlDedupConfig | None=None):
        super().__init__()
        self.output_folder = get_datafolder(output_folder)
        if finder_workers <= 0:
            raise ValueError('finder_workers must be >= 1')
        elif finder_workers > 1:
            logger.warning(f'Remember to also set the number of tasks of the finder block to finder_workers={finder_workers!r}!')
        self.finder_workers = finder_workers
        self.config = config or UrlDedupConfig()
        self.hash_fc = create_hash_func(self.config.hash_config)

    def save_hashes(self, rank: int, signatures):
        sig_dtype = get_sig_dtype(self.config.hash_config)
        priority_max = np.iinfo(sig_dtype['priority']).max
        assert all((sig[1] >= 1 and sig[1] <= priority_max for sig in signatures)), f'priority must be between 1 and {priority_max}'
        signatures = np.array(signatures, dtype=sig_dtype)
        signatures['priority'] = -signatures['priority']
        signatures.sort(axis=0)
        signatures['priority'] = -signatures['priority']
        hashes_per_worker = self.config.hash_config.max // self.finder_workers
        left_idx = 0
        for hash_i in range(self.finder_workers):
            with self.output_folder.open(f'{hash_i:04d}/{rank:05d}{ExtensionHelperSD.stage_1_signature}', mode='wb') as f:
                right_hash = (hash_i + 1) * hashes_per_worker if hash_i != self.finder_workers - 1 else np.iinfo(np.uint64).max
                right_idx = left_idx + signatures['hash'][left_idx:].searchsorted(right_hash, side='right')
                if right_idx > left_idx:
                    bts = signatures[left_idx:right_idx].tobytes()
                    f.write(bts)
                left_idx = right_idx
                if right_idx >= len(signatures):
                    break

    def get_hashes(self, doc: Document, doc_idx: int) -> list[None] | list[tuple[int, int, int]]:
        normalized_url: str = self.config.url_normalizer(doc.metadata['url']) if self.config.url_normalizer else doc.metadata['url']
        priority = self.config.document_priority(doc) if self.config.document_priority else 1
        hashes = [(self.hash_fc(normalized_url), priority, doc_idx)]
        return hashes

    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1):
        signatures = []
        for (doc_idx, doc) in enumerate(data):
            with self.stats.time_stats:
                self.stat_update(StatHints.total)
                signatures.extend(self.get_hashes(doc, doc_idx))
        self.save_hashes(rank, signatures)

def read_sigs(file: AbstractBufferedFile, file_id: int, hash_config: HashConfig, index_file: bool=False, lines_to_buffer: int=5) -> Generator[HashSig, None, None]:
    last = None
    line_format = f'{hash_config.struct_format}HI' if not index_file else hash_config.struct_format
    with file as f:
        file_stem = Path(f.path).name.removesuffix(ExtensionHelperSD.stage_1_signature)
        for data in read_tuples_from_file(f, line_format, lines_to_buffer=lines_to_buffer):
            assert last is None or data[0] >= last, f'Hash order error. f.tell()={f.tell()!r}, data[0]={data[0]!r}, last={last!r}'
            last = data[0]
            yield (HashSig(hash_value=data[0], doc_id=-1, file_id=file_id, priority=-1, file_stem=file_stem) if index_file else HashSig(file_id=file_id, file_stem=file_stem, hash_value=data[0], priority=data[1], doc_id=data[2]))

class UrlFindDedups(PipelineStep):
    type = '🫂 - DEDUPS'
    name = '💥 url-deduplication stage 2'

    def __init__(self, data_folder: DataFolderLike, output_folder: DataFolderLike, index_folder: DataFolderLike | None=None, config: UrlDedupConfig | None=None, lines_to_buffer: int=5):
        super().__init__()
        self.data_folder = get_datafolder(data_folder)
        self.output_folder = get_datafolder(output_folder)
        self.index_folder = get_datafolder(index_folder) if index_folder else None
        self.config = config or UrlDedupConfig()
        self.lines_to_buffer = lines_to_buffer

    def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1):
        with self.stats.time_stats:
            if world_size == 1:
                sig_files = self.data_folder.list_files(glob_pattern='*/*' + ExtensionHelperSD.stage_1_signature)
                if any((not sig_file.startswith('0000/') for sig_file in sig_files)):
                    raise ValueError(f'world_size={world_size!r} but found sig files for different hash buckets. Set tasks=finder_workers')
            else:
                sig_files = self.data_folder.list_files(subdirectory=f'{rank:04d}', glob_pattern=ExtensionHelperSD.stage_1_signature)
            sig_readers = [read_sigs(file, file_i, self.config.hash_config, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(sig_files))]
            index_files = self.index_folder.list_files() if self.index_folder else None
            if index_files:
                logger.info(f"Found index file(s): {', '.join(index_files)}")
                sig_readers.extend([read_sigs(file, len(sig_readers) + file_i, self.config.hash_config, index_file=True, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(index_files))])
            logger.info(f'Initializing pq with {len(sig_readers)} files.')
            with ThreadPoolExecutor() as executor:
                pq = [x for x in tqdm(executor.map(lambda x: next(x, None), sig_readers), total=len(sig_readers), desc='Initializing pq...') if x]
            heapq.heapify(pq)
            logger.info('PQ initialized.')
            output_mg = self.output_folder.get_output_file_manager(mode='wb')
            last: HashSig | None = None
            packer = struct.Struct('<I')
            while pq:
                v: HashSig = heapq.heappop(pq)
                if last and last.hash_value == v.hash_value and (not v.is_from_index()):
                    out_filename = f'{rank:04d}/{v.file_stem}{ExtensionHelperSD.stage_2_duplicates}'
                    if not index_files or last.is_from_index() or (not self.config.only_dedup_in_index):
                        doc_id_bytes = packer.pack(v.doc_id)
                        output_mg.write(out_filename, doc_id_bytes)
                last = v
                new_v = next(sig_readers[v.file_id], None)
                if new_v:
                    heapq.heappush(pq, new_v)
        output_mg.close()

class UrlDedupFilter(PipelineStep):
    type = '🫂 - DEDUPS'
    name = '💥 url-deduplication stage 3'

    def __init__(self, data_folder: DataFolderLike, config: UrlDedupConfig | None=None, exclusion_writer: DiskWriter | None=None):
        super().__init__()
        self.data_folder = get_datafolder(data_folder)
        self.config = config or UrlDedupConfig()
        self.exclusion_writer = exclusion_writer

    def read_duplicates(self, file: BinaryIO, dup_dtype: np.dtype) -> np.ndarray:
        with file as f:
            return read_np_from_file(f, dtype=dup_dtype, is_local_file=self.data_folder.is_local())

    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1):
        folders = self.data_folder.list_files(include_directories=True, recursive=False)
        files = [f for f in [f'{folder}/{rank:05d}{ExtensionHelperSD.stage_2_duplicates}' for folder in folders] if self.data_folder.exists(f)]
        logger.info(f'Loading duplicate indexes from {len(files)} results files.')
        dup_dtype = get_sig_dtype(self.config.hash_config)[2]
        all_dups = np.array([], dtype=dup_dtype)
        if files:
            with ThreadPoolExecutor() as pool:
                read_partial = partial(self.read_duplicates, dup_dtype=dup_dtype)
                all_dups = np.concatenate(list(tqdm(pool.map(read_partial, self.data_folder.open_files(files)), total=len(files))), axis=0)
            all_dups.sort()
        logger.info('Loaded duplicate indexes.')
        dups_doc_i = 0
        with self.exclusion_writer if self.exclusion_writer else contextlib.nullcontext() as writer:
            with self.stats.time_stats:
                for (doc_idx, doc) in enumerate(data):
                    self.stat_update(StatHints.total)
                    with self.stats.time_stats:
                        if dups_doc_i < all_dups.shape[0] and all_dups[dups_doc_i] == doc_idx:
                            if writer:
                                writer.write(doc, rank=rank)
                            self.stat_update(StatHints.dropped)
                            dups_doc_i += 1
                        else:
                            self.stat_update(StatHints.forwarded)
                            self.update_doc_stats(doc)
                            yield doc

class UrlDedupBuildIndex(PipelineStep):
    type = '🫂 - DEDUP'
    name = '💥 url-deduplication build index'

    def __init__(self, data_folder: DataFolderLike, output_folder: DataFolderLike, index_name: str, config: UrlDedupConfig | None=None, lines_to_buffer: int=5):
        super().__init__()
        self.data_folder = get_datafolder(data_folder)
        self.output_folder = get_datafolder(output_folder)
        self.index_name = index_name
        self.lines_to_buffer = lines_to_buffer
        self.config = config or UrlDedupConfig()

    def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1):
        assert world_size == 1, 'UrlDedupBuildIndex can only run on a single worker.'
        with self.stats.time_stats:
            sig_files = self.data_folder.list_files(glob_pattern=ExtensionHelperSD.stage_1_signature)
            sig_readers = [read_sigs(file, file_i, self.config.hash_config, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(sig_files))]
            pq = [next(sig_reader) for sig_reader in sig_readers]
            heapq.heapify(pq)
            with self.output_folder.open(f'{self.index_name}.{ExtensionHelperSD.index}', mode='wb') as out_f:
                last = None
                while pq:
                    v: HashSig = heapq.heappop(pq)
                    if last != v.hash_value:
                        out_f.write(struct.pack(f'<{self.config.hash_config.struct_format}', v.hash_value))
                    last = v.hash_value
                    new_v = next(sig_readers[v.file_id], None)
                    if new_v:
                        heapq.heappush(pq, new_v)

# File: datatrove-main/src/datatrove/pipeline/extractors/base.py
from abc import abstractmethod
from concurrent.futures import ThreadPoolExecutor
from datatrove.data import DocumentsPipeline
from datatrove.pipeline.base import PipelineStep
from datatrove.utils.logging import logger
from datatrove.utils.typeshelper import StatHints

class BaseExtractor(PipelineStep):
    type = '🛢 - EXTRAC'

    @abstractmethod
    def __init__(self, timeout: float=0.1):
        super().__init__()
        self.timeout = timeout

    @abstractmethod
    def extract(self, text: str) -> str:
        pass

    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        with ThreadPoolExecutor() as executor:
            for doc in data:
                self.stat_update(StatHints.total)
                with self.track_time():
                    future = executor.submit(self.extract, doc.text)
                    try:
                        doc.text = future.result(timeout=self.timeout)
                    except TimeoutError:
                        logger.warning('⏰ Timeout while cleaning record text. Skipping record.')
                        continue
                    except Exception as e:
                        logger.warning(f'❌ Error "{e}" while cleaning record text. Skipping record.')
                        continue
                if doc.text:
                    self.stat_update(StatHints.forwarded)
                    self.update_doc_stats(doc)
                    yield doc
                else:
                    self.stat_update(StatHints.dropped)

# File: datatrove-main/src/datatrove/pipeline/extractors/modular.py
import re
from .base import BaseExtractor

class ReadabilityInscriptis(BaseExtractor):
    _requires_dependencies = ['inscriptis', ('readability', 'readability-lxml @ git+https://github.com/huggingface/python-readability.git@speedup')]

    def __init__(self, max_new_lines: int=2, min_text_length=25, min_text_score=20, timeout: float=0.1):
        from inscriptis.css_profiles import CSS_PROFILES
        from inscriptis.model.config import ParserConfig
        super().__init__(timeout)
        self.min_text_length = min_text_length
        self.min_text_score = min_text_score
        self.new_line_chars = '\n' * max_new_lines
        self.regex_excessive_lines = re.compile('(' + self.new_line_chars + '\n+)')
        self._parser_config = ParserConfig(css=CSS_PROFILES['strict'])

    def extract(self, text: str) -> str:
        from inscriptis import get_text
        from readability import Document as _Document
        parsed_doc = _Document(text, min_text_length=self.min_text_length, min_text_score=self.min_text_score)
        clean_html = parsed_doc.summary(html_partial=True)
        text = get_text(clean_html, self._parser_config).strip()
        return self.regex_excessive_lines.sub(self.new_line_chars, text)

# File: datatrove-main/src/datatrove/pipeline/extractors/trafilatura.py
from .base import BaseExtractor

class Trafilatura(BaseExtractor):
    name = '⛏ Trafilatura'
    _requires_dependencies = ['trafilatura']

    def __init__(self, favour_precision: bool=True, include_images: bool=False, timeout: float=0.1, deduplicate: bool=True, **kwargs):
        super().__init__(timeout)
        self.favour_precision = favour_precision
        self.include_images = include_images
        self.deduplicate = deduplicate
        self.kwargs = kwargs
        if self.include_images:
            raise NotImplementedError

    def extract(self, text: str) -> str:
        from trafilatura import extract
        return extract(text, favor_precision=self.favour_precision, include_comments=False, deduplicate=self.deduplicate, **self.kwargs)

# File: datatrove-main/src/datatrove/pipeline/filters/__init__.py
from .c4_filters import C4BadWordsFilter, C4ParagraphFilter, C4QualityFilter
from .fasttext_filter import FastTextClassifierFilter
from .fineweb_quality_filter import FineWebQualityFilter
from .gopher_quality_filter import GopherQualityFilter
from .gopher_repetition_filter import GopherRepetitionFilter
from .lambda_filter import LambdaFilter
from .language_filter import LanguageFilter
from .regex_filter import RegexFilter
from .sampler_filter import SamplerFilter
from .unigram_log_probs import UnigramLogProbFilter
from .url_filter import URLFilter

# File: datatrove-main/src/datatrove/pipeline/filters/base_filter.py
import contextlib
from abc import ABC, abstractmethod
from typing import List, Tuple
from loguru import logger
from datatrove.data import Document, DocumentsPipeline
from datatrove.pipeline.base import PipelineStep
from datatrove.pipeline.writers.disk_base import DiskWriter
from datatrove.utils.batching import batched
from datatrove.utils.typeshelper import StatHints

def get_filter_result(res):
    (result, reason) = (res, None)
    if isinstance(result, tuple):
        (result, reason) = res
    return (result, reason)

class BaseFilter(PipelineStep, ABC):
    type = '🔻 - FILTER'

    def __init__(self, exclusion_writer: DiskWriter=None, batch_size: int=1):
        super().__init__()
        self.exclusion_writer = exclusion_writer
        self.batch_size = batch_size
        if self.batch_size > 1 and type(self).filter_batch == BaseFilter.filter_batch:
            logger.warning(f'batch_size={batch_size!r} > 1 but {self} does not implement a custom filter_batch method.')

    @abstractmethod
    def filter(self, doc: Document) -> bool | Tuple[bool, str]:
        raise NotImplementedError

    def filter_batch(self, batch: List[Document]) -> List[bool | Tuple[bool, str]]:
        return list(map(self.filter, batch))

    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        with self.exclusion_writer if self.exclusion_writer else contextlib.nullcontext() as writer:
            for batch in batched(data, self.batch_size):
                if self.batch_size > 1:
                    self.stat_update('batches')
                with self.track_time('batch' if self.batch_size > 1 else None):
                    batch_filter_result = self.filter_batch(batch)
                for (doc, doc_filter_result) in zip(batch, batch_filter_result):
                    self.stat_update(StatHints.total)
                    (filter_result, reason) = get_filter_result(doc_filter_result)
                    if filter_result:
                        self.stat_update(StatHints.forwarded)
                        self.update_doc_stats(doc)
                        yield doc
                    else:
                        self.stat_update(StatHints.dropped)
                        if reason:
                            self.stat_update(f'dropped_{reason}')
                        if self.exclusion_writer:
                            if reason:
                                doc.metadata['filter_reason'] = reason
                            writer.write(doc, rank)

# File: datatrove-main/src/datatrove/pipeline/filters/c4_filters.py
import heapq
import re
from numpy.random import default_rng
from datatrove.data import Document
from datatrove.io import cached_asset_path_or_download
from datatrove.pipeline.filters.base_filter import BaseFilter
from datatrove.pipeline.writers.disk_base import DiskWriter
from datatrove.utils.typeshelper import Languages
from datatrove.utils.word_tokenizers import load_word_tokenizer
CITATION_REGEX = re.compile('\\[\\d*]|\\[edit]|\\[citation needed]')
END_PUNCTUATION = ('.', '?', '!', '"', "'")
ELLIPSIS = '...'
POLICY_SUBSTRINGS = ['terms of use', 'privacy policy', 'cookie policy', 'uses cookies', 'use of cookies', 'use cookies']

class C4QualityFilter(BaseFilter):
    name = '⛰ C4 Quality'

    def __init__(self, exclusion_writer: DiskWriter=None, split_paragraph: bool=True, remove_citations: bool=True, filter_no_terminal_punct: bool=True, min_num_sentences: int=5, min_words_per_line: int=3, max_word_length: int=1000, filter_lorem_ipsum: bool=True, filter_javascript: bool=True, filter_curly_bracket: bool=True, filter_policy: bool=True, language: str=Languages.english):
        super().__init__(exclusion_writer)
        self.split_paragraph = split_paragraph
        self.remove_citations = remove_citations
        self.filter_no_terminal_punct = filter_no_terminal_punct
        self.min_num_sentences = min_num_sentences
        self.min_words_per_line = min_words_per_line
        self.max_word_length = max_word_length
        self.filter_lorem_ipsum = filter_lorem_ipsum
        self.filter_javascript = filter_javascript
        self.filter_curly_bracket = filter_curly_bracket
        self.filter_policy = filter_policy
        self.tokenizer = load_word_tokenizer(language)

    def filter(self, doc: Document) -> bool | tuple[bool, str]:
        lines = doc.text.splitlines() if self.split_paragraph else self.tokenizer.sent_tokenize(doc.text)
        num_sentences = 0
        kept_lines = []
        for line in lines:
            line = line.strip()
            words = line.split()
            self.stat_update('line-total')
            if self.max_word_length != -1 and any((len(word) > self.max_word_length for word in words)):
                self.stat_update('line-filter-too_long_word')
                continue
            if self.remove_citations:
                line = CITATION_REGEX.sub('', line)
            if self.filter_no_terminal_punct and (not line.endswith(END_PUNCTUATION) or line.endswith(ELLIPSIS)):
                self.stat_update('line-filter-no_terminal_punc')
                continue
            if len(words) < self.min_words_per_line:
                self.stat_update('line-filter-too_few_words')
                continue
            line_l = line.lower()
            if self.filter_lorem_ipsum and 'lorem ipsum' in line_l:
                return (False, 'lorem_ipsum')
            if self.filter_javascript and 'javascript' in line_l:
                self.stat_update('line-filter-javascript')
                continue
            if self.filter_curly_bracket and '{' in line:
                return (False, 'curly_bracket')
            if self.filter_policy and any((p in line_l for p in POLICY_SUBSTRINGS)):
                self.stat_update('line-filter-policy')
                continue
            if self.min_num_sentences != -1:
                num_sentences += len(self.tokenizer.sent_tokenize(line)) if self.split_paragraph else 1
            kept_lines.append(line)
            self.stat_update('line-kept')
        if num_sentences < self.min_num_sentences:
            return (False, 'too_few_sentences')
        doc.text = ('\n' if self.split_paragraph else ' ').join(kept_lines).strip()
        return True

class C4ParagraphFilter(BaseFilter):
    name = '⛰ C4 Paragraph'

    def __init__(self, exclusion_writer: DiskWriter=None):
        super().__init__(exclusion_writer)
        self.min_paragraphs = 3
        self.min_paragraph_len = 200
        self.line_delimiter = '\n'

    def paragraph_filter(self, page):
        lines = page.split(self.line_delimiter)
        if len(lines) < self.min_paragraphs or min(heapq.nlargest(3, [len(line) for line in lines])) < self.min_paragraph_len:
            return False
        return True

    def filter(self, doc: Document) -> bool | tuple[bool, str]:
        if not self.paragraph_filter(doc.text):
            return (False, f'< {self.min_paragraphs} paragraphs')
        return True
_EN_BADWORDS_URL = 'https://raw.githubusercontent.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/25e679f03d96baa721cde20db9944649e8d0a844/en'
_BADWORDS_URL = 'https://raw.githubusercontent.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/5faf2ba42d7b1c0977169ec3611df25a3c08eb13/'
_BADWORDS_LANGS = ['ar', 'cs', 'da', 'de', 'en', 'eo', 'es', 'fa', 'fi', 'fil', 'fr', 'fr-CA-u-sd-caqc', 'hi', 'hu', 'it', 'ja', 'kab', 'ko', 'nl', 'no', 'pl', 'pt', 'ru', 'sv', 'th', 'tlh', 'tr', 'zh']
_BADWORDS_ALLOWLIST = {'ja': {'sm', 'グロ', '女の子'}, 'zh': {'性'}}

class C4BadWordsFilter(BaseFilter):
    name = '⛰ C4 Badwords'

    def __init__(self, keep_fraction: float=0.0, fail_on_missing_language: bool=True, seed: int=None, default_language: str='en', exclusion_writer: DiskWriter=None):
        super().__init__(exclusion_writer)
        self.keep_fraction = keep_fraction
        self.fail_on_missing_language = fail_on_missing_language
        self._badwords_regex: dict[str, re.Pattern] = {}
        self.uniform = default_rng(seed).uniform
        self.default_language = default_language

    def _get_badwords(self, lang: str):
        if lang not in self._badwords_regex:
            if lang not in _BADWORDS_LANGS:
                if self.fail_on_missing_language:
                    raise ValueError(f'There is not badwords list available for "{lang}". Set fail_on_missing_language=False to continue anyway.')
                else:
                    return None
            local_path = cached_asset_path_or_download(_BADWORDS_URL + lang if lang != 'en' else _EN_BADWORDS_URL, namespace='filters', subfolder='c4_badwords')
            badwords: set[str] = set()
            with open(local_path, 'rt') as f:
                badwords.update((line.strip() for line in f))
            for (lang, allowlist) in _BADWORDS_ALLOWLIST.items():
                badwords -= allowlist
            words = [re.escape(w) for w in badwords]
            self._badwords_regex[lang] = re.compile('|'.join(words)) if lang in ('ja', 'th', 'zh') else re.compile('(?:\\W|^)({})(?:\\W|$)'.format('|'.join(words)))
        return self._badwords_regex[lang]

    def filter(self, doc: Document) -> bool | tuple[bool, str]:
        lang: str = doc.metadata.get('language', self.default_language)
        badwords_regex = self._get_badwords(lang)
        if badwords_regex is None:
            self.stat_update('missing_badwords_lang', f'missing_badwords_lang_{lang}')
            return True
        badwords_found = badwords_regex.search(doc.text.lower())
        if badwords_found is not None:
            self.stat_update('documents_with_badwords', f'documents_with_badwords_{lang}')
            if self.keep_fraction > 0.0 and self.uniform() < self.keep_fraction:
                self.stat_update('document_kept_with_badwords', f'document_kept_with_badwords_{lang}')
                return True
            self.stat_update(f'document_removed_with_badwords_{lang}')
            return (False, 'document_removed_with_badwords')
        return True

# File: datatrove-main/src/datatrove/pipeline/filters/fasttext_filter.py
from collections import defaultdict
from typing import Tuple
import numpy as np
from datatrove.data import Document
from datatrove.io import cached_asset_path_or_download
from datatrove.pipeline.filters.base_filter import BaseFilter
from datatrove.pipeline.writers.disk_base import DiskWriter
from datatrove.utils.text import SPLIT_TEXT_DOCUMENTS, split_into_parts

class FastTextClassifierFilter(BaseFilter):
    name = '🤖 fastText'
    _requires_dependencies = [('fasttext', 'fasttext-wheel'), 'fasteners']

    def __init__(self, model_url: str, keep_labels: Tuple[str, float] | list[Tuple[str, float]] | None=None, remove_labels: Tuple[str, float] | list[Tuple[str, float]] | None=None, save_labels_in_metadata: bool=True, exclusion_writer: DiskWriter | None=None, newline_replacement='', filter_mode: str=SPLIT_TEXT_DOCUMENTS):
        super().__init__(exclusion_writer)
        self.model_url = model_url
        self.keep_labels = keep_labels
        self.remove_labels = remove_labels
        self.filter_mode = filter_mode
        if keep_labels and remove_labels:
            raise ValueError('You can only supply one of `keep_labels` or `remove_labels`.')
        self.newline_replacement = newline_replacement
        if keep_labels and isinstance(keep_labels[0], str):
            self.keep_labels = [keep_labels]
        if remove_labels and isinstance(remove_labels[0], str):
            self.remove_labels = [remove_labels]
        self.save_labels_in_metadata = save_labels_in_metadata
        self._model = None

    @property
    def model(self):
        if self._model is None:
            from fasttext.FastText import _FastText
            model_file = cached_asset_path_or_download(self.model_url, namespace='filters', subfolder='fasttext', desc='fast-text model')
            self._model = _FastText(model_file)
            available_labels = [x.removeprefix('__label__') for x in self._model.labels]
            for (label, _) in self.keep_labels or [] + self.remove_labels or []:
                if label not in available_labels:
                    raise ValueError(f"Label '{label}' passed as keep_labels or remove_labels is not available in this FastText model. Available labels: {available_labels}")
        return self._model

    def filter(self, doc: Document) -> bool:

        def check_label_scores(unit_scores):
            if self.keep_labels:
                return any((unit_scores.get(f'__label__{label}', -9000000000.0) >= min_score for (label, min_score) in self.keep_labels))
            else:
                return not self.remove_labels or not any((unit_scores.get(f'__label__{label}', -9000000000.0) >= min_score for (label, min_score) in self.remove_labels))
        units = split_into_parts(doc.text, mode=self.filter_mode)
        kept_spans = []
        label_scores = defaultdict(list)
        for unit in units:
            (labels, scores) = self.model.predict(unit.strip().replace('\n', self.newline_replacement), k=-1)
            if self.save_labels_in_metadata:
                for (label, score) in zip(labels, scores):
                    label_scores[label].append(score)
            if check_label_scores(dict(zip(labels, scores))):
                kept_spans.append(unit)
                self.stat_update('kept_span')
            else:
                self.stat_update('removed_span')
        doc.text = ''.join(kept_spans)
        if self.save_labels_in_metadata:
            doc.metadata.update({label: np.mean(scores).item() for (label, scores) in label_scores.items()})
        return not not doc.text.strip()

# File: datatrove-main/src/datatrove/pipeline/filters/fineweb_quality_filter.py
from datatrove.pipeline.filters.base_filter import BaseFilter
from datatrove.pipeline.filters.gopher_repetition_filter import find_duplicates
from datatrove.pipeline.writers.disk_base import DiskWriter
from datatrove.utils.typeshelper import Languages
from datatrove.utils.word_tokenizers import load_word_tokenizer

class FineWebQualityFilter(BaseFilter):
    name = '🍷 FineWeb Quality'

    def __init__(self, exclusion_writer: DiskWriter=None, line_punct_thr: float=0.12, line_punct_exclude_zero: bool=False, short_line_thr: float=0.67, short_line_length: int=30, char_duplicates_ratio: float=0.01, new_line_ratio: float=0.3, language: str=Languages.english):
        super().__init__(exclusion_writer)
        self.line_punct_thr = line_punct_thr
        self.line_punct_exclude_zero = line_punct_exclude_zero
        self.short_line_threshold = short_line_thr
        self.short_line_length = short_line_length
        self.char_duplicates_ratio = char_duplicates_ratio
        self.new_line_ratio = new_line_ratio
        self.tokenizer = load_word_tokenizer(language)

    def filter(self, doc) -> bool | tuple[bool, str]:
        stop_chars = ('.', "'", '"', '!', '?')
        lines = doc.text.split('\n')
        ratio = sum((1 for line in lines if line.endswith(stop_chars))) / len(lines)
        if ratio <= self.line_punct_thr and (not (ratio == 0 and self.line_punct_exclude_zero)):
            return (False, 'line_punct_ratio')
        ratio = sum((1 for line in lines if len(line) <= self.short_line_length)) / len(lines)
        if ratio >= self.short_line_threshold:
            return (False, 'short_line_ratio')
        non_empty_lines = [line for line in lines if line.strip() != '']
        ratio = find_duplicates(non_empty_lines)[1] / len(doc.text.replace('\n', ''))
        if ratio >= self.char_duplicates_ratio:
            return (False, 'char_dup_ratio')
        words = self.tokenizer.word_tokenize(doc.text)
        new_line = doc.text.count('\n')
        if new_line / len(words) > self.new_line_ratio:
            return (False, 'list_ratio')
        return True

# File: datatrove-main/src/datatrove/pipeline/filters/gopher_quality_filter.py
import numpy as np
from datatrove.data import Document
from datatrove.pipeline.filters.base_filter import BaseFilter
from datatrove.pipeline.writers.disk_base import DiskWriter
from datatrove.utils.text import PUNCTUATION_SET
from datatrove.utils.typeshelper import Languages
from datatrove.utils.word_tokenizers import load_word_tokenizer
STOP_WORDS = ['the', 'be', 'to', 'of', 'and', 'that', 'have', 'with']

class GopherQualityFilter(BaseFilter):
    name = '🥇 Gopher Quality'

    def __init__(self, min_doc_words: int | None=50, max_doc_words: int | None=100000, min_avg_word_length: int | None=3, max_avg_word_length: int | None=10, max_symbol_word_ratio: float | None=0.1, max_bullet_lines_ratio: float | None=0.9, max_ellipsis_lines_ratio: float | None=0.3, max_non_alpha_words_ratio: float | None=0.8, min_stop_words: int | None=2, stop_words: list[str] | None=None, exclusion_writer: DiskWriter=None, language: str=Languages.english):
        super().__init__(exclusion_writer)
        self.min_doc_words = min_doc_words
        self.max_doc_words = max_doc_words
        self.min_avg_word_length = min_avg_word_length
        self.max_avg_word_length = max_avg_word_length
        self.max_symbol_word_ratio = max_symbol_word_ratio
        self.max_bullet_lines_ratio = max_bullet_lines_ratio
        self.max_ellipsis_lines_ratio = max_ellipsis_lines_ratio
        self.max_non_alpha_words_ratio = max_non_alpha_words_ratio
        self.min_stop_words = min_stop_words
        self.stop_words = set(STOP_WORDS if stop_words is None else stop_words)
        self.tokenizer = load_word_tokenizer(language)

    def filter(self, doc: Document) -> bool | tuple[bool, str]:
        text = doc.text
        words = self.tokenizer.word_tokenize(text)
        n_words = len(words)
        non_symbol_words = [w for w in words if any((ch not in PUNCTUATION_SET for ch in w))]
        n_non_symbol_words_words = len(non_symbol_words)
        if self.min_doc_words and n_non_symbol_words_words < self.min_doc_words:
            return (False, 'gopher_short_doc')
        if self.max_doc_words and n_non_symbol_words_words > self.max_doc_words:
            return (False, 'gopher_long_doc')
        avg_n_words = np.mean([len(w) for w in non_symbol_words])
        if self.min_avg_word_length and avg_n_words < self.min_avg_word_length:
            return (False, 'gopher_below_avg_threshold')
        if self.max_avg_word_length and avg_n_words > self.max_avg_word_length:
            return (False, 'gopher_above_avg_threshold')
        if self.max_symbol_word_ratio and text.count('#') / n_words > self.max_symbol_word_ratio:
            return (False, 'gopher_too_many_hashes')
        if self.max_symbol_word_ratio and (text.count('...') + text.count('…')) / n_words > self.max_symbol_word_ratio:
            return (False, 'gopher_too_many_ellipsis')
        lines = text.splitlines()
        if self.max_bullet_lines_ratio and sum((s.lstrip().startswith('•') or s.lstrip().startswith('-') for s in lines)) / len(lines) > self.max_bullet_lines_ratio:
            return (False, 'gopher_too_many_bullets')
        if self.max_ellipsis_lines_ratio and sum((s.rstrip().endswith('...') or s.rstrip().endswith('…') for s in lines)) / len(lines) > self.max_ellipsis_lines_ratio:
            return (False, 'gopher_too_many_end_ellipsis')
        if self.max_non_alpha_words_ratio and sum([any((c.isalpha() for c in w)) for w in words]) / n_words < self.max_non_alpha_words_ratio:
            return (False, 'gopher_below_alpha_threshold')
        if self.min_stop_words and sum((w in self.stop_words for w in words)) < self.min_stop_words:
            return (False, 'gopher_enough_stop_words')
        return True

# File: datatrove-main/src/datatrove/pipeline/filters/gopher_repetition_filter.py
import re
from collections import Counter
from datatrove.data import Document
from datatrove.pipeline.filters.base_filter import BaseFilter
from datatrove.pipeline.writers.disk_base import DiskWriter
from datatrove.utils.typeshelper import Languages
from datatrove.utils.word_tokenizers import load_word_tokenizer
''

def get_n_grams(words: list[str], n: int) -> list[str]:
    return [' '.join(words[i:i + n]) for i in range(len(words) - n + 1)]

def find_duplicates(x: list[str]) -> tuple[int, int]:
    unique_x = set()
    duplicate_chars = 0
    duplicate_elements = 0
    for element in x:
        if element in unique_x:
            duplicate_chars += len(element)
            duplicate_elements += 1
        else:
            unique_x.add(element)
    return (duplicate_elements, duplicate_chars)

def find_top_duplicate(x: list[str]) -> int:
    counter = Counter()
    for element in x:
        counter[element] += 1
    top_n_gram = counter.most_common(1)[0]
    return len(top_n_gram[0]) * top_n_gram[1]

def find_all_duplicate(words: list[str], n: int) -> int:
    n_words = len(words)
    unique = set()
    (repeated_chars, idx) = (0, 0)
    while idx < n_words - n + 1:
        n_gram = ''.join(words[idx:idx + n])
        if n_gram in unique:
            repeated_chars += len(n_gram)
            idx += n
        else:
            unique.add(n_gram)
            idx += 1
    assert repeated_chars <= len(''.join(words))
    return repeated_chars

class GopherRepetitionFilter(BaseFilter):
    name = '👯 Gopher Repetition'

    def __init__(self, dup_line_frac: float | None=0.3, dup_para_frac: float | None=0.3, dup_line_char_frac: float | None=0.2, dup_para_char_frac: float | None=0.2, top_n_grams: tuple[tuple[int, float]]=((2, 0.2), (3, 0.18), (4, 0.16)), dup_n_grams: tuple[tuple[int, float]]=((5, 0.15), (6, 0.14), (7, 0.13), (8, 0.12), (9, 0.11), (10, 0.1)), exclusion_writer: DiskWriter=None, language: str=Languages.english):
        super().__init__(exclusion_writer)
        self.dup_line_frac = dup_line_frac
        self.dup_para_frac = dup_para_frac
        self.dup_line_char_frac = dup_line_char_frac
        self.dup_para_char_frac = dup_para_char_frac
        self.top_n_grams = top_n_grams
        self.dup_n_grams = dup_n_grams
        self.paragraph_exp = re.compile('\\n{2,}')
        self._line_splitter = re.compile('\n+')
        self.tokenizer = load_word_tokenizer(language)

    def filter(self, doc: Document) -> bool | tuple[bool, str]:
        text = doc.text
        paragraphs = self.paragraph_exp.split(text.strip())
        (paragraphs_duplicates, char_duplicates) = find_duplicates(paragraphs)
        if self.dup_para_frac and paragraphs_duplicates / len(paragraphs) > self.dup_para_frac:
            return (False, 'dup_para_frac')
        if self.dup_para_char_frac and char_duplicates / len(text) > self.dup_para_char_frac:
            return (False, 'dup_para_char_frac')
        lines = self._line_splitter.split(text)
        (line_duplicates, char_duplicates) = find_duplicates(lines)
        if self.dup_line_frac and line_duplicates / len(lines) > self.dup_line_frac:
            return (False, 'dup_line_frac')
        if self.dup_line_char_frac and char_duplicates / len(text) > self.dup_line_char_frac:
            return (False, 'dup_line_char_frac')
        words = self.tokenizer.word_tokenize(text)
        for (n, n_frac) in self.top_n_grams:
            n_grams = get_n_grams(words, n)
            if not n_grams:
                continue
            top_char_length = find_top_duplicate(n_grams)
            if top_char_length / len(text) > n_frac:
                return (False, f'top_{n}_gram')
        for (n, n_frac) in self.dup_n_grams:
            n_duplicates_char = find_all_duplicate(words, n)
            if n_duplicates_char / len(text) > n_frac:
                return (False, f'duplicated_{n}_n_grams')
        return True

# File: datatrove-main/src/datatrove/pipeline/filters/lambda_filter.py
from typing import Callable
from datatrove.data import Document
from datatrove.pipeline.filters.base_filter import BaseFilter
from datatrove.pipeline.writers.disk_base import DiskWriter

class LambdaFilter(BaseFilter):
    name = '👤 Lambda'

    def __init__(self, filter_function: Callable[[Document], bool], exclusion_writer: DiskWriter=None):
        super().__init__(exclusion_writer)
        self.filter_function = filter_function

    def filter(self, doc: Document) -> bool:
        return self.filter_function(doc)

# File: datatrove-main/src/datatrove/pipeline/filters/language_filter.py
from typing import Literal
from datatrove.data import Document
from datatrove.pipeline.filters.base_filter import BaseFilter
from datatrove.pipeline.writers.disk_base import DiskWriter
from datatrove.utils.lid import FT176LID, GlotLID

class LanguageFilter(BaseFilter):
    name = '🌍 Language ID'
    _requires_dependencies = [('fasttext', 'fasttext-wheel'), 'fasteners']

    def __init__(self, languages: list[str] | str | None=None, language_threshold: float=0.65, exclusion_writer: DiskWriter=None, backend: Literal['ft176', 'glotlid']='ft176', label_only: bool=False, keep_top_pairs_threshold: float=-1):
        super().__init__(exclusion_writer)
        self.language_threshold = language_threshold
        if isinstance(languages, str):
            languages = list(languages)
        self.languages = languages
        self.backend = backend
        self.model = FT176LID(languages) if backend == 'ft176' else GlotLID(languages)
        self.label_only = label_only
        self.keep_top_pairs_threshold = keep_top_pairs_threshold

    def filter(self, doc: Document) -> bool:
        (best_lang_pair, lang_pairs) = self.model.predict(doc)
        (lang, lang_score) = best_lang_pair
        if self.backend == 'glotlid':
            (lang, script) = lang.split('_')
            doc.metadata['language_script'] = script
        doc.metadata['language'] = lang
        doc.metadata['language_score'] = lang_score
        if self.keep_top_pairs_threshold != -1:
            for (key, value) in lang_pairs.items():
                if value > self.keep_top_pairs_threshold:
                    doc.metadata[f'top_language_{key}_score'] = value
        return self.label_only or (self.languages and any((score > self.language_threshold for score in lang_pairs.values()))) or (self.languages is None and lang_score > self.language_threshold)

# File: datatrove-main/src/datatrove/pipeline/filters/regex_filter.py
import re
from datatrove.data import Document
from datatrove.pipeline.filters.base_filter import BaseFilter
from datatrove.pipeline.writers.disk_base import DiskWriter

class RegexFilter(BaseFilter):
    name = '🕵 Regex'

    def __init__(self, regex_exp: str, exclusion_writer: DiskWriter=None):
        super().__init__(exclusion_writer)
        self.regex = re.compile(regex_exp)

    def filter(self, doc: Document) -> bool:
        return not self.regex.search(doc.text)

# File: datatrove-main/src/datatrove/pipeline/filters/sampler_filter.py
from numpy.random import default_rng
from datatrove.data import Document
from datatrove.pipeline.filters.base_filter import BaseFilter
from datatrove.pipeline.writers.disk_base import DiskWriter

class SamplerFilter(BaseFilter):
    name = '🎲 Sampler'

    def __init__(self, rate: float | None=0.5, seed: int=None, exclusion_writer: DiskWriter=None):
        """"""
        super().__init__(exclusion_writer)
        self.rate = rate
        self.uniform = default_rng(seed).uniform

    def filter(self, doc: Document) -> bool | tuple[bool, str]:
        return self.uniform() < self.rate

# File: datatrove-main/src/datatrove/pipeline/filters/unigram_log_probs.py
import csv
import os
import urllib.request
import numpy as np
from huggingface_hub import cached_assets_path
from datatrove.data import Document
from datatrove.pipeline.filters.base_filter import BaseFilter
from datatrove.pipeline.writers.disk_base import DiskWriter
from datatrove.utils.logging import logger
from datatrove.utils.typeshelper import Languages
from datatrove.utils.word_tokenizers import load_word_tokenizer
UNIGRAM_DOWNLOAD = 'https://ai2-s2-research-public.s3-us-west-2.amazonaws.com/lucas/google-1T-unigram/unigram_freq.csv'

class UnigramLogProbFilter(BaseFilter):
    name = '🧑\u200d🍳 Unigram log-prob filter'

    def __init__(self, logprobs_threshold: float=-10, exclusion_writer: DiskWriter=None, language: str=Languages.english):
        super().__init__(exclusion_writer)
        self.logprobs_threshold = logprobs_threshold
        self.unigram_frequencies = self.get_frequencies()
        self.tokenizer = load_word_tokenizer(language)

    def get_frequencies(self):
        download_dir = cached_assets_path(library_name='datatrove', namespace='filters', subfolder='unigram_logprob_filter')
        unigram_freq_file = os.path.join(download_dir, 'unigram_freq.csv')
        if not os.path.isfile(unigram_freq_file):
            logger.info('⬇️ Downloading unigram-frequencies ...')
            urllib.request.urlretrieve(UNIGRAM_DOWNLOAD, unigram_freq_file)
        words = []
        counts = []
        with open(unigram_freq_file, encoding='utf-8', newline='') as f:
            csv_reader = csv.DictReader(f)
            for row in csv_reader:
                words.append(row['word'])
                counts.append(int(row['count']))
        total_count = sum(counts)
        return {word: count / total_count for (word, count) in zip(words, counts)}

    def get_logprob(self, doc):
        words = self.tokenizer.word_tokenize(doc.text)
        freqs = [self.unigram_frequencies.get(word.lower(), 1e-09) for word in words]
        if len(freqs) == 0:
            return 0
        return sum([np.log(f) for f in freqs]) / len(freqs)

    def filter(self, doc: Document) -> bool:
        return self.get_logprob(doc) > self.logprobs_threshold

# File: datatrove-main/src/datatrove/pipeline/filters/url_filter.py
import os
import re
import tarfile
from typing import Iterable
from huggingface_hub import cached_assets_path
from datatrove.data import Document
from datatrove.io import safely_create_file
from datatrove.utils._import_utils import ASSETS_PATH
from datatrove.utils.logging import logger
from ..writers.disk_base import DiskWriter
from .base_filter import BaseFilter
normalizer = re.compile('[^a-zA-Z0-9]+')

def normalize(text, replace=''):
    return normalizer.sub(replace, text).lower()

def parse_list(line, do_normalize=True):
    return {normalize(x) if do_normalize else x.strip() for x in line if x[0] != '#'}

def get_list(abs_path: str, file_name: str, extra: set, do_normalize: bool=True):
    with open(os.path.join(abs_path, file_name)) as f:
        return parse_list(f, do_normalize).union(extra)

class URLFilter(BaseFilter):
    name = '😈 Url-filter'
    _requires_dependencies = ['tldextract', 'fasteners', ('ahocorasick', 'pyahocorasick')]

    def __init__(self, soft_word_threshold: int=2, extra_domains: Iterable=None, extra_urls: Iterable=None, banned_words: Iterable=None, banned_subwords: Iterable=None, soft_banned_words: Iterable=None, use_integrated_lists: bool=True, exclusion_writer: DiskWriter=None):
        import ahocorasick
        from tldextract import TLDExtract
        super().__init__(exclusion_writer)
        self.soft_word_threshold = soft_word_threshold
        self.block_listed_domains = parse_list(extra_domains, do_normalize=False) if extra_domains else set()
        self.block_listed_url = parse_list(extra_urls, do_normalize=False) if extra_urls else set()
        self.banned_words = parse_list(banned_words) if banned_words else set()
        self.banned_subwords = parse_list(banned_subwords) if banned_subwords else set()
        self.soft_banned_words = parse_list(soft_banned_words) if soft_banned_words else set()
        self.use_integrated_lists = use_integrated_lists
        self._downloaded = False
        self.tldextractor = TLDExtract()
        self.banned_subwords_automaton = ahocorasick.Automaton(ahocorasick.STORE_INTS)
        for word in self.banned_subwords:
            self.banned_subwords_automaton.add_word(word, len(self.banned_subwords_automaton))
        if not self.use_integrated_lists:
            self.banned_subwords_automaton.make_automaton()

    def download_data(self):
        if self._downloaded or not self.use_integrated_lists:
            return
        download_dir = cached_assets_path(library_name='datatrove', namespace='filters', subfolder='url_filter')
        file_to_lock = os.path.join(download_dir, 'url_filterblacklists.tar.gz')

        def do_extract():
            logger.info('💥 Extracting url filter blacklists...')
            with tarfile.open(os.path.join(ASSETS_PATH, 'url_filterblacklists.tar.gz'), 'r:gz') as tar:
                tar.extractall(download_dir)
            logger.info('💥 Extracted url filter blacklists.')
        safely_create_file(file_to_lock, do_extract)
        self.block_listed_domains = get_list(download_dir, 'adult/domains', self.block_listed_domains, do_normalize=False)
        self.block_listed_url = get_list(download_dir, 'adult/urls', self.block_listed_url, do_normalize=False)
        self.banned_words = get_list(ASSETS_PATH, 'banned_words.txt', self.banned_words)
        self.banned_subwords = get_list(ASSETS_PATH, 'banned_subwords.txt', self.banned_subwords)
        self.soft_banned_words = get_list(ASSETS_PATH, 'soft_banned_words.txt', self.soft_banned_words)
        for word in self.banned_subwords:
            self.banned_subwords_automaton.add_word(word, len(self.banned_subwords_automaton))
        self.banned_subwords_automaton.make_automaton()
        self._downloaded = True

    def filter(self, document: Document) -> bool | tuple[bool, str]:
        self.download_data()
        url = document.metadata.get('url')
        assert url, 'Document does not have url in its metadata'
        url_info = self.tldextractor(url)
        if url_info.registered_domain in self.block_listed_domains:
            return (False, 'domain')
        if url_info.fqdn in self.block_listed_domains:
            return (False, 'subdomain')
        if url in self.block_listed_url:
            return (False, 'url')
        url_words = set(normalizer.split(url))
        if any((word in url_words for word in self.banned_words)):
            return (False, 'hard_blacklisted')
        nb_soft_words = sum([word in url_words for word in self.soft_banned_words])
        if nb_soft_words >= self.soft_word_threshold:
            return (False, 'soft_blacklisted')
        normalized_space = normalize(url)
        if self.banned_subwords and next(self.banned_subwords_automaton.iter(normalized_space), False):
            return (False, 'blacklisted_subword')
        return True

# File: datatrove-main/src/datatrove/pipeline/formatters/base.py
from abc import ABC, abstractmethod
from datatrove.data import DocumentsPipeline
from datatrove.pipeline.base import PipelineStep
from datatrove.utils.typeshelper import StatHints

class BaseFormatter(PipelineStep, ABC):
    type = '✂️ - FORMAT'

    def __init__(self):
        super().__init__()

    @abstractmethod
    def format(self, text: str) -> str:
        return text

    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        for doc in data:
            self.stat_update(StatHints.total)
            with self.track_time():
                doc.text = self.format(doc.text)
            yield doc

# File: datatrove-main/src/datatrove/pipeline/formatters/pii.py
import ipaddress
import re
from functools import partial
from typing import Callable
from datatrove.pipeline.formatters.base import BaseFormatter

class PIIReplacer:

    def __init__(self, regex: str, replacements: tuple[str, ...] | str, validator: Callable[[str], bool] | None=None):
        self.regex: re.Pattern = re.compile(regex)
        self.replacements = replacements if type(replacements) is tuple else tuple(replacements) if not isinstance(replacements, str) else (replacements,)
        self.validator = validator
        self._replace_i = 0

    def replace(self, text: str):

        def get_replacement(matchobj):
            if self.validator and (not self.validator(matchobj.group(0))):
                return matchobj.group(0)
            replacement = self.replacements[self._replace_i]
            self._replace_i = (self._replace_i + 1) % len(self.replacements)
            return replacement
        return self.regex.sub(get_replacement, text)

def public_ip_validator(ip, public_only: bool=True) -> bool:
    try:
        ip = ipaddress.ip_address(ip)
        return not public_only or ip.is_global
    except ValueError:
        return False

class PIIFormatter(BaseFormatter):
    name = '📞 PII'

    def __init__(self, remove_emails: bool=True, remove_ips: bool=True, only_remove_public_ips: bool=True, email_replacement: tuple[str, ...] | str=('[email protected]', '[email protected]'), ip_replacement: tuple[str, ...] | str=('22.214.171.124', '126.96.36.199', '188.8.131.52', '184.108.40.206', '220.127.116.11', '18.104.22.168')):
        super().__init__()
        self.remove_emails = remove_emails
        self.remove_ips = remove_ips
        self.emails_replacer = PIIReplacer("\\b[A-Za-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\\.[A-Za-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:(?:[A-Za-z0-9](?:[A-Za-z0-9-]*[A-Za-z0-9])?\\.)+[A-Za-z0-9](?:[A-Za-z0-9-]*[A-Za-z0-9])?|\\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[A-Za-z0-9-]*[A-Za-z0-9]:)])", email_replacement)
        self.ip_replacer = PIIReplacer('(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)', validator=partial(public_ip_validator, public_only=only_remove_public_ips), replacements=ip_replacement)

    def format(self, text: str) -> str:
        if self.remove_emails:
            text = self.emails_replacer.replace(text)
        if self.remove_ips:
            text = self.ip_replacer.replace(text)
        return text

# File: datatrove-main/src/datatrove/pipeline/formatters/symbol_lines_remover.py
from ...utils.text import PUNCTUATION_SET
from .base import BaseFormatter

class SymbolLinesFormatter(BaseFormatter):
    name = ' ⚞ Symbol Lines Remover'

    def __init__(self, replace_char: str=''):
        super().__init__()
        self.replace_char = replace_char

    def format(self, text: str) -> str:
        formatted = []
        in_removed_span = False
        for line in text.splitlines():
            chars_line = line.strip() != '' and all((c in PUNCTUATION_SET or c == ' ' for c in line))
            if chars_line and (not in_removed_span):
                if self.replace_char:
                    formatted.append(self.replace_char)
                in_removed_span = True
            elif not chars_line:
                formatted.append(line)
                in_removed_span = False
        return '\n'.join(formatted)

# File: datatrove-main/src/datatrove/pipeline/readers/base.py
import random
from abc import abstractmethod
from types import MethodType
from typing import Callable
from tqdm import tqdm
from datatrove.data import Document, DocumentsPipeline
from datatrove.io import DataFileLike, DataFolderLike, get_datafolder, get_shard_from_paths_file
from datatrove.pipeline.base import PipelineStep
from datatrove.utils.logging import logger

class BaseReader(PipelineStep):
    type = '📖 - READER'

    def __init__(self, limit: int=-1, skip: int=0, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None):
        super().__init__()
        self.limit = limit
        self.skip = skip
        self.text_key = text_key
        self.id_key = id_key
        self.adapter = MethodType(adapter, self) if adapter else self._default_adapter
        self._empty_warning = False
        self.default_metadata = default_metadata

    def _default_adapter(self, data: dict, path: str, id_in_file: int | str):
        return {'text': data.pop(self.text_key, ''), 'id': data.pop(self.id_key, f'{path}/{id_in_file}'), 'media': data.pop('media', []), 'metadata': data.pop('metadata', {}) | data}

    def get_document_from_dict(self, data: dict, source_file: str, id_in_file: int | str):
        parsed_data = self.adapter(data, source_file, id_in_file)
        if not parsed_data.get('text', None):
            if not self._empty_warning:
                self._empty_warning = True
                logger.warning(f'Found document without text, skipping. Is your `text_key` ("{self.text_key}") correct? Available keys: {list(data.keys())}')
            return None
        document = Document(**parsed_data)
        if self.default_metadata:
            document.metadata = self.default_metadata | document.metadata
        return document

    @abstractmethod
    def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        raise NotImplementedError

class BaseDiskReader(BaseReader):
    type = '📖 - READER'

    def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, limit: int=-1, skip: int=0, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False):
        super().__init__(limit, skip, adapter, text_key, id_key, default_metadata)
        self.data_folder = get_datafolder(data_folder)
        self.paths_file = paths_file
        self.recursive = recursive
        self.glob_pattern = glob_pattern
        self.shuffle_files = shuffle_files
        self.file_progress = file_progress
        self.doc_progress = doc_progress

    def get_document_from_dict(self, data: dict, source_file: str, id_in_file: int):
        document = super().get_document_from_dict(data, source_file, id_in_file)
        if document:
            document.metadata.setdefault('file_path', self.data_folder.resolve_paths(source_file))
        return document

    @abstractmethod
    def read_file(self, filepath: str) -> DocumentsPipeline:
        raise NotImplementedError

    def read_files_shard(self, shard: list[str]) -> DocumentsPipeline:
        li = 0
        skipped = 0
        with tqdm(total=self.limit if self.limit != -1 else None, desc='Document progress', unit='doc', disable=not self.doc_progress) as doc_pbar, tqdm(total=len(shard), desc='File progress', unit='file', disable=not self.file_progress) as file_pbar:
            for (i, filepath) in enumerate(shard):
                self.stat_update('input_files')
                logger.info(f'Reading input file {filepath}, {i + 1}/{len(shard)}')
                di = 0
                ndocs = 0
                for (di, document) in enumerate(self.read_file(filepath)):
                    if skipped < self.skip:
                        skipped += 1
                        continue
                    if self.limit != -1 and li >= self.limit:
                        break
                    yield document
                    doc_pbar.update()
                    li += 1
                    ndocs += 1
                file_pbar.update()
                self.stat_update('documents', value=ndocs, unit='input_file')
                if self.limit != -1 and li >= self.limit:
                    break

    def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        if data:
            yield from data
        files_shard = self.data_folder.get_shard(rank, world_size, recursive=self.recursive, glob_pattern=self.glob_pattern) if not self.paths_file else list(get_shard_from_paths_file(self.paths_file, rank, world_size))
        if len(files_shard) == 0:
            if rank == 0:
                raise RuntimeError(f'No files found on {self.data_folder.path}!')
            logger.warning(f'No files found on {self.data_folder.path} for rank={rank!r}')
        if self.shuffle_files:
            random.shuffle(files_shard)
        for doc in self.read_files_shard(files_shard):
            self.update_doc_stats(doc)
            yield doc

# File: datatrove-main/src/datatrove/pipeline/readers/csv.py
import csv
from typing import Callable, Literal
from datatrove.io import DataFileLike, DataFolderLike
from datatrove.pipeline.readers.base import BaseDiskReader

class CsvReader(BaseDiskReader):
    name = '🔢 Csv'

    def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, compression: Literal['infer', 'gzip', 'zstd'] | None='infer', limit: int=-1, skip: int=0, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False):
        super().__init__(data_folder, paths_file, limit, skip, file_progress, doc_progress, adapter, text_key, id_key, default_metadata, recursive, glob_pattern, shuffle_files)
        self.compression = compression
        self.empty_warning = False

    def read_file(self, filepath: str):
        with self.data_folder.open(filepath, 'r', compression=self.compression) as f:
            csv_reader = csv.DictReader(f)
            for (di, d) in enumerate(csv_reader):
                with self.track_time():
                    document = self.get_document_from_dict(d, filepath, di)
                    if not document:
                        continue
                yield document
CSVReader = CsvReader

# File: datatrove-main/src/datatrove/pipeline/readers/huggingface.py
import copy
from typing import Callable
from loguru import logger
from tqdm import tqdm
from datatrove.data import DocumentsPipeline
from datatrove.pipeline.readers.base import BaseReader

class HuggingFaceDatasetReader(BaseReader):
    name = '🤗 HuggingFace'
    _requires_dependencies = ['datasets']

    def __init__(self, dataset: str, dataset_options: dict | None=None, streaming: bool=False, limit: int=-1, skip: int=0, batch_size: int=1000, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, shuffle_files: bool=False):
        super().__init__(limit, skip, adapter, text_key, id_key, default_metadata)
        self.dataset = dataset
        self.dataset_options = dataset_options or {}
        self.batch_size = batch_size
        self.doc_progress = doc_progress
        self.streaming = streaming
        self.shuffle_files = shuffle_files

    def get_document_from_dict(self, data: dict, source: str, id_in_file: int | str):
        document = super().get_document_from_dict(data, source, id_in_file)
        if document:
            document.metadata.setdefault('dataset', source)
        return document

    def _get_dataset_shard(self, dst, rank: int, world_size: int):
        from datasets import Dataset, IterableDataset
        from datasets.distributed import split_dataset_by_node
        if isinstance(dst, Dataset):
            return dst.shard(world_size, rank, contiguous=True)
        elif isinstance(dst, IterableDataset) and dst.n_shards > 1:
            if rank >= dst.n_shards:
                logger.warning(f'Requested shard {rank} of a streaming dataset, but it only has {dst.n_shards} shards.')
                return None
            ex_iterable = dst._ex_iterable.shard_data_sources(rank, world_size)
            return IterableDataset(ex_iterable=ex_iterable, info=dst._info.copy(), split=dst._split, formatting=dst._formatting, shuffling=copy.deepcopy(dst._shuffling), distributed=copy.deepcopy(dst._distributed), token_per_repo_id=dst._token_per_repo_id)
        else:
            return split_dataset_by_node(dst, rank, world_size)

    def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        from datasets import load_dataset
        if data:
            yield from data
        ds = load_dataset(self.dataset, **self.dataset_options, streaming=self.streaming)
        if self.shuffle_files:
            if not self.streaming:
                ds = ds.shuffle(seed=42)
            else:
                ds = ds.shuffle(seed=42, buffer_size=1000)
        if isinstance(ds, dict):
            raise ValueError(f"You forgot to specify the split of the dataset. Update your dataset_options to include 'split'. Available splits: {list(ds.keys())}")
        shard = self._get_dataset_shard(ds, rank, world_size)
        if not shard:
            return
        with tqdm(total=self.limit if self.limit != -1 else None, disable=not self.doc_progress) as pbar:
            li = 0
            for batch in shard.iter(self.batch_size):
                if self.limit != -1 and li >= self.limit:
                    break
                documents = []
                with self.track_time('batch'):
                    for line in (dict(zip(batch, t)) for t in zip(*batch.values())):
                        if self.limit != -1 and li >= self.limit:
                            break
                        document = self.get_document_from_dict(line, self.dataset, f'{rank:05d}/{li}')
                        if not document:
                            continue
                        documents.append(document)
                        self.update_doc_stats(document)
                        self.stat_update('documents')
                        li += 1
                        pbar.update()
                yield from documents

# File: datatrove-main/src/datatrove/pipeline/readers/ipc.py
from typing import Callable
from datatrove.io import DataFileLike, DataFolderLike
from datatrove.pipeline.readers.base import BaseDiskReader

class IpcReader(BaseDiskReader):
    name = '🪶 Ipc'
    _requires_dependencies = ['pyarrow']

    def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, limit: int=-1, skip: int=0, stream: bool=False, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False):
        super().__init__(data_folder, paths_file, limit, skip, file_progress, doc_progress, adapter, text_key, id_key, default_metadata, recursive, glob_pattern, shuffle_files)
        self.stream = stream

    def _iter_file_batches(self, filepath: str):
        import pyarrow as pa
        with self.data_folder.open(filepath, 'rb') as f:
            with pa.ipc.open_file(f) as ipc_reader:
                for i in range(ipc_reader.num_record_batches):
                    yield ipc_reader.get_batch(i)

    def _iter_stream_batches(self, filepath: str):
        import pyarrow as pa
        with self.data_folder.open(filepath, 'rb') as f:
            with pa.ipc.open_stream(f) as ipc_stream_reader:
                for batch in ipc_stream_reader:
                    yield batch

    def read_file(self, filepath: str):
        batch_iter = self._iter_file_batches(filepath) if not self.stream else self._iter_stream_batches(filepath)
        li = 0
        for batch in batch_iter:
            documents = []
            with self.track_time('batch'):
                for line in batch.to_pylist():
                    document = self.get_document_from_dict(line, filepath, li)
                    if not document:
                        continue
                    documents.append(document)
                    li += 1
            yield from documents

# File: datatrove-main/src/datatrove/pipeline/readers/jsonl.py
from typing import Callable, Literal
from datatrove.io import DataFileLike, DataFolderLike
from datatrove.pipeline.readers.base import BaseDiskReader
from datatrove.utils.logging import logger

class JsonlReader(BaseDiskReader):
    name = '🐿 Jsonl'
    _requires_dependencies = ['orjson']

    def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, compression: Literal['infer', 'gzip', 'zstd'] | None='infer', limit: int=-1, skip: int=0, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False):
        super().__init__(data_folder, paths_file, limit, skip, file_progress, doc_progress, adapter, text_key, id_key, default_metadata, recursive, glob_pattern, shuffle_files)
        self.compression = compression

    def read_file(self, filepath: str):
        import orjson
        from orjson import JSONDecodeError
        with self.data_folder.open(filepath, 'r', compression=self.compression) as f:
            try:
                for (li, line) in enumerate(f):
                    with self.track_time():
                        try:
                            document = self.get_document_from_dict(orjson.loads(line), filepath, li)
                            if not document:
                                continue
                        except (EOFError, JSONDecodeError) as e:
                            logger.warning(f'Error when reading `{filepath}`: {e}')
                            continue
                    yield document
            except UnicodeDecodeError as e:
                logger.warning(f'File `{filepath}` may be corrupted: raised UnicodeDecodeError ({e})')

# File: datatrove-main/src/datatrove/pipeline/readers/parquet.py
from typing import Callable
from datatrove.io import DataFileLike, DataFolderLike
from datatrove.pipeline.readers.base import BaseDiskReader

class ParquetReader(BaseDiskReader):
    name = '📒 Parquet'
    _requires_dependencies = ['pyarrow']

    def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, limit: int=-1, skip: int=0, batch_size: int=1000, read_metadata: bool=True, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False):
        super().__init__(data_folder, paths_file, limit, skip, file_progress, doc_progress, adapter, text_key, id_key, default_metadata, recursive, glob_pattern, shuffle_files)
        self.batch_size = batch_size
        self.read_metadata = read_metadata

    def read_file(self, filepath: str):
        import pyarrow.parquet as pq
        with self.data_folder.open(filepath, 'rb') as f:
            with pq.ParquetFile(f) as pqf:
                li = 0
                columns = [self.text_key, self.id_key] if not self.read_metadata else None
                for batch in pqf.iter_batches(batch_size=self.batch_size, columns=columns):
                    documents = []
                    with self.track_time('batch'):
                        for line in batch.to_pylist():
                            document = self.get_document_from_dict(line, filepath, li)
                            if not document:
                                continue
                            documents.append(document)
                            li += 1
                    yield from documents

# File: datatrove-main/src/datatrove/pipeline/readers/warc.py
from typing import TYPE_CHECKING, Callable, Literal
from datatrove.io import DataFileLike, DataFolderLike
from datatrove.pipeline.readers.base import BaseDiskReader
if TYPE_CHECKING:
    from warcio.recordloader import ArcWarcRecord

class WarcReader(BaseDiskReader):
    name = '🕷 Warc'
    _requires_dependencies = ['warcio', ('cchardet', 'faust-cchardet'), ('magic', 'python-magic')]

    def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, compression: Literal['infer', 'gzip', 'zstd'] | None='infer', limit: int=-1, skip: int=0, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False):
        self.compression = compression
        super().__init__(data_folder, paths_file, limit, skip, file_progress, doc_progress, adapter, text_key, id_key, default_metadata, recursive, glob_pattern, shuffle_files)

    def read_file(self, filepath: str):
        from warcio.archiveiterator import ArchiveIterator
        with self.data_folder.open(filepath, 'rb', compression=self.compression) as f:
            for (ri, record) in enumerate(ArchiveIterator(f)):
                with self.track_time():
                    extracted_data = process_record(record)
                    if not extracted_data:
                        continue
                    document = self.get_document_from_dict(extracted_data, filepath, ri)
                    if not document:
                        continue
                yield document

def process_record(record: 'ArcWarcRecord') -> dict | None:
    import cchardet
    import magic
    if record.rec_type != 'response' and record.rec_type != 'conversion':
        return
    mime_type = record.rec_headers.get('WARC-Identified-Payload-Type', None)
    if mime_type is not None and (mime_type != 'text/html' and (record.rec_type != 'conversion' or mime_type != 'text/plain')):
        return
    content_bytes = record.content_stream().read()
    if mime_type is None:
        mime_type = magic.from_buffer(content_bytes, mime=True)
        if mime_type != 'text/html' and (record.rec_type != 'conversion' or mime_type != 'text/plain'):
            return
    charset = 'UTF-8'
    try:
        html = content_bytes.decode(charset)
    except UnicodeDecodeError:
        encoding_det = cchardet.detect(content_bytes)['encoding']
        if not encoding_det or encoding_det == charset:
            return
        charset = encoding_det
        try:
            html = content_bytes.decode(charset)
        except (UnicodeDecodeError, LookupError):
            return
    id_ = record.rec_headers['WARC-Record-ID']
    url = record.rec_headers.get('WARC-Target-URI', None)
    date = record.rec_headers.get('WARC-Date', None)
    if not url:
        url = dict(record.rec_headers.headers)['uri']
    if not date:
        date = dict(record.rec_headers.headers)['archive-date']
    return {'text': html, 'id': id_, 'url': url, 'date': date}

# File: datatrove-main/src/datatrove/pipeline/stats/__init__.py
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, STAT_TYPE, TopKConfig
from datatrove.pipeline.stats.contamination_stats import WordsContaminationStats
from datatrove.pipeline.stats.doc_stats import DocStats
from datatrove.pipeline.stats.lang_stats import LangStats
from datatrove.pipeline.stats.line_stats import LineStats
from datatrove.pipeline.stats.merger import STATS_MERGED_NAME, StatsMerger
from datatrove.pipeline.stats.paragraph_stats import ParagraphStats
from datatrove.pipeline.stats.perplexity_stats import CCNetPerplexityStats
from datatrove.pipeline.stats.sentence_stats import SentenceStats
from datatrove.pipeline.stats.token_stats import TokenStats
from datatrove.pipeline.stats.word_stats import WordStats

# File: datatrove-main/src/datatrove/pipeline/stats/base.py
import heapq
import json
from abc import abstractmethod
from collections import defaultdict
from typing import get_args
from loguru import logger
from datatrove.data import Document, DocumentsPipeline
from datatrove.io import DataFolderLike, get_datafolder
from datatrove.pipeline.base import PipelineStep
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, STAT_TYPE, TopKConfig
from datatrove.utils.stats import MetricStatsDict

class BaseStats(PipelineStep):
    type = '📊 - STATS'
    name = '👑 Summary stats'
    _requires_dependencies = ['tldextract']

    def __init__(self, output_folder: DataFolderLike, groups_to_compute: list[GROUP] | None=None, histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None:
        from tldextract import TLDExtract
        super().__init__()
        self.output_folder = get_datafolder(output_folder)
        self.groups = groups_to_compute or list(get_args(GROUP))
        self.histogram_round_digits = histogram_round_digits
        self.top_k_cfg = top_k_config
        self.tld_extractor = TLDExtract()

    @abstractmethod
    def extract_stats(self, doc: Document) -> dict[str, int | float]:
        raise NotImplementedError()

    def get_kv(self, doc: Document, value: STAT_TYPE, group_name: GROUP) -> tuple[str, STAT_TYPE | dict[str, STAT_TYPE]]:
        if group_name == 'histogram':
            return (str(round(value, self.histogram_round_digits)), {'': 1, 'chars': len(doc.text), **({'tokens': doc.metadata['token_count']} if 'token_count' in doc.metadata else {})})
        elif group_name == 'summary':
            return ('summary', value)
        elif group_name == 'fqdn':
            fqdn = doc.metadata.get('fqdn')
            if fqdn is None:
                fqdn = self.tld_extractor.extract_str(doc.metadata['url']).fqdn
                doc.metadata['fqdn'] = fqdn
            return (fqdn, value)
        elif group_name == 'suffix':
            suffix = doc.metadata.get('suffix')
            if suffix is None:
                suffix = self.tld_extractor.extract_str(doc.metadata['url']).suffix
                doc.metadata['suffix'] = suffix
            return (suffix, value)
        else:
            raise ValueError(f'Unknown group name: {group_name}')

    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        groups_dicts: dict[GROUP, dict[str, MetricStatsDict]] = {group: defaultdict(MetricStatsDict) for group in self.groups}
        for doc in data:
            with self.track_time():
                try:
                    doc_stats = self.extract_stats(doc)
                except Exception as e:
                    logger.error(f'Error while extracting stats from document {doc.id}', exc_info=e)
                    raise e
                for (group, counters) in groups_dicts.items():
                    for (stat, value) in doc_stats.items():
                        (key, value) = self.get_kv(doc, value, group)
                        if not isinstance(value, dict):
                            counters[stat][key] += value
                        else:
                            for (suffix, val) in value.items():
                                stat_name = stat if not suffix else f'{stat}__{suffix}'
                                counters[stat_name][key] += val
                doc.metadata.update(doc_stats)
            yield doc
        for (group, stats_dict) in groups_dicts.items():
            group_top_k_keys = None
            for (stat_name, stat_values) in stats_dict.items():
                if group in self.top_k_cfg.top_k_groups:
                    if group_top_k_keys is None:
                        group_top_k_keys = heapq.nlargest(self.top_k_cfg.top_k, stat_values, key=lambda x: stat_values[x].n)
                    stat_values = MetricStatsDict(init={s: stat_values[s] for s in group_top_k_keys})
                with self.output_folder.open(f'{group}/{stat_name}/{rank:05d}.json', 'wt') as f:
                    json.dump(stat_values.to_dict(), f)
        del groups_dicts

# File: datatrove-main/src/datatrove/pipeline/stats/config.py
from dataclasses import dataclass
from typing import Literal
GROUP = Literal['summary', 'histogram', 'fqdn', 'suffix']

@dataclass(frozen=True)
class TopKConfig:
    top_k_groups: list[Literal['fqdn', 'suffix']]
    top_k: int
DEFAULT_TOP_K_CONFIG = TopKConfig(top_k_groups=['fqdn', 'suffix'], top_k=100000)
STAT_TYPE = int | float

# File: datatrove-main/src/datatrove/pipeline/stats/contamination_stats.py
from typing import get_args
from datatrove.data import Document
from datatrove.io import DataFolderLike
from datatrove.pipeline.stats.base import BaseStats
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig
from datatrove.utils.text import TextNormConfig, simplify_text
from datatrove.utils.typeshelper import Languages
from datatrove.utils.word_tokenizers import load_word_tokenizer

class WordsContaminationStats(BaseStats):
    name = '😷 Words contamination'

    def __init__(self, output_folder: DataFolderLike, words: list[str], norm_config: TextNormConfig=TextNormConfig(), language: str=Languages.english, groups_to_compute: list[GROUP]=list(get_args(GROUP)), histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None:
        super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config=top_k_config)
        if len(words) == 0:
            raise ValueError('At least one word must be provided')
        self.norm_config = norm_config
        self.language = language
        self.words = words

    def extract_stats(self, doc: Document) -> dict[str, int | float]:
        word_tokenizer = load_word_tokenizer(self.language)
        doc_words = word_tokenizer.word_tokenize(simplify_text(doc.text, self.norm_config))
        return {f'words_contamination_{self.words[0]}': sum([1 for word in doc_words if word in self.words]) / len(doc_words)}

# File: datatrove-main/src/datatrove/pipeline/stats/doc_stats.py
import re
from typing import get_args
from datatrove.data import Document
from datatrove.io import DataFolderLike
from datatrove.pipeline.stats.base import BaseStats
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig
from datatrove.utils.text import PUNCTUATION
ELIPSIS = ['...', '…']

class DocStats(BaseStats):
    name = '📜 Doc stats'

    def __init__(self, output_folder: DataFolderLike, groups_to_compute: list[GROUP]=list(get_args(GROUP)), histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None:
        super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config)
        self.elipsis_regex = re.compile('|'.join([f'(?:{re.escape(elipsis)})' for elipsis in ELIPSIS]))
        self.punc_regex = re.compile('|'.join([f'(?:{re.escape(punc)})' for punc in PUNCTUATION]))

    def extract_stats(self, doc: Document) -> dict[str, int | float]:
        return {'length': len(doc.text), 'white_space_ratio': sum([1 for c in doc.text if c.isspace()]) / len(doc.text), 'non_alpha_digit_ratio': sum([1 for c in doc.text if not c.isalpha() and (not c.isdigit())]) / len(doc.text), 'digit_ratio': sum([1 for c in doc.text if c.isdigit()]) / len(doc.text), 'uppercase_ratio': sum([1 for c in doc.text if c.isupper()]) / len(doc.text), 'elipsis_ratio': sum((len(elipsis) for elipsis in self.elipsis_regex.findall(doc.text))) / len(doc.text), 'punctuation_ratio': sum((len(punc) for punc in self.punc_regex.findall(doc.text))) / len(doc.text)}

# File: datatrove-main/src/datatrove/pipeline/stats/lang_stats.py
from typing import get_args
from datatrove.data import Document
from datatrove.io import DataFolderLike
from datatrove.pipeline.stats.base import BaseStats
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig
from datatrove.utils.lid import FT176LID

class LangStats(BaseStats):
    name = '🎤 Language stats'

    def __init__(self, output_folder: DataFolderLike, language: str, groups_to_compute: list[GROUP]=list(get_args(GROUP)), histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None:
        super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config)
        self.fasttext = FT176LID([language])
        self.language = language

    def extract_stats(self, doc: Document) -> dict[str, int | float]:
        language_score = 0
        if doc.metadata.get('language') == self.language and 'language_score' in doc.metadata:
            language_score = doc.metadata['language_score']
        else:
            language_score = self.fasttext.predict(doc)[1][self.language]
        return {f'fasttext_{self.language}': language_score}

# File: datatrove-main/src/datatrove/pipeline/stats/line_stats.py
from typing import get_args
from datatrove.data import Document
from datatrove.io import DataFolderLike
from datatrove.pipeline.filters.c4_filters import END_PUNCTUATION
from datatrove.pipeline.filters.gopher_repetition_filter import find_duplicates
from datatrove.pipeline.stats.base import BaseStats
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig

def get_max_chars_per_line_ratio(lines, chars: int) -> float:
    return sum([1 for line in lines if len(line) <= chars]) / len(lines)

def get_min_chars_per_line_ratio(lines, chars: int) -> float:
    return sum([1 for line in lines if len(line) >= chars]) / len(lines)

def is_bullet_line(line: str):
    if len(line.strip()) == 0:
        return False
    return line.strip()[0] in '-*•'

class LineStats(BaseStats):
    name = '🎼 Line stats'

    def __init__(self, output_folder: DataFolderLike, max_k_chars_per_line_tresholds: list[int] | None=None, min_k_chars_per_line_thresholds: list[int] | None=None, groups_to_compute: list[GROUP]=list(get_args(GROUP)), ignore_empty_lines: bool=False, histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None:
        super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config)
        self.short_max_chars = max_k_chars_per_line_tresholds if max_k_chars_per_line_tresholds is not None else [10, 30]
        self.long_max_chars = min_k_chars_per_line_thresholds if min_k_chars_per_line_thresholds is not None else [2000, 10000]
        self.ignore_empty_lines = ignore_empty_lines

    def extract_stats(self, doc: Document):
        lines: list[str] = doc.metadata.get('lines') or doc.text.split('\n')
        n_lines = len(lines)
        lines = [line for line in lines if len(line.strip()) > 0] if self.ignore_empty_lines else lines
        (line_dups, char_dups) = find_duplicates(lines)
        return {'n_lines': n_lines, 'avg_line_length': sum([len(line) for line in lines]) / len(lines), **{f'short_line_ratio_chars_{chars}': get_max_chars_per_line_ratio(lines, chars) for chars in self.short_max_chars}, **{f'long_line_ratio_chars_{chars}': get_min_chars_per_line_ratio(lines, chars) for chars in self.long_max_chars}, 'lines_ending_with_terminal_mark_ratio': sum((1 for line in lines if line.endswith(END_PUNCTUATION))) / len(lines), 'bullet_point_lines_ratio': sum((1 for line in lines if is_bullet_line(line))) / len(lines), 'line_duplicates': line_dups / len(lines), 'line_char_duplicates': char_dups / sum((len(line) for line in lines))}

# File: datatrove-main/src/datatrove/pipeline/stats/merger.py
import heapq
import json
from pathlib import Path
from loguru import logger
from tqdm import tqdm
from datatrove.data import DocumentsPipeline
from datatrove.io import DataFolderLike, get_datafolder
from datatrove.pipeline.base import PipelineStep
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, TopKConfig
from datatrove.utils.stats import MetricStats, MetricStatsDict
STATS_MERGED_NAME = 'metric.json'

class StatsMerger(PipelineStep):
    type = '📊 - STATS'
    name = '🔗 Merging stats'

    def __init__(self, input_folder: DataFolderLike, output_folder: DataFolderLike, remove_input: bool=False, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None:
        super().__init__()
        self.input_folder = get_datafolder(input_folder)
        self.output_folder = get_datafolder(output_folder)
        self.remove_input = remove_input
        self.top_k_config = top_k_config

    def get_leaf_non_empty_folders(self):
        return sorted([path for (path, folders, files) in self.input_folder.walk('') if not folders and files])

    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        folders_shard = self.get_leaf_non_empty_folders()[rank::world_size]
        logger.info(f'Merging {len(folders_shard)} stat folders')
        with self.track_time():
            for folder in tqdm(folders_shard):
                input_files = self.input_folder.glob(f'{folder}/[0-9][0-9][0-9][0-9][0-9].json')
                logger.info(f'Processing folder {folder} with {len(input_files)} files')
                stat = MetricStatsDict()
                for file in tqdm(input_files):
                    with self.input_folder.open(file, 'rt') as f:
                        for (key, item) in json.load(f).items():
                            stat[key] += MetricStats.from_dict(item)
                with self.output_folder.open(f'{folder}/{STATS_MERGED_NAME}', 'wt') as f:
                    group_name = Path(folder).parent.name
                    if group_name in self.top_k_config.top_k_groups:
                        top_k_keys = heapq.nlargest(self.top_k_config.top_k, stat, key=lambda x: stat.get(x).n)
                        stat = MetricStatsDict(init={s: stat.get(s) for s in top_k_keys})
                    json.dump(stat.to_dict(), f)
                if self.remove_input:
                    for file in input_files:
                        self.input_folder.rm(file)
        if data:
            yield from data

# File: datatrove-main/src/datatrove/pipeline/stats/paragraph_stats.py
from typing import get_args
from datatrove.data import Document
from datatrove.io import DataFolderLike
from datatrove.pipeline.filters.gopher_repetition_filter import find_duplicates
from datatrove.pipeline.stats.base import BaseStats
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig

def get_short_paragraph_ratio(paragraphs: list[str], threshold: int) -> float:
    return sum([1 for paragraph in paragraphs if len(paragraph) <= threshold]) / len(paragraphs)

def get_long_paragraph_ratio(paragraphs: list[str], threshold: int) -> float:
    return sum([1 for paragraph in paragraphs if len(paragraph) >= threshold]) / len(paragraphs)

class ParagraphStats(BaseStats):
    type = '📊 - STATS'
    name = '📄 Paragraph stats'

    def __init__(self, output_folder: DataFolderLike, short_paragraph_max_chars_threshold: list[int] | None=None, long_paragraph_max_chars_threshold: list[int] | None=None, ignore_empty_paragraphs: bool=False, histogram_round_digits: int=3, groups_to_compute: list[GROUP]=list(get_args(GROUP)), top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None:
        super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config)
        self.ignore_empty_paragraphs = ignore_empty_paragraphs
        self.short_paragraph_max_chars_threshold = short_paragraph_max_chars_threshold or [100]
        self.long_paragraph_max_chars_threshold = long_paragraph_max_chars_threshold or [1000]

    def extract_stats(self, doc: Document) -> dict[str, int | float]:
        paragraphs = [p for p in doc.text.split('\n\n') if p.strip()]
        n_paragraphs = len(paragraphs)
        paragraphs = [p for p in paragraphs if p.strip()] if self.ignore_empty_paragraphs else paragraphs
        (paragraph_dups, paragraph_char_dups) = find_duplicates(paragraphs)
        return {'n_paragraphs': n_paragraphs, 'avg_paragraph_length': sum([len(p) for p in paragraphs]) / n_paragraphs, **{f'short_paragraph_ratio_{chars}': get_short_paragraph_ratio(paragraphs, chars) for chars in self.short_paragraph_max_chars_threshold}, **{f'long_paragraph_ratio_{chars}': get_long_paragraph_ratio(paragraphs, chars) for chars in self.long_paragraph_max_chars_threshold}, 'paragraph_duplicates': paragraph_dups / n_paragraphs, 'paragraph_char_duplicates': paragraph_char_dups / sum((len(p) for p in paragraphs))}

# File: datatrove-main/src/datatrove/pipeline/stats/perplexity_stats.py
from typing import get_args
from datatrove.data import Document
from datatrove.io import DataFolderLike
from datatrove.pipeline.stats.base import BaseStats
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig
from datatrove.utils.perplexity import KenlmModel
from datatrove.utils.typeshelper import Languages

class CCNetPerplexityStats(BaseStats):
    name = '🤯 CCNet perplexity stats'
    _requires_dependencies = BaseStats._requires_dependencies + ['kenlm']

    def __init__(self, output_folder: DataFolderLike, model_dataset: str, language: str=Languages.english, histogram_round_digits: int=3, groups_to_compute: list[GROUP]=list(get_args(GROUP)), top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None:
        super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config)
        self.model = KenlmModel(model_dataset=model_dataset, language=language)

    def extract_stats(self, doc: Document) -> dict[str, int | float]:
        return {f'ccnet_perplexity_{self.model.model_dataset}_{self.model.language}': self.model.get_perplexity(doc.text)}

# File: datatrove-main/src/datatrove/pipeline/stats/sentence_stats.py
from typing import get_args
from datatrove.data import Document
from datatrove.io import DataFolderLike
from datatrove.pipeline.stats.base import BaseStats
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig
from datatrove.utils.typeshelper import Languages
from datatrove.utils.word_tokenizers import load_word_tokenizer

def get_short_sentence_ratio(sentences: list[str], threshold: int) -> float:
    return sum([1 for sentence in sentences if len(sentence) <= threshold]) / len(sentences)

def get_long_sentence_ratio(sentences: list[str], threshold: int) -> float:
    return sum([1 for sentence in sentences if len(sentence) >= threshold]) / len(sentences)

class SentenceStats(BaseStats):
    name = '🈂️ Sentence stats'

    def __init__(self, output_folder: DataFolderLike, short_sentence_max_chars_threshold: list[int] | None=None, long_sentence_max_chars_threshold: list[int] | None=None, language: str=Languages.english, histogram_round_digits: int=3, groups_to_compute: list[GROUP]=list(get_args(GROUP)), top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None:
        super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config)
        self.short_sentence_max_chars_threshold = short_sentence_max_chars_threshold or [20]
        self.long_sentence_max_chars_threshold = long_sentence_max_chars_threshold or [75]
        self.language = language

    def extract_stats(self, doc: Document) -> dict[str, int | float]:
        word_tokenizer = load_word_tokenizer(self.language)
        sentences = [s for s in word_tokenizer.sent_tokenize(doc.text) if s.strip()]
        return {'n_sentences': len(sentences), 'avg_sentence_length': sum([len(s) for s in sentences]) / len(sentences), **{f'short_sentence_ratio_{chars}': get_short_sentence_ratio(sentences, chars) for chars in self.short_sentence_max_chars_threshold}, **{f'long_sentence_ratio_{chars}': get_long_sentence_ratio(sentences, chars) for chars in self.long_sentence_max_chars_threshold}}

# File: datatrove-main/src/datatrove/pipeline/stats/token_stats.py
from datatrove.data import Document
from datatrove.io import DataFolderLike
from datatrove.pipeline.stats.base import BaseStats
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig
from datatrove.utils.tokenization import PipelineStepWithTokenizer

class TokenStats(BaseStats, PipelineStepWithTokenizer):
    name = '🔗 Token counter'
    _requires_dependencies = ['tokenizers'] + BaseStats._requires_dependencies

    def __init__(self, output_folder: DataFolderLike, tokenizer_name_or_path: str='gpt2', groups_to_compute: list[GROUP]=['fqdn', 'suffix', 'summary', 'histogram'], histogram_rounding: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None:
        BaseStats.__init__(self, output_folder, groups_to_compute, histogram_rounding, top_k_config)
        PipelineStepWithTokenizer.__init__(self)
        self.tokenizer_name_or_path = tokenizer_name_or_path

    def extract_stats(self, doc: Document) -> dict[str, int | float]:
        tokens_count = doc.metadata.get('token_count', None)
        if tokens_count is None:
            tokens_count = len(self.tokenizer.encode(doc.text).tokens)
        return {'token_count': tokens_count}

# File: datatrove-main/src/datatrove/pipeline/stats/word_stats.py
from typing import get_args
from datatrove.data import Document
from datatrove.io import DataFolderLike
from datatrove.pipeline.filters.gopher_quality_filter import STOP_WORDS
from datatrove.pipeline.stats.base import BaseStats
from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig
from datatrove.utils.typeshelper import Languages
from datatrove.utils.word_tokenizers import load_word_tokenizer

def get_short_word_ratio(words: list[str], threshold: int) -> float:
    return sum([1 for word in words if len(word) <= threshold]) / len(words)

def get_long_word_ratio(words: list[str], threshold: int) -> float:
    return sum([1 for word in words if len(word) >= threshold]) / len(words)

class WordStats(BaseStats):
    name = '🈂️ Word stats'

    def __init__(self, output_folder: DataFolderLike, stop_words: list[str]=STOP_WORDS, short_word_max_chars_threshold: list[int] | None=None, long_word_max_chars_threshold: list[int] | None=None, language: str=Languages.english, groups_to_compute: list[GROUP]=list(get_args(GROUP)), histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None:
        super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config)
        self.short_word_max_chars_threshold = short_word_max_chars_threshold or [3]
        self.long_word_max_chars_threshold = long_word_max_chars_threshold or [7]
        self.language = language
        self.stop_words = stop_words

    def extract_stats(self, doc: Document) -> dict[str, int | float]:
        word_tokenizer = load_word_tokenizer(self.language)
        words = word_tokenizer.word_tokenize(doc.text)
        lines = doc.text.splitlines()
        return {'n_words': len(words), 'avg_word_length': sum([len(word) for word in words]) / len(words), 'avg_words_per_line': len(words) / len(lines), **{f'short_word_ratio_{chars}': get_short_word_ratio(words, chars) for chars in self.short_word_max_chars_threshold}, **{f'long_word_ratio_{chars}': get_long_word_ratio(words, chars) for chars in self.long_word_max_chars_threshold}, 'type_token_ratio': len(set(words)) / len(words), 'uppercase_word_ratio': sum([1 for word in words if word.isupper()]) / len(words), 'capitalized_word_ratio': sum([1 for word in words if word.istitle()]) / len(words), 'stop_word_ratio': sum([1 for word in words if word in self.stop_words]) / len(words)}

# File: datatrove-main/src/datatrove/pipeline/tokens/context_shuffler.py
import mmap
import numpy as np
from numpy.random import default_rng
from datatrove.data import DocumentsPipeline
from datatrove.io import DataFolderLike, get_datafolder
from datatrove.pipeline.base import PipelineStep
from datatrove.pipeline.tokens.merger import load_doc_ends
from datatrove.utils.logging import logger

class DocumentTokenizerContextShuffler(PipelineStep):
    name = '🗃 Context Shuffler'
    type = '🔢 - TOKENIZER'

    def __init__(self, input_folder: DataFolderLike, output_folder: DataFolderLike, window_size: int=2048 + 1, seed: int=None, token_size: int=2):
        super().__init__()
        self.input_folder = get_datafolder(input_folder)
        self.output_folder = get_datafolder(output_folder)
        self.window_size = window_size
        self.token_size = token_size
        self.rand = default_rng(seed)

    def get_ordering(self, all_doc_ends):
        doc_ids = np.concatenate([np.ones(len(doc_ends), dtype=int) * i for (i, doc_ends) in enumerate(all_doc_ends)])
        return self.rand.permutation(doc_ids)

    def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        datafiles = self.input_folder.get_shard(rank, world_size, glob_pattern='*.ds')
        datafiles_index = self.input_folder.get_shard(rank, world_size, glob_pattern='*.ds.index')
        for (datafile, index) in zip(datafiles, datafiles_index):
            logger.info(f'Context shuffling {datafile} with a {self.window_size} token window')
            total_len = load_doc_ends(self.input_folder.open(index, 'rb'))[-1]
            nr_windows = total_len // self.window_size
            ordering = self.rand.permutation(np.arange(0, nr_windows, dtype=int))
            with self.output_folder.open(datafile, 'wb') as fout:
                with self.input_folder.open(datafile, 'rb') as f:
                    with mmap.mmap(f.fileno(), 0, prot=mmap.PROT_READ) as unshuf:
                        with self.track_time():
                            for windowi in ordering:
                                (start, end) = (windowi * self.window_size * self.token_size, (windowi + 1) * self.window_size * self.token_size)
                                fout.write(unshuf[start:end])

# File: datatrove-main/src/datatrove/pipeline/tokens/counter.py
from datatrove.data import DocumentsPipeline
from datatrove.pipeline.base import PipelineStep
from datatrove.utils.batching import batched
from datatrove.utils.tokenization import PipelineStepWithTokenizer

class TokensCounter(PipelineStepWithTokenizer):
    name = '📊 Counter'
    type = '🔢 - TOKENIZER'

    def __init__(self, tokenizer_name_or_path: str='gpt2', count_eos_token: bool=False, batch_size: int=10000):
        super().__init__()
        self.tokenizer_name_or_path = tokenizer_name_or_path
        self.count_eos_token = count_eos_token
        self.batch_size = batch_size

    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        from tokenizers import Encoding
        for batch in batched(data, self.batch_size):
            with self.track_time(unit='batch'):
                encoded_batch: list[Encoding] = self.tokenizer.encode_batch([document.text for document in batch])
            for (document, encoded) in zip(batch, encoded_batch):
                count = len(encoded.ids)
                if self.count_eos_token:
                    count += 1
                document.metadata['token_count'] = count
                self.stat_update('tokens', value=count)
                yield document

class LengthCounter(PipelineStep):
    name = '📊 Document length counter'
    type = '🔢 - TOKENIZER'

    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        for document in data:
            count = document.metadata['token_count']
            self.stats[count].update(1)
            yield document

# File: datatrove-main/src/datatrove/pipeline/tokens/merger.py
from functools import partial
from typing import BinaryIO, Generator
import numpy as np
from numpy.random import default_rng
from tqdm import tqdm
from datatrove.data import DocumentsPipeline
from datatrove.io import DataFolderLike, get_datafolder
from datatrove.pipeline.base import PipelineStep
from datatrove.pipeline.tokens.tokenizer import TokenizedFile

class DocumentTokenizerMerger(PipelineStep):
    name = '🗃 Document Merger'
    type = '🔢 - TOKENIZER'

    def __init__(self, input_folder: DataFolderLike, output_folder: DataFolderLike, save_filename: str, max_tokens_per_file: int=100000000000.0, max_tokens: int=-1, shuffle: bool=True, upload_block_size: int=20 * 2 ** 20, seed: int=None, save_loss_metadata: bool=False, save_final_metadata: bool=True, progress: bool=True):
        super().__init__()
        self.input_folder = get_datafolder(input_folder)
        self.output_folder = get_datafolder(output_folder)
        self.save_filename = save_filename
        self.max_tokens_per_file = max_tokens_per_file
        self.max_tokens = max_tokens
        self.shuffle = shuffle
        self.save_loss_metadata = save_loss_metadata
        self.rand = default_rng(seed)
        self.save_final_metadata = save_final_metadata
        self.upload_block_size = upload_block_size
        self.progress = progress

    def get_ordering(self, all_doc_ends):
        doc_ids = np.concatenate([np.ones(len(doc_ends), dtype=int) * i for (i, doc_ends) in enumerate(all_doc_ends)])
        return doc_ids if not self.shuffle else self.rand.permutation(doc_ids)

    def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        assert world_size == 1, 'world_size must be 1 for DocumentTokenizerMerger'
        datafiles = self.input_folder.list_files(glob_pattern='*.ds')
        datafiles_index = self.input_folder.list_files(glob_pattern='*.ds.index')
        datafiles_loss = self.input_folder.list_files(glob_pattern='*.ds.loss') if self.save_loss_metadata else [None] * len(datafiles)
        assert len(datafiles) == len(datafiles_index) == len(datafiles_loss), f'Mismatch between number of .ds, .ds.index and/or .ds.loss files({len(datafiles)} vs {len(datafiles_index)} vs {len(datafiles_loss)})'
        (tokenizer_name_or_path, token_size) = (None, 2)
        if self.save_final_metadata:
            if self.input_folder.isfile(f'{datafiles[0]}.metadata'):
                with self.input_folder.open(f'{datafiles[0]}.metadata', 'rt') as f:
                    tokenizer_name_or_path = f.read().splitlines()[0]
                    if '|' in tokenizer_name_or_path:
                        (tokenizer_name_or_path, token_size) = tokenizer_name_or_path.split('|')
                        token_size = int(token_size)
        doc_ends = [load_doc_ends(self.input_folder.open(file, 'rb')) for file in datafiles_index]
        token_inputs = list(map(partial(get_data_reader, nb_bytes=token_size), self.input_folder.open_files(datafiles), doc_ends))
        loss_inputs = list(map(partial(get_data_reader, nb_bytes=1), self.input_folder.open_files(datafiles_loss), doc_ends)) if self.save_loss_metadata else None
        ordering = self.get_ordering(doc_ends)
        file_ct = 0
        output_file = TokenizedFile(output_folder=self.output_folder, filename=f'{file_ct:03d}_{self.save_filename}.ds', save_loss_metadata=self.save_loss_metadata, upload_block_size=self.upload_block_size, tokenizer_name_or_path=tokenizer_name_or_path, save_final_metadata=self.save_final_metadata, token_size=token_size)
        for input_file_id in tqdm(ordering, desc='Merging documents', unit='documents', total=len(ordering), disable=not self.progress):
            if 0 < self.max_tokens <= self.stats['tokens'].total:
                break
            if 0 < self.max_tokens_per_file <= len(output_file):
                output_file.close()
                file_ct += 1
                output_file = TokenizedFile(output_folder=self.output_folder, filename=f'{file_ct:03d}_{self.save_filename}.ds', save_loss_metadata=self.save_loss_metadata, upload_block_size=self.upload_block_size, tokenizer_name_or_path=tokenizer_name_or_path, save_final_metadata=self.save_final_metadata, token_size=token_size)
            tokens = next(token_inputs[input_file_id])
            output_file.write_bytes(tokens)
            if loss_inputs:
                output_file.write_loss_bytes(next(loss_inputs[input_file_id]))
            self.stat_update('tokens', value=len(tokens) // token_size)
        output_file.close()
        if self.save_final_metadata:
            output_file.write_final_metadata(self.stats['tokens'].total, filename=f'{self.save_filename}.ds')

def load_doc_ends(file: BinaryIO) -> np.ndarray:
    with file as f:
        return np.frombuffer(f.read(), dtype=np.uint64).astype(int)

def get_data_reader(file: BinaryIO, doc_ends: list, nb_bytes: int=1, start_e: int=0) -> Generator[bytes, None, None]:
    with file as f:
        if start_e != 0:
            f.seek(int(start_e) * nb_bytes)
        for r_e in doc_ends:
            yield f.read((r_e - start_e) * nb_bytes)
            start_e = r_e

# File: datatrove-main/src/datatrove/pipeline/tokens/tokenizer.py
import struct
from typing import TYPE_CHECKING
import humanize
import numpy as np
from numpy.random import default_rng
from datatrove.data import Document, DocumentsPipeline
from datatrove.io import DataFolder, DataFolderLike, get_datafolder
from datatrove.utils.batching import batched
from datatrove.utils.logging import logger
from datatrove.utils.tokenization import PipelineStepWithTokenizer
SHUFFLING_READ_BLOCK_SIZE = 50000
SHUFFLING_CACHE_TYPE = 'none'
if TYPE_CHECKING:
    from tokenizers import Encoding

class TokenizedFile:

    def __init__(self, output_folder: DataFolderLike, filename: str, save_index: bool=True, save_loss_metadata: bool=False, upload_block_size: int | None=None, tokenizer_name_or_path: str | None=None, save_final_metadata: bool=False, token_size: int=2):
        self.output_folder = get_datafolder(output_folder)
        self.filename = filename
        self.save_index = save_index
        self.save_loss_metadata = save_loss_metadata
        self.upload_block_size = upload_block_size
        self.write_idx = 0
        self.token_size = token_size
        self.token_format = 'I' if self.token_size == 4 else 'H'
        self.doc_ends = []
        self.tokenizer_name_or_path = tokenizer_name_or_path
        self.save_final_metadata = save_final_metadata
        self.tokens_file = self.output_folder.open(self.filename, mode='wb', block_size=upload_block_size)
        self.loss_file: DataFolderLike | None = None
        if self.save_loss_metadata:
            self.loss_file = self.output_folder.open(f'{self.filename}.loss', mode='wb', block_size=upload_block_size)

    def __len__(self):
        return self.doc_ends[-1] if self.doc_ends else 0

    def close(self):
        if self.tokens_file:
            self.tokens_file.close()
        if self.loss_file:
            self.loss_file.close()
        if self.save_index:
            index_file = self.output_folder.open(f'{self.filename}.index', mode='wb')
            index_file.write(struct.pack('<%sQ' % len(self.doc_ends), *self.doc_ends))
            index_file.close()
        if self.save_final_metadata:
            self.write_final_metadata()

    def cleanup(self):
        self.doc_ends = []
        self.output_folder.rm_file(self.filename)
        if self.loss_file:
            self.output_folder.rm_file(f'{self.filename}.loss')
        if self.save_final_metadata and self.output_folder.exists(f'{self.filename}.metadata'):
            self.output_folder.rm_file(f'{self.filename}.metadata')

    def write_bytes(self, tk_bytes: bytes, doc_ends: list[int]=None):
        self.tokens_file.write(tk_bytes)
        if doc_ends is not None:
            self.doc_ends.extend([d + self.write_idx for d in doc_ends])
            self.write_idx += len(tk_bytes) // self.token_size
        else:
            self.write_idx += len(tk_bytes) // self.token_size
            self.doc_ends.append(self.write_idx)

    def write_loss_bytes(self, l_bytes: bytes):
        if self.save_loss_metadata:
            self.loss_file.write(l_bytes)

    def write(self, tokens: list[int], loss_values: np.ndarray | None):
        self.write_bytes(struct.pack(f'<%s{self.token_format}' % len(tokens), *tokens))
        if loss_values is not None:
            self.write_loss_bytes(struct.pack('<%s?' % len(loss_values), *loss_values))

    def copy(self, save_filename: str, ordering: np.ndarray, new_output_folder: DataFolder=None, rank: int=0, max_tokens_per_file: int=None) -> 'TokenizedFile':
        with self.output_folder.open(self.filename, mode='rb', cache_type=SHUFFLING_CACHE_TYPE, block_size=SHUFFLING_READ_BLOCK_SIZE) as tokens_file:
            loss_file = None if not self.loss_file else self.output_folder.open(f'{self.filename}.loss', mode='rb', cache_type=SHUFFLING_CACHE_TYPE, block_size=SHUFFLING_READ_BLOCK_SIZE // 2)
            sub_rank = 0
            destination = get_output_filename(save_filename, rank, 'shuffled', sub_rank)
            new_file = TokenizedFile(self.output_folder if not new_output_folder else new_output_folder, destination, save_loss_metadata=self.save_loss_metadata, upload_block_size=self.upload_block_size, tokenizer_name_or_path=self.tokenizer_name_or_path, save_final_metadata=self.save_final_metadata, token_size=self.token_size)
            logger.info(f'Shuffling in {destination}...')
            total_tokens_written = 0
            for doc_id in ordering:
                (start, end) = (self.doc_ends[doc_id - 1] if doc_id > 0 else 0, self.doc_ends[doc_id])
                tokens_file.seek(start * self.token_size)
                new_file.write_bytes(tokens_file.read((end - start) * self.token_size))
                if loss_file:
                    loss_file.seek(start)
                    new_file.write_loss_bytes(loss_file.read(end - start))
                total_tokens_written += end - start
                if max_tokens_per_file and total_tokens_written > max_tokens_per_file:
                    new_file.close()
                    sub_rank += 1
                    destination = get_output_filename(save_filename, rank, 'shuffled', sub_rank)
                    new_file = TokenizedFile(self.output_folder if not new_output_folder else new_output_folder, destination, save_loss_metadata=self.save_loss_metadata, upload_block_size=self.upload_block_size, tokenizer_name_or_path=self.tokenizer_name_or_path, save_final_metadata=self.save_final_metadata, token_size=self.token_size)
                    logger.info(f'Shuffling in {destination}...')
                    total_tokens_written = 0
            if loss_file:
                loss_file.close()
            new_file.close()
            return new_file

    def write_final_metadata(self, token_count: int=-1, filename: str=None):
        tokenizer_name = self.tokenizer_name_or_path
        if not tokenizer_name:
            tokenizer_name = 'Unknown Tokenizer' + '|' + str(self.token_size)
        if filename is None:
            filename = self.filename
        with self.output_folder.open(f'{filename}.metadata', 'wt') as f:
            if token_count == -1:
                token_count = self.write_idx
            f.write('\n'.join([tokenizer_name + '|' + str(self.token_size), str(token_count), humanize.metric(token_count, unit='T')]))

def get_output_filename(save_filename, rank: int, name: str, sub_rank: int=None):
    if sub_rank is not None:
        return '_'.join([x for x in [save_filename, f'{rank:05d}', f'{sub_rank:05d}', f'{name}.ds'] if x])
    return '_'.join([x for x in [save_filename, f'{rank:05d}', f'{name}.ds'] if x])

class DocumentTokenizer(PipelineStepWithTokenizer):
    name = '✍️ Writer'
    type = '🔢 - TOKENIZER'

    def __init__(self, output_folder: DataFolderLike, local_working_dir: DataFolderLike | None=None, save_filename: str=None, tokenizer_name_or_path: str='gpt2', eos_token: str='<|endoftext|>', save_loss_metadata: bool=False, shuffle: bool=True, batch_size: int=10000, max_tokens_per_file: int=None, seed: int=None, save_final_metadata: bool=True, upload_block_size: int | None=None):
        super().__init__()
        self.output_folder = get_datafolder(output_folder)
        self.local_working_dir = get_datafolder(local_working_dir) if local_working_dir else None
        if self.local_working_dir and (not self.local_working_dir.is_local()):
            raise ValueError('local_working_dir must be a local path')
        if self.local_working_dir is None and shuffle and (not self.output_folder.is_local()):
            logger.warning('local_working_dir is not set and output folder is not local. This may slow down the process.')
        self.save_filename = save_filename
        self.tokenizer_name_or_path = tokenizer_name_or_path
        self.eos_token = eos_token
        self.save_loss_metadata = save_loss_metadata
        self.shuffle = shuffle
        self.batch_size = batch_size
        self.rand = default_rng(seed)
        self.save_final_metadata = save_final_metadata
        self.upload_block_size = upload_block_size
        self.max_tokens_per_file = max_tokens_per_file

    def get_loss_values(self, document: Document, encoded: 'Encoding'):
        if self.save_loss_metadata:
            loss_values = np.ones(len(encoded.ids))
            if (no_loss := document.metadata.get('no_loss_ranges', None)):
                for (start, end) in no_loss:
                    (t_start, t_end) = (encoded.char_to_token(start), encoded.char_to_token(end))
                    loss_values[t_start:t_end] = 0
                    if t_end is None or t_end >= len(encoded.ids):
                        loss_values = loss_values[:t_start]
            return loss_values

    def write_unshuffled(self, data: DocumentsPipeline, filename: str):
        from tokenizers import Encoding
        unshuff = TokenizedFile(self.output_folder if not self.shuffle or not self.local_working_dir else self.local_working_dir, filename, save_index=not self.shuffle, save_loss_metadata=self.save_loss_metadata, upload_block_size=self.upload_block_size, tokenizer_name_or_path=self.tokenizer_name_or_path, save_final_metadata=self.save_final_metadata, token_size=self.token_size)
        for batch in batched(data, self.batch_size):
            with self.track_time(unit='batch'):
                encoded_batch: list[Encoding] = self.tokenizer.encode_batch([document.text for document in batch])
                for (document, encoded) in zip(batch, encoded_batch):
                    tokens = encoded.ids
                    loss_values = self.get_loss_values(document, encoded)
                    if loss_values is not None and len(loss_values) < len(tokens):
                        tokens = tokens[:len(loss_values)]
                    unshuff.write(tokens, loss_values)
                    self.stat_update('tokens', value=len(tokens))
        unshuff.close()
        return unshuff

    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        unshuf_filename = get_output_filename(self.save_filename, rank, 'unshuffled')
        logger.info(f'Tokenizing in "{unshuf_filename}"...')
        outputfile: TokenizedFile = self.write_unshuffled(data, unshuf_filename)
        if len(outputfile) == 0:
            logger.warning('No data saved.')
            return
        if self.shuffle:
            logger.info('Shuffling...')
            outputfile.copy(self.save_filename, self.rand.permutation(len(outputfile.doc_ends)), self.output_folder, max_tokens_per_file=self.max_tokens_per_file, rank=rank)
            outputfile.cleanup()

# File: datatrove-main/src/datatrove/pipeline/writers/disk_base.py
import dataclasses
import os.path
from abc import ABC, abstractmethod
from collections import Counter
from string import Template
from types import MethodType
from typing import IO, Callable
from datatrove.data import Document, DocumentsPipeline
from datatrove.io import DataFolderLike, get_datafolder
from datatrove.pipeline.base import PipelineStep
from datatrove.utils.typeshelper import StatHints

class DiskWriter(PipelineStep, ABC):
    default_output_filename: str = None
    type = '💽 - WRITER'

    def __init__(self, output_folder: DataFolderLike, output_filename: str=None, compression: str | None='infer', adapter: Callable=None, mode: str='wt', expand_metadata: bool=False, max_file_size: int=-1):
        super().__init__()
        self.compression = compression
        self.output_folder = get_datafolder(output_folder)
        output_filename = output_filename or self.default_output_filename
        if self.compression == 'gzip' and (not output_filename.endswith('.gz')):
            output_filename += '.gz'
        elif self.compression == 'zstd' and (not output_filename.endswith('.zst')):
            output_filename += '.zst'
        self.max_file_size = max_file_size
        self.file_id_counter = Counter()
        if self.max_file_size > 0 and mode != 'wb':
            raise ValueError('Can only specify `max_file_size` when writing in binary mode!')
        self.output_filename = Template(output_filename)
        self.output_mg = self.output_folder.get_output_file_manager(mode=mode, compression=compression)
        self.adapter = MethodType(adapter, self) if adapter else self._default_adapter
        self.expand_metadata = expand_metadata

    def _default_adapter(self, document: Document) -> dict:
        data = {key: val for (key, val) in dataclasses.asdict(document).items() if val}
        if self.expand_metadata and 'metadata' in data:
            data |= data.pop('metadata')
        return data

    def __enter__(self):
        return self

    def close(self):
        self.output_mg.close()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.close()

    def _get_output_filename(self, document: Document, rank: int | str=0, **kwargs) -> str:
        return self.output_filename.substitute({'rank': str(rank).zfill(5), 'id': document.id, **document.metadata, **kwargs})

    @abstractmethod
    def _write(self, document: dict, file_handler: IO, filename: str):
        raise NotImplementedError

    def _on_file_switch(self, _original_name, old_filename, _new_filename):
        self.output_mg.pop(old_filename).close()

    def _get_filename_with_file_id(self, filename):
        if os.path.dirname(filename):
            return f'{os.path.dirname(filename)}/{self.file_id_counter[filename]:03d}_{os.path.basename(filename)}'
        return f'{self.file_id_counter[filename]:03d}_{os.path.basename(filename)}'

    def write(self, document: Document, rank: int=0, **kwargs):
        original_name = output_filename = self._get_output_filename(document, rank, **kwargs)
        if self.max_file_size > 0:
            output_filename = self._get_filename_with_file_id(original_name)
            if self.output_mg.get_file(output_filename).tell() >= self.max_file_size:
                self.file_id_counter[original_name] += 1
                new_output_filename = self._get_filename_with_file_id(original_name)
                self._on_file_switch(original_name, output_filename, new_output_filename)
                output_filename = new_output_filename
        self._write(self.adapter(document), self.output_mg.get_file(output_filename), original_name)
        self.stat_update(self._get_output_filename(document, 'XXXXX', **kwargs))
        self.stat_update(StatHints.total)
        self.update_doc_stats(document)

    def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline:
        with self:
            for document in data:
                with self.track_time():
                    self.write(document, rank)
                yield document

# File: datatrove-main/src/datatrove/pipeline/writers/huggingface.py
import os
import random
import tempfile
import time
from typing import Callable
from huggingface_hub import CommitOperationAdd, create_commit, create_repo, preupload_lfs_files
from huggingface_hub.utils import HfHubHTTPError
from datatrove.io import DataFolderLike, get_datafolder
from datatrove.pipeline.writers import ParquetWriter
from datatrove.utils.logging import logger
MAX_RETRIES = 12
BASE_DELAY = 0.1

class HuggingFaceDatasetWriter(ParquetWriter):
    default_output_filename: str = 'data/${rank}.parquet'
    name = '🤗 HuggingFace'

    def __init__(self, dataset: str, private: bool=True, local_working_dir: DataFolderLike | None=None, output_filename: str=None, compression: str | None=None, adapter: Callable=None, cleanup: bool=True, expand_metadata: bool=True, max_file_size: int=round(4.5 * 2 ** 30)):
        self.dataset = dataset
        self.private = private
        self.local_working_dir = get_datafolder(local_working_dir if local_working_dir else tempfile.TemporaryDirectory())
        self.cleanup = cleanup
        if not self.local_working_dir.is_local():
            raise ValueError('local_working_dir must be a local path')
        if os.environ.get('HF_HUB_ENABLE_HF_TRANSFER', '0') != '1':
            logger.warning('HF_HUB_ENABLE_HF_TRANSFER is not set to "1". Install hf_transfer and set the env variable for faster uploads:\npip install hf-transfer\nexport HF_HUB_ENABLE_HF_TRANSFER=1')
        super().__init__(output_folder=local_working_dir, output_filename=output_filename, compression=compression, adapter=adapter, expand_metadata=expand_metadata, max_file_size=max_file_size)
        self.operations = []
        self._repo_init = False

    def upload_files(self, *filenames):
        if not self._repo_init:
            create_repo(self.dataset, private=self.private, repo_type='dataset', exist_ok=True)
            self._repo_init = True
        additions = [CommitOperationAdd(path_in_repo=filename, path_or_fileobj=self.local_working_dir.resolve_paths(filename)) for filename in filenames]
        logger.info(f"Uploading {','.join(filenames)} to the hub...")
        preupload_lfs_files(self.dataset, repo_type='dataset', additions=additions)
        logger.info(f"Upload of {','.join(filenames)} to the hub complete!")
        if self.cleanup:
            for filename in filenames:
                self.local_working_dir.rm(filename)
        self.operations.extend(additions)

    def close(self, rank: int=0):
        filelist = list(self.output_mg.get_open_files().keys())
        super().close()
        if filelist:
            logger.info(f'Starting upload of {len(filelist)} files to {self.dataset}')
            self.upload_files(*filelist)
        retries = 0
        while True:
            try:
                create_commit(self.dataset, repo_type='dataset', operations=self.operations, commit_message=f'DataTrove upload ({len(self.operations)} files)')
                break
            except HfHubHTTPError as e:
                if 'A commit has happened since' in e.server_message:
                    if retries >= MAX_RETRIES:
                        logger.error(f'Failed to create commit after MAX_RETRIES={MAX_RETRIES!r}. Giving up.')
                        raise e
                    logger.info('Commit creation race condition issue. Waiting...')
                    time.sleep(BASE_DELAY * 2 ** retries + random.uniform(0, 2))
                    retries += 1
                else:
                    raise e

    def _on_file_switch(self, original_name, old_filename, new_filename):
        super()._on_file_switch(original_name, old_filename, new_filename)
        self.upload_files(old_filename)

# File: datatrove-main/src/datatrove/pipeline/writers/jsonl.py
from typing import IO, Callable
from datatrove.io import DataFolderLike
from datatrove.pipeline.writers.disk_base import DiskWriter

class JsonlWriter(DiskWriter):
    default_output_filename: str = '${rank}.jsonl'
    name = '🐿 Jsonl'
    _requires_dependencies = ['orjson']

    def __init__(self, output_folder: DataFolderLike, output_filename: str=None, compression: str | None='gzip', adapter: Callable=None, expand_metadata: bool=False, max_file_size: int=-1):
        super().__init__(output_folder, output_filename=output_filename, compression=compression, adapter=adapter, expand_metadata=expand_metadata, mode='wb', max_file_size=max_file_size)

    def _write(self, document: dict, file_handler: IO, _filename: str):
        import orjson
        file_handler.write(orjson.dumps(document, option=orjson.OPT_APPEND_NEWLINE))

# File: datatrove-main/src/datatrove/pipeline/writers/parquet.py
from collections import Counter, defaultdict
from typing import IO, Callable, Literal
from datatrove.io import DataFolderLike
from datatrove.pipeline.writers.disk_base import DiskWriter

class ParquetWriter(DiskWriter):
    default_output_filename: str = '${rank}.parquet'
    name = '📒 Parquet'
    _requires_dependencies = ['pyarrow']

    def __init__(self, output_folder: DataFolderLike, output_filename: str=None, compression: Literal['snappy', 'gzip', 'brotli', 'lz4', 'zstd'] | None=None, adapter: Callable=None, batch_size: int=1000, expand_metadata: bool=False, max_file_size: int=5 * 2 ** 30):
        if compression not in {'snappy', 'gzip', 'brotli', 'lz4', 'zstd', None}:
            raise ValueError("Invalid compression type. Allowed types are 'snappy', 'gzip', 'brotli', 'lz4', 'zstd', or None.")
        super().__init__(output_folder, output_filename, compression=None, adapter=adapter, mode='wb', expand_metadata=expand_metadata, max_file_size=max_file_size)
        self._writers = {}
        self._batches = defaultdict(list)
        self._file_counter = Counter()
        self.compression = compression
        self.batch_size = batch_size

    def _on_file_switch(self, original_name, old_filename, new_filename):
        self._writers.pop(original_name).close()
        super()._on_file_switch(original_name, old_filename, new_filename)

    def _write_batch(self, filename):
        if not self._batches[filename]:
            return
        import pyarrow as pa
        batch = pa.RecordBatch.from_pylist(self._batches.pop(filename))
        self._writers[filename].write_batch(batch)

    def _write(self, document: dict, file_handler: IO, filename: str):
        import pyarrow as pa
        import pyarrow.parquet as pq
        if filename not in self._writers:
            self._writers[filename] = pq.ParquetWriter(file_handler, schema=pa.RecordBatch.from_pylist([document]).schema, compression=self.compression)
        self._batches[filename].append(document)
        if len(self._batches[filename]) == self.batch_size:
            self._write_batch(filename)

    def close(self):
        for filename in list(self._batches.keys()):
            self._write_batch(filename)
        for writer in self._writers.values():
            writer.close()
        self._batches.clear()
        self._writers.clear()
        super().close()

# File: datatrove-main/src/datatrove/tools/check_dataset.py
import argparse
import os
import struct
from typing import IO
import numpy as np
from tqdm import tqdm
from datatrove.io import DataFolder, get_datafolder
from datatrove.utils.tokenization import load_tokenizer
parser = argparse.ArgumentParser()
parser.add_argument('data', type=str, help='path to folder with dataset to check', nargs='?', default=os.getcwd())
parser.add_argument('-t', '--tokenizer', type=str, help='tokenizer to use', default='gpt2')
parser.add_argument('--eos', type=str, help='eos token', default='<|endoftext|>')
''

def load_doc_ends(file: IO):
    with file as f:
        return np.frombuffer(f.read(), dtype=np.uint64).tolist()

def load_dataset_bytes(file, doc_ends, bytes_per_value: int=2):
    with file as f:
        for (start, end) in zip([0] + doc_ends[:-1], doc_ends):
            data = f.read((end - start) * bytes_per_value)
            assert len(data) == (end - start) * bytes_per_value, 'Could not read correct number of bytes'
            yield data
        assert f.read(1) == b'', 'Dataset should be exhausted but there is more data to read'

def check_dataset(input_folder: DataFolder, tokenizer: str='gpt2', eos_token: str='<|endoftext|>'):
    tokenizer = load_tokenizer(tokenizer)
    eos_token = tokenizer.token_to_id(eos_token)

    def open_file(path):
        return input_folder.open(path, 'rb')
    datafiles = input_folder.list_files(glob_pattern='*.ds')
    datafiles_index = input_folder.list_files(glob_pattern='*.ds.index')
    datafiles_loss = input_folder.list_files(glob_pattern='*.ds.loss')
    check_loss = bool(datafiles_loss)
    assert len(datafiles) == len(datafiles_index) and (not check_loss or len(datafiles) == len(datafiles_loss)), 'Mismatch between number of .ds, .ds.index and/or .ds.loss files'
    doc_ends = [load_doc_ends(open_file(file)) for file in datafiles_index]
    token_inputs = [load_dataset_bytes(open_file(path), ends) for (path, ends) in zip(datafiles, doc_ends)]
    loss_inputs = [load_dataset_bytes(open_file(path), ends, bytes_per_value=1) for (path, ends) in zip(datafiles_loss, doc_ends)] if check_loss else [None] * len(token_inputs)
    for (filei, (file_doc_ends, file_token_inputs, file_loss_inputs)) in enumerate(zip(doc_ends, token_inputs, loss_inputs)):
        for (doci, tokens) in tqdm(enumerate(file_token_inputs), total=len(file_doc_ends)):
            last_token = struct.unpack('<H', tokens[-2:])[0]
            assert last_token == eos_token, f'no EOS at doc end of doc {doci}'
if __name__ == '__main__':
    args = parser.parse_args()
    input_folder: DataFolder = get_datafolder(args.data)
    check_dataset(input_folder, args.tokenizer, args.eos)
    print('All checks ok')

# File: datatrove-main/src/datatrove/tools/failed_logs.py
import argparse
import json
import os.path
import re
from rich.console import Console
from rich.prompt import Confirm
from datatrove.io import get_datafolder
from datatrove.utils._import_utils import is_rich_available
from datatrove.utils.logging import logger
if not is_rich_available():
    raise ImportError('Please install `rich` to run this command (`pip install rich`).')
parser = argparse.ArgumentParser('Fetch the log files of failed tasks.')
parser.add_argument('path', type=str, nargs='?', help='Path to the logging folder. Defaults to current directory.', default=os.getcwd())
RANK_FROM_LOG_FILENAME_REGEX = re.compile('logs/task_(\\d{5})\\.log')

def main():
    args = parser.parse_args()
    console = Console()
    logger.remove()
    logging_dir = get_datafolder(args.path)
    if not logging_dir.isfile('executor.json'):
        console.log('Could not find "executor.json" in the given directory. Are you sure it is a logging folder?', style='red')
        return
    with logging_dir.open('executor.json', 'rt') as f:
        world_size = json.load(f).get('world_size', None)
    if not world_size:
        console.log('Could not get the total number of tasks, please try relaunching the run.', style='red')
        return
    console.log(f'Found executor config: {world_size} tasks')
    with console.status('Fetching list of incomplete tasks'):
        completed = set(logging_dir.list_files('completions'))
        incomplete = set(filter(lambda rank: f'completions/{rank:05d}' not in completed, range(world_size)))
    console.log(f'Found {len(incomplete)}/{world_size} incomplete tasks.')
    with console.status('Looking for log files'):
        incomplete_logs = list(filter(lambda file: int(RANK_FROM_LOG_FILENAME_REGEX.search(file).group(1)) in incomplete, logging_dir.list_files('logs')))
    console.log(f'Found {len(incomplete_logs)} log files for incomplete tasks.')
    first = True
    for incomplete_log in incomplete_logs:
        if not first and (not Confirm.ask(f'Show next log ([i]{incomplete_log}[/i])?', default=True)):
            break
        with console.pager():
            with logging_dir.open(incomplete_log, 'rt') as f:
                console.print(f.read())
        first = False
if __name__ == '__main__':
    main()

# File: datatrove-main/src/datatrove/tools/inspect_data.py
import argparse
import os.path
import sys
from rich.console import Console
from rich.panel import Panel
from rich.prompt import Confirm, Prompt
from datatrove.io import DataFolder, get_datafolder
from datatrove.pipeline.filters import SamplerFilter
from datatrove.pipeline.readers import CSVReader, JsonlReader, ParquetReader, WarcReader
from datatrove.pipeline.writers import JsonlWriter
from datatrove.utils._import_utils import is_rich_available
''
if not is_rich_available():
    raise ImportError('Please install `rich` to run this command (`pip install rich`).')
parser = argparse.ArgumentParser("Manually inspect some RefinedWeb samples. Any unknown parameters will be passed to the reader (example: 'text_key=text').")
parser.add_argument('path', type=str, nargs='?', help='Path to the data folder. Defaults to current directory.', default=os.getcwd())
parser.add_argument('-r', '--reader', type=str, help="The type of Reader to use to read the data. By default it will be guessed from the file extension. Can be ('jsonl', 'parquet', 'csv' or 'warc')")
parser.add_argument('-s', '--sample', type=float, help='Randomly sample a given % of samples. 1.0 to see all samples', default=1.0)
parser.add_argument('-l', '--label', type=str, help='Label the examples as good/bad and store at this location', default='')
console = Console()

def reader_class_from_name(reader_type):
    match reader_type:
        case 'jsonl':
            return JsonlReader
        case 'csv':
            return CSVReader
        case 'parquet':
            return ParquetReader
        case 'warc':
            return WarcReader
        case other:
            console.log(f'[red]Unknwon reader type {other}')
            sys.exit(-1)

def reader_factory(data_folder: DataFolder, reader_type: str=None, **kwargs):
    data_files = data_folder.list_files()
    if not data_files:
        console.log(f'[red]Could not find any files in "{data_folder.path}"')
        sys.exit(-1)
    if not reader_type:
        match data_files[0][data_files[0].index('.'):]:
            case '.jsonl.gz' | '.jsonl' | '.json':
                reader_type = 'jsonl'
            case '.csv':
                reader_type = 'csv'
            case '.parquet':
                reader_type = 'parquet'
            case '.warc.gz' | 'arc.gz' | '.warc':
                reader_type = 'warc'
            case other:
                console.log(f'[red]Could not find a matching reader for file extension "{other}"')
                sys.exit(-1)
    return reader_class_from_name(reader_type)(data_folder, **kwargs)

def get_filter_expr(text=None):
    return (lambda x: eval(text)) if text else lambda x: True

def main():
    """"""
    (args, extra_args) = parser.parse_known_args()
    kwargs = dict((extra_arg.split('=') for extra_arg in extra_args))
    data_folder = get_datafolder(args.path)
    label_folder = get_datafolder(args.label) if args.label else None
    reader = reader_factory(data_folder, args.reader, **kwargs)
    sampler = SamplerFilter(args.sample)
    console.print(f'''Loading samples from "{data_folder.path}" with {reader} and sampling_rate={args.sample}.\nSamples are displayed full page one by one.\nIf you don't see any color you may run "export PAGER='less -r'".''')
    filter_expr_text = None
    if Confirm.ask("Would you like to add a filtering expression? (ex: x.metadata['token_count'] > 5000)", default=False):
        filter_expr_text = Confirm.get_input(console, 'Type your filtering expression: ', password=False)
    filter_expr = get_filter_expr(filter_expr_text)
    good_samples = []
    bad_samples = []
    iterator = sampler(reader())
    try:
        for sample in iterator:
            if not filter_expr(sample):
                continue
            with console.pager(styles=True):
                console.print(Panel(f'[yellow]Data ID:[reset] {sample.id}\n[yellow]Metadata:[reset]\n' + '\n'.join((f'- [blue]{field}: [reset] {value}' for (field, value) in sample.metadata.items()))))
                console.print(sample.text)
            if label_folder:
                result = Prompt.ask("To label as good/bad example enter 'g'/'b'. Enter 'q' to skip labelling and move to the next sample. Enter 'e' (exit) to leave:", console=console, choices=['g', 'b', 'e', 'q'])
                if result == 'g':
                    good_samples.append(sample)
                elif result == 'b':
                    bad_samples.append(sample)
                elif result == 'e':
                    break
    except Exception:
        console.print_exception()
    finally:
        if good_samples and label_folder:
            with JsonlWriter(label_folder, 'good_samples.jsonl', compression=None) as writer:
                for sample in good_samples:
                    writer.write(sample)
        if bad_samples and label_folder:
            with JsonlWriter(label_folder, 'bad_samples.jsonl', compression=None) as writer:
                for sample in bad_samples:
                    writer.write(sample)
if __name__ == '__main__':
    main()

# File: datatrove-main/src/datatrove/tools/jobs_status.py
import argparse
import json
import os.path
from rich.console import Console
from datatrove.io import get_datafolder
from datatrove.utils._import_utils import is_rich_available
from datatrove.utils.logging import logger
if not is_rich_available():
    raise ImportError('Please install `rich` to run this command (`pip install rich`).')
parser = argparse.ArgumentParser('Fetch all jobs that are running or complete.')
parser.add_argument('path', type=str, nargs='?', help='Path to the logging folder. Defaults to current directory.', default=os.getcwd())
parser.add_argument('-p', '--log_prefix', type=str, nargs='?', help='Prefix of logging folders to be scanned.', default='')
parser.add_argument('-hc', '--hide_complete', help='Hide all jobs that are already complete.', action='store_true')

def main():
    args = parser.parse_args()
    console = Console()
    main_folder = get_datafolder(args.path)
    logging_dirs = [f for (f, info) in main_folder.glob(f'{args.log_prefix}*', detail=True, maxdepth=1).items() if info['type'] == 'directory']
    logger.remove()
    complete_jobs = 0
    incomplete_jobs = 0
    complete_tasks = 0
    incomplete_tasks = 0
    for path in logging_dirs:
        logging_dir = get_datafolder(main_folder.resolve_paths(path))
        if not logging_dir.isfile('executor.json'):
            console.log(f'Could not find "executor.json" in the given directory ({path}). Are you sure it is a logging folder?', style='red')
            continue
        with logging_dir.open('executor.json', 'rt') as f:
            world_size = json.load(f).get('world_size', None)
        if not world_size:
            console.log(f'Could not get the total number of tasks in {path}, please try relaunching the run.', style='red')
            continue
        with console.status('Fetching list of incomplete tasks'):
            completed = set(logging_dir.list_files('completions'))
            incomplete = set(filter(lambda rank: f'completions/{rank:05d}' not in completed, range(world_size)))
        complete_tasks += len(completed)
        incomplete_tasks += len(incomplete)
        if len(incomplete) == 0:
            emoji = '✅'
            complete_jobs += 1
        else:
            emoji = '❌'
            incomplete_jobs += 1
        if len(incomplete) > 0 or not args.hide_complete:
            console.log(f"{emoji} {path + ':': <50}{len(completed)}/{world_size} ({len(completed) / world_size:.0%}) completed tasks.")
    if complete_jobs + incomplete_jobs > 0:
        console.log(f'Summary: {complete_jobs}/{complete_jobs + incomplete_jobs} ({complete_jobs / (complete_jobs + incomplete_jobs):.0%}) jobs completed, {complete_tasks}/{complete_tasks + incomplete_tasks} ({complete_tasks / (complete_tasks + incomplete_tasks):.0%}) tasks completed.')
    else:
        console.log('No jobs found.')
if __name__ == '__main__':
    main()

# File: datatrove-main/src/datatrove/tools/launch_pickled_pipeline.py
import argparse
import dill
from datatrove.executor.base import PipelineExecutor
from datatrove.io import open_file
parser = argparse.ArgumentParser('Loads a pickled pipeline executor and launches it.')
parser.add_argument('path', type=str, help='Path to the pickled file (usually a file called executor.pik)')

def main():
    args = parser.parse_args()
    with open_file(args.path, 'rb') as f:
        executor: PipelineExecutor = dill.load(f)
    executor.run()
if __name__ == '__main__':
    main()

# File: datatrove-main/src/datatrove/tools/merge_stats.py
import argparse
import json
import os.path
from tqdm import tqdm
from datatrove.io import get_datafolder, open_file
from datatrove.utils.logging import logger
from datatrove.utils.stats import PipelineStats
parser = argparse.ArgumentParser('Combine and average per task statistics into a single file.')
parser.add_argument('path', type=str, nargs='?', help='Path to the stats folder. Defaults to current directory.', default=os.getcwd())
parser.add_argument('--output', '-o', type=str, help="Save file location. Defaults to 'merged_stats.json'.", default='merged_stats.json')

def main():
    args = parser.parse_args()
    stats_folder = get_datafolder(args.path)
    path = args.output
    stats = []
    for file in tqdm(stats_folder.list_files()):
        with stats_folder.open(file, 'rt') as f:
            stats.append(PipelineStats.from_json(json.load(f)))
    merged = sum(tqdm(stats), start=PipelineStats())
    with open_file(path, mode='wt') as f:
        merged.save_to_disk(f)
    logger.info(f'Processing complete. Results saved to {path}.')
    logger.info(merged)
if __name__ == '__main__':
    main()