File size: 97,282 Bytes
b1d4de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 |
# File: open_asr_leaderboard-main/ctranslate2/run_eval.py """""" import argparse import os import time import evaluate from faster_whisper import WhisperModel from tqdm import tqdm from normalizer import data_utils wer_metric = evaluate.load('wer') def main(args) -> None: asr_model = WhisperModel(model_size_or_path=args.model_id, compute_type='float16', device='cuda', device_index=args.device) def benchmark(batch): start_time = time.time() (segments, _) = asr_model.transcribe(batch['audio']['array'], language='en') outputs = [segment._asdict() for segment in segments] batch['transcription_time_s'] = time.time() - start_time batch['predictions'] = data_utils.normalizer(''.join([segment['text'] for segment in outputs])).strip() batch['references'] = batch['norm_text'] return batch if args.warmup_steps is not None: dataset = data_utils.load_data(args) dataset = data_utils.prepare_data(dataset) if args.streaming: warmup_dataset = dataset.take(args.warmup_steps) else: warmup_dataset = dataset.select(range(min(args.warmup_steps, len(dataset)))) warmup_dataset = iter(warmup_dataset.map(benchmark, remove_columns=['audio'])) for _ in tqdm(warmup_dataset, desc='Warming up...'): continue dataset = data_utils.load_data(args) if args.max_eval_samples is not None and args.max_eval_samples > 0: print(f'Subsampling dataset to first {args.max_eval_samples} samples!') if args.streaming: dataset = dataset.take(args.max_eval_samples) else: dataset = dataset.select(range(min(args.max_eval_samples, len(dataset)))) dataset = data_utils.prepare_data(dataset) dataset = dataset.map(benchmark, remove_columns=['audio']) all_results = {'audio_length_s': [], 'transcription_time_s': [], 'predictions': [], 'references': []} result_iter = iter(dataset) for result in tqdm(result_iter, desc='Samples...'): for key in all_results: all_results[key].append(result[key]) manifest_path = data_utils.write_manifest(all_results['references'], all_results['predictions'], args.model_id, args.dataset_path, args.dataset, args.split, audio_length=all_results['audio_length_s'], transcription_time=all_results['transcription_time_s']) print('Results saved at path:', os.path.abspath(manifest_path)) wer = wer_metric.compute(references=all_results['references'], predictions=all_results['predictions']) wer = round(100 * wer, 2) rtfx = round(sum(all_results['audio_length_s']) / sum(all_results['transcription_time_s']), 2) print('WER:', wer, '%', 'RTFx:', rtfx) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model_id', type=str, required=True, help='Model identifier. Should be loadable with faster-whisper') parser.add_argument('--dataset_path', type=str, default='esb/datasets', help='Dataset path. By default, it is `esb/datasets`') parser.add_argument('--dataset', type=str, required=True, help="Dataset name. *E.g.* `'librispeech_asr` for the LibriSpeech ASR dataset, or `'common_voice'` for Common Voice. The full list of dataset names can be found at `https://huggingface.co/datasets/esb/datasets`") parser.add_argument('--split', type=str, default='test', help="Split of the dataset. *E.g.* `'validation`' for the dev split, or `'test'` for the test split.") parser.add_argument('--device', type=int, default=-1, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.') parser.add_argument('--max_eval_samples', type=int, default=None, help='Number of samples to be evaluated. Put a lower number e.g. 64 for testing this script.') parser.add_argument('--no-streaming', dest='streaming', action='store_false', help="Choose whether you'd like to download the entire dataset or stream it during the evaluation.") parser.add_argument('--warmup_steps', type=int, default=5, help='Number of warm-up steps to run before launching the timed runs.') args = parser.parse_args() parser.set_defaults(streaming=False) main(args) # File: open_asr_leaderboard-main/nemo_asr/run_eval.py import argparse import os import torch import evaluate import soundfile from tqdm import tqdm from normalizer import data_utils import numpy as np from nemo.collections.asr.models import ASRModel import time wer_metric = evaluate.load('wer') def main(args): DATA_CACHE_DIR = os.path.join(os.getcwd(), 'audio_cache') DATASET_NAME = args.dataset SPLIT_NAME = args.split CACHE_DIR = os.path.join(DATA_CACHE_DIR, DATASET_NAME, SPLIT_NAME) if not os.path.exists(CACHE_DIR): os.makedirs(CACHE_DIR) if args.device >= 0: device = torch.device(f'cuda:{args.device}') compute_dtype = torch.bfloat16 else: device = torch.device('cpu') compute_dtype = torch.float32 if args.model_id.endswith('.nemo'): asr_model = ASRModel.restore_from(args.model_id, map_location=device) else: asr_model = ASRModel.from_pretrained(args.model_id, map_location=device) asr_model.to(compute_dtype) asr_model.eval() dataset = data_utils.load_data(args) def download_audio_files(batch): audio_paths = [] durations = [] for (id, sample) in zip(batch['id'], batch['audio']): audio_path = os.path.join(CACHE_DIR, f'{id}.wav') if not os.path.exists(audio_path): os.makedirs(os.path.dirname(audio_path), exist_ok=True) soundfile.write(audio_path, np.float32(sample['array']), 16000) audio_paths.append(audio_path) durations.append(len(sample['array']) / 16000) batch['references'] = batch['norm_text'] batch['audio_filepaths'] = audio_paths batch['durations'] = durations return batch if args.max_eval_samples is not None and args.max_eval_samples > 0: print(f'Subsampling dataset to first {args.max_eval_samples} samples !') dataset = dataset.take(args.max_eval_samples) dataset = data_utils.prepare_data(dataset) if asr_model.cfg.decoding.strategy != 'beam': asr_model.cfg.decoding.strategy = 'greedy_batch' asr_model.change_decoding_strategy(asr_model.cfg.decoding) dataset = dataset.map(download_audio_files, batch_size=args.batch_size, batched=True, remove_columns=['audio']) all_data = {'audio_filepaths': [], 'durations': [], 'references': []} data_itr = iter(dataset) for data in tqdm(data_itr, desc='Downloading Samples'): for key in all_data: all_data[key].append(data[key]) sorted_indices = sorted(range(len(all_data['durations'])), key=lambda k: all_data['durations'][k], reverse=True) all_data['audio_filepaths'] = [all_data['audio_filepaths'][i] for i in sorted_indices] all_data['references'] = [all_data['references'][i] for i in sorted_indices] all_data['durations'] = [all_data['durations'][i] for i in sorted_indices] total_time = 0 for _ in range(2): if _ == 0: audio_files = all_data['audio_filepaths'][:args.batch_size * 4] else: audio_files = all_data['audio_filepaths'] start_time = time.time() with torch.cuda.amp.autocast(enabled=False, dtype=compute_dtype), torch.inference_mode(), torch.no_grad(): if 'canary' in args.model_id: transcriptions = asr_model.transcribe(audio_files, batch_size=args.batch_size, verbose=False, pnc='no', num_workers=1) else: transcriptions = asr_model.transcribe(audio_files, batch_size=args.batch_size, verbose=False, num_workers=1) end_time = time.time() if _ == 1: total_time += end_time - start_time total_time = total_time if isinstance(transcriptions, tuple) and len(transcriptions) == 2: transcriptions = transcriptions[0] predictions = [data_utils.normalizer(pred) for pred in transcriptions] avg_time = total_time / len(all_data['audio_filepaths']) manifest_path = data_utils.write_manifest(all_data['references'], predictions, args.model_id, args.dataset_path, args.dataset, args.split, audio_length=all_data['durations'], transcription_time=[avg_time] * len(all_data['audio_filepaths'])) print('Results saved at path:', os.path.abspath(manifest_path)) wer = wer_metric.compute(references=all_data['references'], predictions=predictions) wer = round(100 * wer, 2) audio_length = sum(all_data['durations']) rtfx = audio_length / total_time rtfx = round(rtfx, 2) print('RTFX:', rtfx) print('WER:', wer, '%') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model_id', type=str, required=True, help='Model identifier. Should be loadable with NVIDIA NeMo.') parser.add_argument('--dataset_path', type=str, default='esb/datasets', help='Dataset path. By default, it is `esb/datasets`') parser.add_argument('--dataset', type=str, required=True, help="Dataset name. *E.g.* `'librispeech_asr` for the LibriSpeech ASR dataset, or `'common_voice'` for Common Voice. The full list of dataset names can be found at `https://huggingface.co/datasets/esb/datasets`") parser.add_argument('--split', type=str, default='test', help="Split of the dataset. *E.g.* `'validation`' for the dev split, or `'test'` for the test split.") parser.add_argument('--device', type=int, default=-1, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.') parser.add_argument('--batch_size', type=int, default=32, help='Number of samples to go through each streamed batch.') parser.add_argument('--max_eval_samples', type=int, default=None, help='Number of samples to be evaluated. Put a lower number e.g. 64 for testing this script.') parser.add_argument('--no-streaming', dest='streaming', action='store_false', help="Choose whether you'd like to download the entire dataset or stream it during the evaluation.") args = parser.parse_args() parser.set_defaults(streaming=True) main(args) # File: open_asr_leaderboard-main/normalizer/data_utils.py from datasets import load_dataset, Audio from normalizer import EnglishTextNormalizer from .eval_utils import read_manifest, write_manifest def is_target_text_in_range(ref): if ref.strip() == 'ignore time segment in scoring': return False else: return ref.strip() != '' def get_text(sample): if 'text' in sample: return sample['text'] elif 'sentence' in sample: return sample['sentence'] elif 'normalized_text' in sample: return sample['normalized_text'] elif 'transcript' in sample: return sample['transcript'] elif 'transcription' in sample: return sample['transcription'] else: raise ValueError(f"Expected transcript column of either 'text', 'sentence', 'normalized_text' or 'transcript'. Got sample of .join{{sample.keys()}}. Ensure a text column name is present in the dataset.") normalizer = EnglishTextNormalizer() def normalize(batch): batch['original_text'] = get_text(batch) batch['norm_text'] = normalizer(batch['original_text']) return batch def load_data(args): dataset = load_dataset(args.dataset_path, args.dataset, split=args.split, streaming=args.streaming, token=True) return dataset def prepare_data(dataset): dataset = dataset.cast_column('audio', Audio(sampling_rate=16000)) dataset = dataset.map(normalize) dataset = dataset.filter(is_target_text_in_range, input_columns=['norm_text']) return dataset # File: open_asr_leaderboard-main/normalizer/english_abbreviations.py english_spelling_normalizer = {'accessorise': 'accessorize', 'accessorised': 'accessorized', 'accessorises': 'accessorizes', 'accessorising': 'accessorizing', 'acclimatisation': 'acclimatization', 'acclimatise': 'acclimatize', 'acclimatised': 'acclimatized', 'acclimatises': 'acclimatizes', 'acclimatising': 'acclimatizing', 'accoutrements': 'accouterments', 'aeon': 'eon', 'aeons': 'eons', 'aerogramme': 'aerogram', 'aerogrammes': 'aerograms', 'aeroplane': 'airplane', 'aeroplanes': 'airplanes', 'aesthete': 'esthete', 'aesthetes': 'esthetes', 'aesthetic': 'esthetic', 'aesthetically': 'esthetically', 'aesthetics': 'esthetics', 'aetiology': 'etiology', 'ageing': 'aging', 'aggrandisement': 'aggrandizement', 'agonise': 'agonize', 'agonised': 'agonized', 'agonises': 'agonizes', 'agonising': 'agonizing', 'agonisingly': 'agonizingly', 'almanack': 'almanac', 'almanacks': 'almanacs', 'aluminium': 'aluminum', 'amortisable': 'amortizable', 'amortisation': 'amortization', 'amortisations': 'amortizations', 'amortise': 'amortize', 'amortised': 'amortized', 'amortises': 'amortizes', 'amortising': 'amortizing', 'amphitheatre': 'amphitheater', 'amphitheatres': 'amphitheaters', 'anaemia': 'anemia', 'anaemic': 'anemic', 'anaesthesia': 'anesthesia', 'anaesthetic': 'anesthetic', 'anaesthetics': 'anesthetics', 'anaesthetise': 'anesthetize', 'anaesthetised': 'anesthetized', 'anaesthetises': 'anesthetizes', 'anaesthetising': 'anesthetizing', 'anaesthetist': 'anesthetist', 'anaesthetists': 'anesthetists', 'anaesthetize': 'anesthetize', 'anaesthetized': 'anesthetized', 'anaesthetizes': 'anesthetizes', 'anaesthetizing': 'anesthetizing', 'analogue': 'analog', 'analogues': 'analogs', 'analyse': 'analyze', 'analysed': 'analyzed', 'analyses': 'analyzes', 'analysing': 'analyzing', 'anglicise': 'anglicize', 'anglicised': 'anglicized', 'anglicises': 'anglicizes', 'anglicising': 'anglicizing', 'annualised': 'annualized', 'antagonise': 'antagonize', 'antagonised': 'antagonized', 'antagonises': 'antagonizes', 'antagonising': 'antagonizing', 'apologise': 'apologize', 'apologised': 'apologized', 'apologises': 'apologizes', 'apologising': 'apologizing', 'appal': 'appall', 'appals': 'appalls', 'appetiser': 'appetizer', 'appetisers': 'appetizers', 'appetising': 'appetizing', 'appetisingly': 'appetizingly', 'arbour': 'arbor', 'arbours': 'arbors', 'archaeologically': 'archeologically', 'archaeologist': 'archeologist', 'archaeologists': 'archeologists', 'archaeology': 'archeology</span>', 'archeological': 'archaeological', 'ardour': 'ardor', 'armour': 'armor', 'armoured': 'armored', 'armourer': 'armorer', 'armourers': 'armorers', 'armouries': 'armories', 'armoury': 'armory', 'artefact': 'artifact', 'artefacts': 'artifacts', 'authorise': 'authorize', 'authorised': 'authorized', 'authorises': 'authorizes', 'authorising': 'authorizing', 'axe': 'ax', 'backpedalled': 'backpedaled', 'backpedalling': 'backpedaling', 'bannister': 'banister', 'bannisters': 'banisters', 'baptise': 'baptize', 'baptised': 'baptized', 'baptises': 'baptizes', 'baptising': 'baptizing', 'bastardise': 'bastardize', 'bastardised': 'bastardized', 'bastardises': 'bastardizes', 'bastardising': 'bastardizing', 'battleax': 'battleaxe', 'baulk': 'balk', 'baulked': 'balked', 'baulking': 'balking', 'baulks': 'balks', 'bedevilled': 'bedeviled', 'bedevilling': 'bedeviling', 'behaviour': 'behavior', 'behavioural': 'behavioral', 'behaviourism': 'behaviorism', 'behaviourist': 'behaviorist', 'behaviourists': 'behaviorists', 'behaviours': 'behaviors', 'behove': 'behoove', 'behoved': 'behooved', 'behoves': 'behooves', 'bejewelled': 'bejeweled', 'belabour': 'belabor', 'belaboured': 'belabored', 'belabouring': 'belaboring', 'belabours': 'belabors', 'bevelled': 'beveled', 'bevvies': 'bevies', 'bevvy': 'bevy', 'biassed': 'biased', 'biassing': 'biasing', 'bingeing': 'binging', 'bougainvillaea': 'bougainvillea', 'bougainvillaeas': 'bougainvilleas', 'bowdlerise': 'bowdlerize', 'bowdlerised': 'bowdlerized', 'bowdlerises': 'bowdlerizes', 'bowdlerising': 'bowdlerizing', 'breathalyse': 'breathalyze', 'breathalysed': 'breathalyzed', 'breathalyser': 'breathalyzer', 'breathalysers': 'breathalyzers', 'breathalyses': 'breathalyzes', 'breathalysing': 'breathalyzing', 'brutalise': 'brutalize', 'brutalised': 'brutalized', 'brutalises': 'brutalizes', 'brutalising': 'brutalizing', 'busses': 'buses', 'bussing': 'busing', 'caesarean': 'cesarean', 'caesareans': 'cesareans', 'calibre': 'caliber', 'calibres': 'calibers', 'calliper': 'caliper', 'callipers': 'calipers', 'callisthenics': 'calisthenics', 'canalise': 'canalize', 'canalised': 'canalized', 'canalises': 'canalizes', 'canalising': 'canalizing', 'cancelation': 'cancellation', 'cancelations': 'cancellations', 'cancelled': 'canceled', 'cancelling': 'canceling', 'candour': 'candor', 'cannibalise': 'cannibalize', 'cannibalised': 'cannibalized', 'cannibalises': 'cannibalizes', 'cannibalising': 'cannibalizing', 'canonise': 'canonize', 'canonised': 'canonized', 'canonises': 'canonizes', 'canonising': 'canonizing', 'capitalise': 'capitalize', 'capitalised': 'capitalized', 'capitalises': 'capitalizes', 'capitalising': 'capitalizing', 'caramelise': 'caramelize', 'caramelised': 'caramelized', 'caramelises': 'caramelizes', 'caramelising': 'caramelizing', 'carbonise': 'carbonize', 'carbonised': 'carbonized', 'carbonises': 'carbonizes', 'carbonising': 'carbonizing', 'carolled': 'caroled', 'carolling': 'caroling', 'catalogue': 'catalog', 'catalogued': 'cataloged', 'catalogues': 'catalogs', 'cataloguing': 'cataloging', 'catalyse': 'catalyze', 'catalysed': 'catalyzed', 'catalyses': 'catalyzes', 'catalysing': 'catalyzing', 'categorise': 'categorize', 'categorised': 'categorized', 'categorises': 'categorizes', 'categorising': 'categorizing', 'cauterise': 'cauterize', 'cauterised': 'cauterized', 'cauterises': 'cauterizes', 'cauterising': 'cauterizing', 'cavilled': 'caviled', 'cavilling': 'caviling', 'centigramme': 'centigram', 'centigrammes': 'centigrams', 'centilitre': 'centiliter', 'centilitres': 'centiliters', 'centimetre': 'centimeter', 'centimetres': 'centimeters', 'centralise': 'centralize', 'centralised': 'centralized', 'centralises': 'centralizes', 'centralising': 'centralizing', 'centre': 'center', 'centred': 'centered', 'centrefold': 'centerfold', 'centrefolds': 'centerfolds', 'centrepiece': 'centerpiece', 'centrepieces': 'centerpieces', 'centres': 'centers', 'channelled': 'channeled', 'channelling': 'channeling', 'characterise': 'characterize', 'characterised': 'characterized', 'characterises': 'characterizes', 'characterising': 'characterizing', 'cheque': 'check', 'chequebook': 'checkbook', 'chequebooks': 'checkbooks', 'chequered': 'checkered', 'cheques': 'checks', 'chilli': 'chili', 'chimaera': 'chimera', 'chimaeras': 'chimeras', 'chiselled': 'chiseled', 'chiselling': 'chiseling', 'circularise': 'circularize', 'circularised': 'circularized', 'circularises': 'circularizes', 'circularising': 'circularizing', 'civilise': 'civilize', 'civilised': 'civilized', 'civilises': 'civilizes', 'civilising': 'civilizing', 'clamour': 'clamor', 'clamoured': 'clamored', 'clamouring': 'clamoring', 'clamours': 'clamors', 'clangour': 'clangor', 'clarinettist': 'clarinetist', 'clarinettists': 'clarinetists', 'collectivise': 'collectivize', 'collectivised': 'collectivized', 'collectivises': 'collectivizes', 'collectivising': 'collectivizing', 'colonisation': 'colonization', 'colonise': 'colonize', 'colonised': 'colonized', 'coloniser': 'colonizer', 'colonisers': 'colonizers', 'colonises': 'colonizes', 'colonising': 'colonizing', 'colour': 'color', 'colourant': 'colorant', 'colourants': 'colorants', 'coloured': 'colored', 'coloureds': 'coloreds', 'colourful': 'colorful', 'colourfully': 'colorfully', 'colouring': 'coloring', 'colourize': 'colorize', 'colourized': 'colorized', 'colourizes': 'colorizes', 'colourizing': 'colorizing', 'colourless': 'colorless', 'colours': 'colors', 'commercialise': 'commercialize', 'commercialised': 'commercialized', 'commercialises': 'commercializes', 'commercialising': 'commercializing', 'compartmentalise': 'compartmentalize', 'compartmentalised': 'compartmentalized', 'compartmentalises': 'compartmentalizes', 'compartmentalising': 'compartmentalizing', 'computerise': 'computerize', 'computerised': 'computerized', 'computerises': 'computerizes', 'computerising': 'computerizing', 'conceptualise': 'conceptualize', 'conceptualised': 'conceptualized', 'conceptualises': 'conceptualizes', 'conceptualising': 'conceptualizing', 'connexion': 'connection', 'connexions': 'connections', 'contextualise': 'contextualize', 'contextualised': 'contextualized', 'contextualises': 'contextualizes', 'contextualising': 'contextualizing', 'cosier': 'cozier', 'cosies': 'cozies', 'cosiest': 'coziest', 'cosily': 'cozily', 'cosiness': 'coziness', 'cosy': 'cozy', 'councillor': 'councilor', 'councillors': 'councilors', 'counselled': 'counseled', 'counselling': 'counseling', 'counsellor': 'counselor', 'counsellors': 'counselors', 'crenelated': 'crenellated', 'criminalise': 'criminalize', 'criminalised': 'criminalized', 'criminalises': 'criminalizes', 'criminalising': 'criminalizing', 'criticise': 'criticize', 'criticised': 'criticized', 'criticises': 'criticizes', 'criticising': 'criticizing', 'crueller': 'crueler', 'cruellest': 'cruelest', 'crystallisation': 'crystallization', 'crystallise': 'crystallize', 'crystallised': 'crystallized', 'crystallises': 'crystallizes', 'crystallising': 'crystallizing', 'cudgelled': 'cudgeled', 'cudgelling': 'cudgeling', 'customise': 'customize', 'customised': 'customized', 'customises': 'customizes', 'customising': 'customizing', 'cypher': 'cipher', 'cyphers': 'ciphers', 'decentralisation': 'decentralization', 'decentralise': 'decentralize', 'decentralised': 'decentralized', 'decentralises': 'decentralizes', 'decentralising': 'decentralizing', 'decriminalisation': 'decriminalization', 'decriminalise': 'decriminalize', 'decriminalised': 'decriminalized', 'decriminalises': 'decriminalizes', 'decriminalising': 'decriminalizing', 'defence': 'defense', 'defenceless': 'defenseless', 'defences': 'defenses', 'dehumanisation': 'dehumanization', 'dehumanise': 'dehumanize', 'dehumanised': 'dehumanized', 'dehumanises': 'dehumanizes', 'dehumanising': 'dehumanizing', 'demeanour': 'demeanor', 'demilitarisation': 'demilitarization', 'demilitarise': 'demilitarize', 'demilitarised': 'demilitarized', 'demilitarises': 'demilitarizes', 'demilitarising': 'demilitarizing', 'demobilisation': 'demobilization', 'demobilise': 'demobilize', 'demobilised': 'demobilized', 'demobilises': 'demobilizes', 'demobilising': 'demobilizing', 'democratisation': 'democratization', 'democratise': 'democratize', 'democratised': 'democratized', 'democratises': 'democratizes', 'democratising': 'democratizing', 'demonise': 'demonize', 'demonised': 'demonized', 'demonises': 'demonizes', 'demonising': 'demonizing', 'demoralisation': 'demoralization', 'demoralise': 'demoralize', 'demoralised': 'demoralized', 'demoralises': 'demoralizes', 'demoralising': 'demoralizing', 'denationalisation': 'denationalization', 'denationalise': 'denationalize', 'denationalised': 'denationalized', 'denationalises': 'denationalizes', 'denationalising': 'denationalizing', 'deodorise': 'deodorize', 'deodorised': 'deodorized', 'deodorises': 'deodorizes', 'deodorising': 'deodorizing', 'depersonalise': 'depersonalize', 'depersonalised': 'depersonalized', 'depersonalises': 'depersonalizes', 'depersonalising': 'depersonalizing', 'deputise': 'deputize', 'deputised': 'deputized', 'deputises': 'deputizes', 'deputising': 'deputizing', 'desensitisation': 'desensitization', 'desensitise': 'desensitize', 'desensitised': 'desensitized', 'desensitises': 'desensitizes', 'desensitising': 'desensitizing', 'destabilisation': 'destabilization', 'destabilise': 'destabilize', 'destabilised': 'destabilized', 'destabilises': 'destabilizes', 'destabilising': 'destabilizing', 'dialled': 'dialed', 'dialling': 'dialing', 'dialogue': 'dialog', 'dialogues': 'dialogs', 'diarrhoea': 'diarrhea', 'digitise': 'digitize', 'digitised': 'digitized', 'digitises': 'digitizes', 'digitising': 'digitizing', 'disc': 'disk', 'discolour': 'discolor', 'discoloured': 'discolored', 'discolouring': 'discoloring', 'discolours': 'discolors', 'discs': 'disks', 'disembowelled': 'disemboweled', 'disembowelling': 'disemboweling', 'disfavour': 'disfavor', 'dishevelled': 'disheveled', 'dishonour': 'dishonor', 'dishonourable': 'dishonorable', 'dishonourably': 'dishonorably', 'dishonoured': 'dishonored', 'dishonouring': 'dishonoring', 'dishonours': 'dishonors', 'disorganisation': 'disorganization', 'disorganised': 'disorganized', 'distil': 'distill', 'distils': 'distills', 'dramatisation': 'dramatization', 'dramatisations': 'dramatizations', 'dramatise': 'dramatize', 'dramatised': 'dramatized', 'dramatises': 'dramatizes', 'dramatising': 'dramatizing', 'draught': 'draft', 'draughtboard': 'draftboard', 'draughtboards': 'draftboards', 'draughtier': 'draftier', 'draughtiest': 'draftiest', 'draughts': 'drafts', 'draughtsman': 'draftsman', 'draughtsmanship': 'draftsmanship', 'draughtsmen': 'draftsmen', 'draughtswoman': 'draftswoman', 'draughtswomen': 'draftswomen', 'draughty': 'drafty', 'drivelled': 'driveled', 'drivelling': 'driveling', 'duelled': 'dueled', 'duelling': 'dueling', 'economise': 'economize', 'economised': 'economized', 'economises': 'economizes', 'economising': 'economizing', 'editorialise': 'editorialize', 'editorialised': 'editorialized', 'editorialises': 'editorializes', 'editorialising': 'editorializing', 'edoema': 'edema', 'empathise': 'empathize', 'empathised': 'empathized', 'empathises': 'empathizes', 'empathising': 'empathizing', 'emphasise': 'emphasize', 'emphasised': 'emphasized', 'emphasises': 'emphasizes', 'emphasising': 'emphasizing', 'enamelled': 'enameled', 'enamelling': 'enameling', 'enamoured': 'enamored', 'encyclopaedia': 'encyclopedia', 'encyclopaedias': 'encyclopedias', 'encyclopaedic': 'encyclopedic', 'endeavour': 'endeavor', 'endeavoured': 'endeavored', 'endeavouring': 'endeavoring', 'endeavours': 'endeavors', 'energise': 'energize', 'energised': 'energized', 'energises': 'energizes', 'energising': 'energizing', 'enrol': 'enroll', 'enrols': 'enrolls', 'enthral': 'enthrall', 'enthrals': 'enthralls', 'epaulette': 'epaulet', 'epaulettes': 'epaulets', 'epicentre': 'epicenter', 'epicentres': 'epicenters', 'epilogue': 'epilog', 'epilogues': 'epilogs', 'epitomise': 'epitomize', 'epitomised': 'epitomized', 'epitomises': 'epitomizes', 'epitomising': 'epitomizing', 'equalisation': 'equalization', 'equalise': 'equalize', 'equalised': 'equalized', 'equaliser': 'equalizer', 'equalisers': 'equalizers', 'equalises': 'equalizes', 'equalising': 'equalizing', 'eulogise': 'eulogize', 'eulogised': 'eulogized', 'eulogises': 'eulogizes', 'eulogising': 'eulogizing', 'evangelise': 'evangelize', 'evangelised': 'evangelized', 'evangelises': 'evangelizes', 'evangelising': 'evangelizing', 'exorcise': 'exorcize', 'exorcised': 'exorcized', 'exorcises': 'exorcizes', 'exorcising': 'exorcizing', 'extemporisation': 'extemporization', 'extemporise': 'extemporize', 'extemporised': 'extemporized', 'extemporises': 'extemporizes', 'extemporising': 'extemporizing', 'externalisation': 'externalization', 'externalisations': 'externalizations', 'externalise': 'externalize', 'externalised': 'externalized', 'externalises': 'externalizes', 'externalising': 'externalizing', 'factorise': 'factorize', 'factorised': 'factorized', 'factorises': 'factorizes', 'factorising': 'factorizing', 'faecal': 'fecal', 'faeces': 'feces', 'familiarisation': 'familiarization', 'familiarise': 'familiarize', 'familiarised': 'familiarized', 'familiarises': 'familiarizes', 'familiarising': 'familiarizing', 'fantasise': 'fantasize', 'fantasised': 'fantasized', 'fantasises': 'fantasizes', 'fantasising': 'fantasizing', 'favour': 'favor', 'favourable': 'favorable', 'favourably': 'favorably', 'favoured': 'favored', 'favouring': 'favoring', 'favourite': 'favorite', 'favourites': 'favorites', 'favouritism': 'favoritism', 'favours': 'favors', 'feminise': 'feminize', 'feminised': 'feminized', 'feminises': 'feminizes', 'feminising': 'feminizing', 'fertilisation': 'fertilization', 'fertilise': 'fertilize', 'fertilised': 'fertilized', 'fertiliser': 'fertilizer', 'fertilisers': 'fertilizers', 'fertilises': 'fertilizes', 'fertilising': 'fertilizing', 'fervour': 'fervor', 'fibre': 'fiber', 'fibreglass': 'fiberglass', 'fibres': 'fibers', 'fictionalisation': 'fictionalization', 'fictionalisations': 'fictionalizations', 'fictionalise': 'fictionalize', 'fictionalised': 'fictionalized', 'fictionalises': 'fictionalizes', 'fictionalising': 'fictionalizing', 'fillet': 'filet', 'filleted': 'fileted', 'filleting': 'fileting', 'fillets': 'filets', 'finalisation': 'finalization', 'finalise': 'finalize', 'finalised': 'finalized', 'finalises': 'finalizes', 'finalising': 'finalizing', 'flautist': 'flutist', 'flautists': 'flutists', 'flavour': 'flavor', 'flavoured': 'flavored', 'flavouring': 'flavoring', 'flavourings': 'flavorings', 'flavourless': 'flavorless', 'flavours': 'flavors', 'flavoursome': 'flavorsome', 'flyer / flier': 'flier / flyer', 'foetal': 'fetal', 'foetid': 'fetid', 'foetus': 'fetus', 'foetuses': 'fetuses', 'formalisation': 'formalization', 'formalise': 'formalize', 'formalised': 'formalized', 'formalises': 'formalizes', 'formalising': 'formalizing', 'fossilisation': 'fossilization', 'fossilise': 'fossilize', 'fossilised': 'fossilized', 'fossilises': 'fossilizes', 'fossilising': 'fossilizing', 'fraternisation': 'fraternization', 'fraternise': 'fraternize', 'fraternised': 'fraternized', 'fraternises': 'fraternizes', 'fraternising': 'fraternizing', 'fulfil': 'fulfill', 'fulfilment': 'fulfillment', 'fulfils': 'fulfills', 'funnelled': 'funneled', 'funnelling': 'funneling', 'gage': 'gauge', 'gaged': 'gauged', 'gages': 'gauges', 'gaging': 'gauging', 'galvanise': 'galvanize', 'galvanised': 'galvanized', 'galvanises': 'galvanizes', 'galvanising': 'galvanizing', 'gambolled': 'gamboled', 'gambolling': 'gamboling', 'gaol': 'jail', 'gaolbird': 'jailbird', 'gaolbirds': 'jailbirds', 'gaolbreak': 'jailbreak', 'gaolbreaks': 'jailbreaks', 'gaoled': 'jailed', 'gaoler': 'jailer', 'gaolers': 'jailers', 'gaoling': 'jailing', 'gaols': 'jails', 'gasses': 'gases', 'generalisation': 'generalization', 'generalisations': 'generalizations', 'generalise': 'generalize', 'generalised': 'generalized', 'generalises': 'generalizes', 'generalising': 'generalizing', 'ghettoise': 'ghettoize', 'ghettoised': 'ghettoized', 'ghettoises': 'ghettoizes', 'ghettoising': 'ghettoizing', 'gipsies': 'gypsies', 'glamor': 'glamour', 'glamorise': 'glamorize', 'glamorised': 'glamorized', 'glamorises': 'glamorizes', 'glamorising': 'glamorizing', 'globalisation': 'globalization', 'globalise': 'globalize', 'globalised': 'globalized', 'globalises': 'globalizes', 'globalising': 'globalizing', 'glueing': 'gluing', 'goitre': 'goiter', 'goitres': 'goiters', 'gonorrhoea': 'gonorrhea', 'gramme': 'gram', 'grammes': 'grams', 'gravelled': 'graveled', 'grey': 'gray', 'greyed': 'grayed', 'greying': 'graying', 'greyish': 'grayish', 'greyness': 'grayness', 'greys': 'grays', 'grovelled': 'groveled', 'grovelling': 'groveling', 'groyne': 'groin', 'groynes': 'groins', 'gruelling': 'grueling', 'gruellingly': 'gruelingly', 'gryphon': 'griffin', 'gryphons': 'griffins', 'gynaecological': 'gynecological', 'gynaecologist': 'gynecologist', 'gynaecologists': 'gynecologists', 'gynaecology': 'gynecology', 'haematological': 'hematological', 'haematologist': 'hematologist', 'haematologists': 'hematologists', 'haematology': 'hematology', 'haemoglobin': 'hemoglobin', 'haemophilia': 'hemophilia', 'haemophiliac': 'hemophiliac', 'haemophiliacs': 'hemophiliacs', 'haemorrhage': 'hemorrhage', 'haemorrhaged': 'hemorrhaged', 'haemorrhages': 'hemorrhages', 'haemorrhaging': 'hemorrhaging', 'haemorrhoids': 'hemorrhoids', 'harbour': 'harbor', 'harboured': 'harbored', 'harbouring': 'harboring', 'harbours': 'harbors', 'harmonisation': 'harmonization', 'harmonise': 'harmonize', 'harmonised': 'harmonized', 'harmonises': 'harmonizes', 'harmonising': 'harmonizing', 'homoeopath': 'homeopath', 'homoeopathic': 'homeopathic', 'homoeopaths': 'homeopaths', 'homoeopathy': 'homeopathy', 'homogenise': 'homogenize', 'homogenised': 'homogenized', 'homogenises': 'homogenizes', 'homogenising': 'homogenizing', 'honour': 'honor', 'honourable': 'honorable', 'honourably': 'honorably', 'honoured': 'honored', 'honouring': 'honoring', 'honours': 'honors', 'hospitalisation': 'hospitalization', 'hospitalise': 'hospitalize', 'hospitalised': 'hospitalized', 'hospitalises': 'hospitalizes', 'hospitalising': 'hospitalizing', 'humanise': 'humanize', 'humanised': 'humanized', 'humanises': 'humanizes', 'humanising': 'humanizing', 'humour': 'humor', 'humoured': 'humored', 'humouring': 'humoring', 'humourless': 'humorless', 'humours': 'humors', 'hybridise': 'hybridize', 'hybridised': 'hybridized', 'hybridises': 'hybridizes', 'hybridising': 'hybridizing', 'hypnotise': 'hypnotize', 'hypnotised': 'hypnotized', 'hypnotises': 'hypnotizes', 'hypnotising': 'hypnotizing', 'hypothesise': 'hypothesize', 'hypothesised': 'hypothesized', 'hypothesises': 'hypothesizes', 'hypothesising': 'hypothesizing', 'idealisation': 'idealization', 'idealise': 'idealize', 'idealised': 'idealized', 'idealises': 'idealizes', 'idealising': 'idealizing', 'idolise': 'idolize', 'idolised': 'idolized', 'idolises': 'idolizes', 'idolising': 'idolizing', 'immobilisation': 'immobilization', 'immobilise': 'immobilize', 'immobilised': 'immobilized', 'immobiliser': 'immobilizer', 'immobilisers': 'immobilizers', 'immobilises': 'immobilizes', 'immobilising': 'immobilizing', 'immortalise': 'immortalize', 'immortalised': 'immortalized', 'immortalises': 'immortalizes', 'immortalising': 'immortalizing', 'immunisation': 'immunization', 'immunise': 'immunize', 'immunised': 'immunized', 'immunises': 'immunizes', 'immunising': 'immunizing', 'impanelled': 'impaneled', 'impanelling': 'impaneling', 'imperilled': 'imperiled', 'imperilling': 'imperiling', 'individualise': 'individualize', 'individualised': 'individualized', 'individualises': 'individualizes', 'individualising': 'individualizing', 'industrialise': 'industrialize', 'industrialised': 'industrialized', 'industrialises': 'industrializes', 'industrialising': 'industrializing', 'inflexion': 'inflection', 'inflexions': 'inflections', 'initialise': 'initialize', 'initialised': 'initialized', 'initialises': 'initializes', 'initialising': 'initializing', 'initialled': 'initialed', 'initialling': 'initialing', 'instal': 'install', 'instalment': 'installment', 'instalments': 'installments', 'instals': 'installs', 'instil': 'instill', 'instils': 'instills', 'institutionalisation': 'institutionalization', 'institutionalise': 'institutionalize', 'institutionalised': 'institutionalized', 'institutionalises': 'institutionalizes', 'institutionalising': 'institutionalizing', 'intellectualise': 'intellectualize', 'intellectualised': 'intellectualized', 'intellectualises': 'intellectualizes', 'intellectualising': 'intellectualizing', 'internalisation': 'internalization', 'internalise': 'internalize', 'internalised': 'internalized', 'internalises': 'internalizes', 'internalising': 'internalizing', 'internationalisation': 'internationalization', 'internationalise': 'internationalize', 'internationalised': 'internationalized', 'internationalises': 'internationalizes', 'internationalising': 'internationalizing', 'ionisation': 'ionization', 'ionise': 'ionize', 'ionised': 'ionized', 'ioniser': 'ionizer', 'ionisers': 'ionizers', 'ionises': 'ionizes', 'ionising': 'ionizing', 'italicise': 'italicize', 'italicised': 'italicized', 'italicises': 'italicizes', 'italicising': 'italicizing', 'itemise': 'itemize', 'itemised': 'itemized', 'itemises': 'itemizes', 'itemising': 'itemizing', 'jeopardise': 'jeopardize', 'jeopardised': 'jeopardized', 'jeopardises': 'jeopardizes', 'jeopardising': 'jeopardizing', 'jewelled': 'jeweled', 'jeweller': 'jeweler', 'jewellers': 'jewelers', 'jewellery': 'jewelry', 'judgement': 'judgment', 'kilogramme': 'kilogram', 'kilogrammes': 'kilograms', 'kilometre': 'kilometer', 'kilometres': 'kilometers', 'labelled': 'labeled', 'labelling': 'labeling', 'labour': 'labor', 'laboured': 'labored', 'labourer': 'laborer', 'labourers': 'laborers', 'labouring': 'laboring', 'labours': 'labors', 'lacklustre': 'lackluster', 'legalisation': 'legalization', 'legalise': 'legalize', 'legalised': 'legalized', 'legalises': 'legalizes', 'legalising': 'legalizing', 'legitimise': 'legitimize', 'legitimised': 'legitimized', 'legitimises': 'legitimizes', 'legitimising': 'legitimizing', 'leukaemia': 'leukemia', 'levelled': 'leveled', 'leveller': 'leveler', 'levellers': 'levelers', 'levelling': 'leveling', 'libelled': 'libeled', 'libelling': 'libeling', 'libellous': 'libelous', 'liberalisation': 'liberalization', 'liberalise': 'liberalize', 'liberalised': 'liberalized', 'liberalises': 'liberalizes', 'liberalising': 'liberalizing', 'licence': 'license', 'licenced': 'licensed', 'licences': 'licenses', 'licencing': 'licensing', 'likeable': 'likable', 'lionisation': 'lionization', 'lionise': 'lionize', 'lionised': 'lionized', 'lionises': 'lionizes', 'lionising': 'lionizing', 'liquidise': 'liquidize', 'liquidised': 'liquidized', 'liquidiser': 'liquidizer', 'liquidisers': 'liquidizers', 'liquidises': 'liquidizes', 'liquidising': 'liquidizing', 'litre': 'liter', 'litres': 'liters', 'localise': 'localize', 'localised': 'localized', 'localises': 'localizes', 'localising': 'localizing', 'louvre': 'louver', 'louvred': 'louvered', 'louvres': 'louvers', 'lustre': 'luster', 'magnetise': 'magnetize', 'magnetised': 'magnetized', 'magnetises': 'magnetizes', 'magnetising': 'magnetizing', 'manoeuvrability': 'maneuverability', 'manoeuvrable': 'maneuverable', 'manoeuvre': 'maneuver', 'manoeuvred': 'maneuvered', 'manoeuvres': 'maneuvers', 'manoeuvring': 'maneuvering', 'manoeuvrings': 'maneuverings', 'marginalisation': 'marginalization', 'marginalise': 'marginalize', 'marginalised': 'marginalized', 'marginalises': 'marginalizes', 'marginalising': 'marginalizing', 'marshalled': 'marshaled', 'marshalling': 'marshaling', 'marvelled': 'marveled', 'marvelling': 'marveling', 'marvellous': 'marvelous', 'marvellously': 'marvelously', 'materialisation': 'materialization', 'materialise': 'materialize', 'materialised': 'materialized', 'materialises': 'materializes', 'materialising': 'materializing', 'maximisation': 'maximization', 'maximise': 'maximize', 'maximised': 'maximized', 'maximises': 'maximizes', 'maximising': 'maximizing', 'meagre': 'meager', 'mechanisation': 'mechanization', 'mechanise': 'mechanize', 'mechanised': 'mechanized', 'mechanises': 'mechanizes', 'mechanising': 'mechanizing', 'mediaeval': 'medieval', 'memorialise': 'memorialize', 'memorialised': 'memorialized', 'memorialises': 'memorializes', 'memorialising': 'memorializing', 'memorise': 'memorize', 'memorised': 'memorized', 'memorises': 'memorizes', 'memorising': 'memorizing', 'mesmerise': 'mesmerize', 'mesmerised': 'mesmerized', 'mesmerises': 'mesmerizes', 'mesmerising': 'mesmerizing', 'metabolise': 'metabolize', 'metabolised': 'metabolized', 'metabolises': 'metabolizes', 'metabolising': 'metabolizing', 'metre': 'meter', 'metres': 'meters', 'mhm': 'hmm', 'micrometre': 'micrometer', 'micrometres': 'micrometers', 'militarise': 'militarize', 'militarised': 'militarized', 'militarises': 'militarizes', 'militarising': 'militarizing', 'milligramme': 'milligram', 'milligrammes': 'milligrams', 'millilitre': 'milliliter', 'millilitres': 'milliliters', 'millimetre': 'millimeter', 'millimetres': 'millimeters', 'miniaturisation': 'miniaturization', 'miniaturise': 'miniaturize', 'miniaturised': 'miniaturized', 'miniaturises': 'miniaturizes', 'miniaturising': 'miniaturizing', 'minibusses': 'minibuses', 'minimise': 'minimize', 'minimised': 'minimized', 'minimises': 'minimizes', 'minimising': 'minimizing', 'misbehaviour': 'misbehavior', 'misdemeanour': 'misdemeanor', 'misdemeanours': 'misdemeanors', 'misspelt': 'misspelled', 'mitre': 'miter', 'mitres': 'miters', 'mm': 'hmm', 'mmm': 'hmm', 'mobilisation': 'mobilization', 'mobilise': 'mobilize', 'mobilised': 'mobilized', 'mobilises': 'mobilizes', 'mobilising': 'mobilizing', 'modelled': 'modeled', 'modeller': 'modeler', 'modellers': 'modelers', 'modelling': 'modeling', 'modernise': 'modernize', 'modernised': 'modernized', 'modernises': 'modernizes', 'modernising': 'modernizing', 'moisturise': 'moisturize', 'moisturised': 'moisturized', 'moisturiser': 'moisturizer', 'moisturisers': 'moisturizers', 'moisturises': 'moisturizes', 'moisturising': 'moisturizing', 'monologue': 'monolog', 'monologues': 'monologs', 'monopolisation': 'monopolization', 'monopolise': 'monopolize', 'monopolised': 'monopolized', 'monopolises': 'monopolizes', 'monopolising': 'monopolizing', 'moralise': 'moralize', 'moralised': 'moralized', 'moralises': 'moralizes', 'moralising': 'moralizing', 'motorised': 'motorized', 'mould': 'mold', 'moulded': 'molded', 'moulder': 'molder', 'mouldered': 'moldered', 'mouldering': 'moldering', 'moulders': 'molders', 'mouldier': 'moldier', 'mouldiest': 'moldiest', 'moulding': 'molding', 'mouldings': 'moldings', 'moulds': 'molds', 'mouldy': 'moldy', 'moult': 'molt', 'moulted': 'molted', 'moulting': 'molting', 'moults': 'molts', 'moustache': 'mustache', 'moustached': 'mustached', 'moustaches': 'mustaches', 'moustachioed': 'mustachioed', 'multicoloured': 'multicolored', 'nationalisation': 'nationalization', 'nationalisations': 'nationalizations', 'nationalise': 'nationalize', 'nationalised': 'nationalized', 'nationalises': 'nationalizes', 'nationalising': 'nationalizing', 'naturalisation': 'naturalization', 'naturalise': 'naturalize', 'naturalised': 'naturalized', 'naturalises': 'naturalizes', 'naturalising': 'naturalizing', 'neighbour': 'neighbor', 'neighbourhood': 'neighborhood', 'neighbourhoods': 'neighborhoods', 'neighbouring': 'neighboring', 'neighbourliness': 'neighborliness', 'neighbourly': 'neighborly', 'neighbours': 'neighbors', 'neutralisation': 'neutralization', 'neutralise': 'neutralize', 'neutralised': 'neutralized', 'neutralises': 'neutralizes', 'neutralising': 'neutralizing', 'normalisation': 'normalization', 'normalise': 'normalize', 'normalised': 'normalized', 'normalises': 'normalizes', 'normalising': 'normalizing', 'odour': 'odor', 'odourless': 'odorless', 'odours': 'odors', 'oesophagus': 'esophagus', 'oesophaguses': 'esophaguses', 'oestrogen': 'estrogen', 'offence': 'offense', 'offences': 'offenses', 'omelette': 'omelet', 'omelettes': 'omelets', 'optimise': 'optimize', 'optimised': 'optimized', 'optimises': 'optimizes', 'optimising': 'optimizing', 'organisation': 'organization', 'organisational': 'organizational', 'organisations': 'organizations', 'organise': 'organize', 'organised': 'organized', 'organiser': 'organizer', 'organisers': 'organizers', 'organises': 'organizes', 'organising': 'organizing', 'orthopaedic': 'orthopedic', 'orthopaedics': 'orthopedics', 'ostracise': 'ostracize', 'ostracised': 'ostracized', 'ostracises': 'ostracizes', 'ostracising': 'ostracizing', 'outmanoeuvre': 'outmaneuver', 'outmanoeuvred': 'outmaneuvered', 'outmanoeuvres': 'outmaneuvers', 'outmanoeuvring': 'outmaneuvering', 'overemphasise': 'overemphasize', 'overemphasised': 'overemphasized', 'overemphasises': 'overemphasizes', 'overemphasising': 'overemphasizing', 'oxidisation': 'oxidization', 'oxidise': 'oxidize', 'oxidised': 'oxidized', 'oxidises': 'oxidizes', 'oxidising': 'oxidizing', 'paederast': 'pederast', 'paederasts': 'pederasts', 'paediatric': 'pediatric', 'paediatrician': 'pediatrician', 'paediatricians': 'pediatricians', 'paediatrics': 'pediatrics', 'paedophile': 'pedophile', 'paedophiles': 'pedophiles', 'paedophilia': 'pedophilia', 'palaeolithic': 'paleolithic', 'palaeontologist': 'paleontologist', 'palaeontologists': 'paleontologists', 'palaeontology': 'paleontology', 'panelled': 'paneled', 'panelling': 'paneling', 'panellist': 'panelist', 'panellists': 'panelists', 'paralyse': 'paralyze', 'paralysed': 'paralyzed', 'paralyses': 'paralyzes', 'paralysing': 'paralyzing', 'parcelled': 'parceled', 'parcelling': 'parceling', 'parlour': 'parlor', 'parlours': 'parlors', 'particularise': 'particularize', 'particularised': 'particularized', 'particularises': 'particularizes', 'particularising': 'particularizing', 'passivisation': 'passivization', 'passivise': 'passivize', 'passivised': 'passivized', 'passivises': 'passivizes', 'passivising': 'passivizing', 'pasteurisation': 'pasteurization', 'pasteurise': 'pasteurize', 'pasteurised': 'pasteurized', 'pasteurises': 'pasteurizes', 'pasteurising': 'pasteurizing', 'patronise': 'patronize', 'patronised': 'patronized', 'patronises': 'patronizes', 'patronising': 'patronizing', 'patronisingly': 'patronizingly', 'pedalled': 'pedaled', 'pedalling': 'pedaling', 'pedestrianisation': 'pedestrianization', 'pedestrianise': 'pedestrianize', 'pedestrianised': 'pedestrianized', 'pedestrianises': 'pedestrianizes', 'pedestrianising': 'pedestrianizing', 'penalise': 'penalize', 'penalised': 'penalized', 'penalises': 'penalizes', 'penalising': 'penalizing', 'pencilled': 'penciled', 'pencilling': 'penciling', 'personalise': 'personalize', 'personalised': 'personalized', 'personalises': 'personalizes', 'personalising': 'personalizing', 'pharmacopoeia': 'pharmacopeia', 'pharmacopoeias': 'pharmacopeias', 'philosophise': 'philosophize', 'philosophised': 'philosophized', 'philosophises': 'philosophizes', 'philosophising': 'philosophizing', 'philtre': 'filter', 'philtres': 'filters', 'phoney': 'phony', 'plagiarise': 'plagiarize', 'plagiarised': 'plagiarized', 'plagiarises': 'plagiarizes', 'plagiarising': 'plagiarizing', 'plough': 'plow', 'ploughed': 'plowed', 'ploughing': 'plowing', 'ploughman': 'plowman', 'ploughmen': 'plowmen', 'ploughs': 'plows', 'ploughshare': 'plowshare', 'ploughshares': 'plowshares', 'polarisation': 'polarization', 'polarise': 'polarize', 'polarised': 'polarized', 'polarises': 'polarizes', 'polarising': 'polarizing', 'politicisation': 'politicization', 'politicise': 'politicize', 'politicised': 'politicized', 'politicises': 'politicizes', 'politicising': 'politicizing', 'popularisation': 'popularization', 'popularise': 'popularize', 'popularised': 'popularized', 'popularises': 'popularizes', 'popularising': 'popularizing', 'pouffe': 'pouf', 'pouffes': 'poufs', 'practise': 'practice', 'practised': 'practiced', 'practises': 'practices', 'practising': 'practicing', 'praesidium': 'presidium', 'praesidiums': 'presidiums', 'pressurisation': 'pressurization', 'pressurise': 'pressurize', 'pressurised': 'pressurized', 'pressurises': 'pressurizes', 'pressurising': 'pressurizing', 'pretence': 'pretense', 'pretences': 'pretenses', 'primaeval': 'primeval', 'prioritisation': 'prioritization', 'prioritise': 'prioritize', 'prioritised': 'prioritized', 'prioritises': 'prioritizes', 'prioritising': 'prioritizing', 'privatisation': 'privatization', 'privatisations': 'privatizations', 'privatise': 'privatize', 'privatised': 'privatized', 'privatises': 'privatizes', 'privatising': 'privatizing', 'professionalisation': 'professionalization', 'professionalise': 'professionalize', 'professionalised': 'professionalized', 'professionalises': 'professionalizes', 'professionalising': 'professionalizing', 'programme': 'program', 'programmes': 'programs', 'prologue': 'prolog', 'prologues': 'prologs', 'propagandise': 'propagandize', 'propagandised': 'propagandized', 'propagandises': 'propagandizes', 'propagandising': 'propagandizing', 'proselytise': 'proselytize', 'proselytised': 'proselytized', 'proselytiser': 'proselytizer', 'proselytisers': 'proselytizers', 'proselytises': 'proselytizes', 'proselytising': 'proselytizing', 'psychoanalyse': 'psychoanalyze', 'psychoanalysed': 'psychoanalyzed', 'psychoanalyses': 'psychoanalyzes', 'psychoanalysing': 'psychoanalyzing', 'publicise': 'publicize', 'publicised': 'publicized', 'publicises': 'publicizes', 'publicising': 'publicizing', 'pulverisation': 'pulverization', 'pulverise': 'pulverize', 'pulverised': 'pulverized', 'pulverises': 'pulverizes', 'pulverising': 'pulverizing', 'pummelled': 'pummel', 'pummelling': 'pummeled', 'pyjama': 'pajama', 'pyjamas': 'pajamas', 'pzazz': 'pizzazz', 'quarrelled': 'quarreled', 'quarrelling': 'quarreling', 'radicalise': 'radicalize', 'radicalised': 'radicalized', 'radicalises': 'radicalizes', 'radicalising': 'radicalizing', 'rancour': 'rancor', 'randomise': 'randomize', 'randomised': 'randomized', 'randomises': 'randomizes', 'randomising': 'randomizing', 'rationalisation': 'rationalization', 'rationalisations': 'rationalizations', 'rationalise': 'rationalize', 'rationalised': 'rationalized', 'rationalises': 'rationalizes', 'rationalising': 'rationalizing', 'ravelled': 'raveled', 'ravelling': 'raveling', 'realisable': 'realizable', 'realisation': 'realization', 'realisations': 'realizations', 'realise': 'realize', 'realised': 'realized', 'realises': 'realizes', 'realising': 'realizing', 'recognisable': 'recognizable', 'recognisably': 'recognizably', 'recognisance': 'recognizance', 'recognise': 'recognize', 'recognised': 'recognized', 'recognises': 'recognizes', 'recognising': 'recognizing', 'reconnoitre': 'reconnoiter', 'reconnoitred': 'reconnoitered', 'reconnoitres': 'reconnoiters', 'reconnoitring': 'reconnoitering', 'refuelled': 'refueled', 'refuelling': 'refueling', 'regularisation': 'regularization', 'regularise': 'regularize', 'regularised': 'regularized', 'regularises': 'regularizes', 'regularising': 'regularizing', 'remodelled': 'remodeled', 'remodelling': 'remodeling', 'remould': 'remold', 'remoulded': 'remolded', 'remoulding': 'remolding', 'remoulds': 'remolds', 'reorganisation': 'reorganization', 'reorganisations': 'reorganizations', 'reorganise': 'reorganize', 'reorganised': 'reorganized', 'reorganises': 'reorganizes', 'reorganising': 'reorganizing', 'revelled': 'reveled', 'reveller': 'reveler', 'revellers': 'revelers', 'revelling': 'reveling', 'revitalise': 'revitalize', 'revitalised': 'revitalized', 'revitalises': 'revitalizes', 'revitalising': 'revitalizing', 'revolutionise': 'revolutionize', 'revolutionised': 'revolutionized', 'revolutionises': 'revolutionizes', 'revolutionising': 'revolutionizing', 'rhapsodise': 'rhapsodize', 'rhapsodised': 'rhapsodized', 'rhapsodises': 'rhapsodizes', 'rhapsodising': 'rhapsodizing', 'rigour': 'rigor', 'rigours': 'rigors', 'ritualised': 'ritualized', 'rivalled': 'rivaled', 'rivalling': 'rivaling', 'romanticise': 'romanticize', 'romanticised': 'romanticized', 'romanticises': 'romanticizes', 'romanticising': 'romanticizing', 'rumour': 'rumor', 'rumoured': 'rumored', 'rumours': 'rumors', 'sabre': 'saber', 'sabres': 'sabers', 'saltpetre': 'saltpeter', 'sanitise': 'sanitize', 'sanitised': 'sanitized', 'sanitises': 'sanitizes', 'sanitising': 'sanitizing', 'satirise': 'satirize', 'satirised': 'satirized', 'satirises': 'satirizes', 'satirising': 'satirizing', 'saviour': 'savior', 'saviours': 'saviors', 'savour': 'savor', 'savoured': 'savored', 'savouries': 'savories', 'savouring': 'savoring', 'savours': 'savors', 'savoury': 'savory', 'scandalise': 'scandalize', 'scandalised': 'scandalized', 'scandalises': 'scandalizes', 'scandalising': 'scandalizing', 'sceptic': 'skeptic', 'sceptical': 'skeptical', 'sceptically': 'skeptically', 'scepticism': 'skepticism', 'sceptics': 'skeptics', 'sceptre': 'scepter', 'sceptres': 'scepters', 'scrutinise': 'scrutinize', 'scrutinised': 'scrutinized', 'scrutinises': 'scrutinizes', 'scrutinising': 'scrutinizing', 'secularisation': 'secularization', 'secularise': 'secularize', 'secularised': 'secularized', 'secularises': 'secularizes', 'secularising': 'secularizing', 'sensationalise': 'sensationalize', 'sensationalised': 'sensationalized', 'sensationalises': 'sensationalizes', 'sensationalising': 'sensationalizing', 'sensitise': 'sensitize', 'sensitised': 'sensitized', 'sensitises': 'sensitizes', 'sensitising': 'sensitizing', 'sentimentalise': 'sentimentalize', 'sentimentalised': 'sentimentalized', 'sentimentalises': 'sentimentalizes', 'sentimentalising': 'sentimentalizing', 'sepulchre': 'sepulcher', 'sepulchres': 'sepulchers', 'serialisation': 'serialization', 'serialisations': 'serializations', 'serialise': 'serialize', 'serialised': 'serialized', 'serialises': 'serializes', 'serialising': 'serializing', 'sermonise': 'sermonize', 'sermonised': 'sermonized', 'sermonises': 'sermonizes', 'sermonising': 'sermonizing', 'sheikh': 'sheik', 'shovelled': 'shoveled', 'shovelling': 'shoveling', 'shrivelled': 'shriveled', 'shrivelling': 'shriveling', 'signalise': 'signalize', 'signalised': 'signalized', 'signalises': 'signalizes', 'signalising': 'signalizing', 'signalled': 'signaled', 'signalling': 'signaling', 'smoulder': 'smolder', 'smouldered': 'smoldered', 'smouldering': 'smoldering', 'smoulders': 'smolders', 'snivelled': 'sniveled', 'snivelling': 'sniveling', 'snorkelled': 'snorkeled', 'snorkelling': 'snorkeling', 'snowplough': 'snowplow', 'snowploughs': 'snowplow', 'socialisation': 'socialization', 'socialise': 'socialize', 'socialised': 'socialized', 'socialises': 'socializes', 'socialising': 'socializing', 'sodomise': 'sodomize', 'sodomised': 'sodomized', 'sodomises': 'sodomizes', 'sodomising': 'sodomizing', 'solemnise': 'solemnize', 'solemnised': 'solemnized', 'solemnises': 'solemnizes', 'solemnising': 'solemnizing', 'sombre': 'somber', 'specialisation': 'specialization', 'specialisations': 'specializations', 'specialise': 'specialize', 'specialised': 'specialized', 'specialises': 'specializes', 'specialising': 'specializing', 'spectre': 'specter', 'spectres': 'specters', 'spiralled': 'spiraled', 'spiralling': 'spiraling', 'splendour': 'splendor', 'splendours': 'splendors', 'squirrelled': 'squirreled', 'squirrelling': 'squirreling', 'stabilisation': 'stabilization', 'stabilise': 'stabilize', 'stabilised': 'stabilized', 'stabiliser': 'stabilizer', 'stabilisers': 'stabilizers', 'stabilises': 'stabilizes', 'stabilising': 'stabilizing', 'standardisation': 'standardization', 'standardise': 'standardize', 'standardised': 'standardized', 'standardises': 'standardizes', 'standardising': 'standardizing', 'stencilled': 'stenciled', 'stencilling': 'stenciling', 'sterilisation': 'sterilization', 'sterilisations': 'sterilizations', 'sterilise': 'sterilize', 'sterilised': 'sterilized', 'steriliser': 'sterilizer', 'sterilisers': 'sterilizers', 'sterilises': 'sterilizes', 'sterilising': 'sterilizing', 'stigmatisation': 'stigmatization', 'stigmatise': 'stigmatize', 'stigmatised': 'stigmatized', 'stigmatises': 'stigmatizes', 'stigmatising': 'stigmatizing', 'storey': 'story', 'storeys': 'stories', 'subsidisation': 'subsidization', 'subsidise': 'subsidize', 'subsidised': 'subsidized', 'subsidiser': 'subsidizer', 'subsidisers': 'subsidizers', 'subsidises': 'subsidizes', 'subsidising': 'subsidizing', 'succour': 'succor', 'succoured': 'succored', 'succouring': 'succoring', 'succours': 'succors', 'sulphate': 'sulfate', 'sulphates': 'sulfates', 'sulphide': 'sulfide', 'sulphides': 'sulfides', 'sulphur': 'sulfur', 'sulphurous': 'sulfurous', 'summarise': 'summarize', 'summarised': 'summarized', 'summarises': 'summarizes', 'summarising': 'summarizing', 'swivelled': 'swiveled', 'swivelling': 'swiveling', 'symbolise': 'symbolize', 'symbolised': 'symbolized', 'symbolises': 'symbolizes', 'symbolising': 'symbolizing', 'sympathise': 'sympathize', 'sympathised': 'sympathized', 'sympathiser': 'sympathizer', 'sympathisers': 'sympathizers', 'sympathises': 'sympathizes', 'sympathising': 'sympathizing', 'synchronisation': 'synchronization', 'synchronise': 'synchronize', 'synchronised': 'synchronized', 'synchronises': 'synchronizes', 'synchronising': 'synchronizing', 'synthesise': 'synthesize', 'synthesised': 'synthesized', 'synthesiser': 'synthesizer', 'synthesisers': 'synthesizers', 'synthesises': 'synthesizes', 'synthesising': 'synthesizing', 'syphon': 'siphon', 'syphoned': 'siphoned', 'syphoning': 'siphoning', 'syphons': 'siphons', 'systematisation': 'systematization', 'systematise': 'systematize', 'systematised': 'systematized', 'systematises': 'systematizes', 'systematising': 'systematizing', 'tantalise': 'tantalize', 'tantalised': 'tantalized', 'tantalises': 'tantalizes', 'tantalising': 'tantalizing', 'tantalisingly': 'tantalizingly', 'tasselled': 'tasseled', 'technicolour': 'technicolor', 'temporise': 'temporize', 'temporised': 'temporized', 'temporises': 'temporizes', 'temporising': 'temporizing', 'tenderise': 'tenderize', 'tenderised': 'tenderized', 'tenderises': 'tenderizes', 'tenderising': 'tenderizing', 'terrorise': 'terrorize', 'terrorised': 'terrorized', 'terrorises': 'terrorizes', 'terrorising': 'terrorizing', 'theatre': 'theater', 'theatregoer': 'theatergoer', 'theatregoers': 'theatergoers', 'theatres': 'theaters', 'theorise': 'theorize', 'theorised': 'theorized', 'theorises': 'theorizes', 'theorising': 'theorizing', 'tonne': 'ton', 'tonnes': 'tons', 'towelled': 'toweled', 'towelling': 'toweling', 'toxaemia': 'toxemia', 'tranquillise': 'tranquilize', 'tranquillised': 'tranquilized', 'tranquilliser': 'tranquilizer', 'tranquillisers': 'tranquilizers', 'tranquillises': 'tranquilizes', 'tranquillising': 'tranquilizing', 'tranquillity': 'tranquility', 'tranquillize': 'tranquilize', 'tranquillized': 'tranquilized', 'tranquillizer': 'tranquilizer', 'tranquillizers': 'tranquilizers', 'tranquillizes': 'tranquilizes', 'tranquillizing': 'tranquilizing', 'tranquilly': 'tranquility', 'transistorised': 'transistorized', 'traumatise': 'traumatize', 'traumatised': 'traumatized', 'traumatises': 'traumatizes', 'traumatising': 'traumatizing', 'travelled': 'traveled', 'traveller': 'traveler', 'travellers': 'travelers', 'travelling': 'traveling', 'travelog': 'travelogue', 'travelogs': 'travelogues', 'trialled': 'trialed', 'trialling': 'trialing', 'tricolour': 'tricolor', 'tricolours': 'tricolors', 'trivialise': 'trivialize', 'trivialised': 'trivialized', 'trivialises': 'trivializes', 'trivialising': 'trivializing', 'tumour': 'tumor', 'tumours': 'tumors', 'tunnelled': 'tunneled', 'tunnelling': 'tunneling', 'tyrannise': 'tyrannize', 'tyrannised': 'tyrannized', 'tyrannises': 'tyrannizes', 'tyrannising': 'tyrannizing', 'tyre': 'tire', 'tyres': 'tires', 'unauthorised': 'unauthorized', 'uncivilised': 'uncivilized', 'underutilised': 'underutilized', 'unequalled': 'unequaled', 'unfavourable': 'unfavorable', 'unfavourably': 'unfavorably', 'unionisation': 'unionization', 'unionise': 'unionize', 'unionised': 'unionized', 'unionises': 'unionizes', 'unionising': 'unionizing', 'unorganised': 'unorganized', 'unravelled': 'unraveled', 'unravelling': 'unraveling', 'unrecognisable': 'unrecognizable', 'unrecognised': 'unrecognized', 'unrivalled': 'unrivaled', 'unsavoury': 'unsavory', 'untrammelled': 'untrammeled', 'urbanisation': 'urbanization', 'urbanise': 'urbanize', 'urbanised': 'urbanized', 'urbanises': 'urbanizes', 'urbanising': 'urbanizing', 'utilisable': 'utilizable', 'utilisation': 'utilization', 'utilise': 'utilize', 'utilised': 'utilized', 'utilises': 'utilizes', 'utilising': 'utilizing', 'valour': 'valor', 'vandalise': 'vandalize', 'vandalised': 'vandalized', 'vandalises': 'vandalizes', 'vandalising': 'vandalizing', 'vaporisation': 'vaporization', 'vaporise': 'vaporize', 'vaporised': 'vaporized', 'vaporises': 'vaporizes', 'vaporising': 'vaporizing', 'vapour': 'vapor', 'vapours': 'vapors', 'verbalise': 'verbalize', 'verbalised': 'verbalized', 'verbalises': 'verbalizes', 'verbalising': 'verbalizing', 'victimisation': 'victimization', 'victimise': 'victimize', 'victimised': 'victimized', 'victimises': 'victimizes', 'victimising': 'victimizing', 'videodisc': 'videodisk', 'videodiscs': 'videodisks', 'vigour': 'vigor', 'visualisation': 'visualization', 'visualisations': 'visualizations', 'visualise': 'visualize', 'visualised': 'visualized', 'visualises': 'visualizes', 'visualising': 'visualizing', 'vocalisation': 'vocalization', 'vocalisations': 'vocalizations', 'vocalise': 'vocalize', 'vocalised': 'vocalized', 'vocalises': 'vocalizes', 'vocalising': 'vocalizing', 'vulcanised': 'vulcanized', 'vulgarisation': 'vulgarization', 'vulgarise': 'vulgarize', 'vulgarised': 'vulgarized', 'vulgarises': 'vulgarizes', 'vulgarising': 'vulgarizing', 'waggon': 'wagon', 'waggons': 'wagons', 'watercolour': 'watercolor', 'watercolours': 'watercolors', 'weaselled': 'weaseled', 'weaselling': 'weaseling', 'westernisation': 'westernization', 'westernise': 'westernize', 'westernised': 'westernized', 'westernises': 'westernizes', 'westernising': 'westernizing', 'womanise': 'womanize', 'womanised': 'womanized', 'womaniser': 'womanizer', 'womanisers': 'womanizers', 'womanises': 'womanizes', 'womanising': 'womanizing', 'woollen': 'woolen', 'woollens': 'woolens', 'woollies': 'woolies', 'woolly': 'wooly', 'worshipped': 'worshiped', 'worshipper': 'worshiper', 'worshipping': 'worshiping', 'yodelled': 'yodeled', 'yodelling': 'yodeling', 'yoghourt': 'yogurt', 'yoghourts': 'yogurts', 'yoghurt': 'yogurt', 'yoghurts': 'yogurts'} # File: open_asr_leaderboard-main/normalizer/eval_utils.py import os import glob import json import evaluate from collections import defaultdict def read_manifest(manifest_path: str): data = [] with open(manifest_path, 'r', encoding='utf-8') as f: for line in f: if len(line) > 0: datum = json.loads(line) data.append(datum) return data def write_manifest(references: list, transcriptions: list, model_id: str, dataset_path: str, dataset_name: str, split: str, audio_length: list=None, transcription_time: list=None): model_id = model_id.replace('/', '-') dataset_path = dataset_path.replace('/', '-') dataset_name = dataset_name.replace('/', '-') if len(references) != len(transcriptions): raise ValueError(f'The number of samples in `references` ({len(references)}) must match `transcriptions` ({len(transcriptions)}).') if audio_length is not None and len(audio_length) != len(references): raise ValueError(f'The number of samples in `audio_length` ({len(audio_length)}) must match `references` ({len(references)}).') if transcription_time is not None and len(transcription_time) != len(references): raise ValueError(f'The number of samples in `transcription_time` ({len(transcription_time)}) must match `references` ({len(references)}).') audio_length = audio_length if audio_length is not None else len(references) * [None] transcription_time = transcription_time if transcription_time is not None else len(references) * [None] basedir = './results/' if not os.path.exists(basedir): os.makedirs(basedir) manifest_path = os.path.join(basedir, f'MODEL_{model_id}_DATASET_{dataset_path}_{dataset_name}_{split}.jsonl') with open(manifest_path, 'w', encoding='utf-8') as f: for (idx, (text, transcript, audio_length, transcription_time)) in enumerate(zip(references, transcriptions, audio_length, transcription_time)): datum = {'audio_filepath': f'sample_{idx}', 'duration': audio_length, 'time': transcription_time, 'text': text, 'pred_text': transcript} f.write(f'{json.dumps(datum, ensure_ascii=False)}\n') return manifest_path def score_results(directory: str, model_id: str=None): if directory.endswith(os.pathsep): directory = directory[:-1] result_files = list(glob.glob(f'{directory}/**/*.jsonl', recursive=True)) result_files = list(sorted(result_files)) if model_id is not None and model_id != '': print('Filtering models by id:', model_id) model_id = model_id.replace('/', '-') result_files = [fp for fp in result_files if model_id in fp] if len(result_files) == 0: raise ValueError(f'No result files found in {directory}') def parse_filepath(fp: str): model_index = fp.find('MODEL_') fp = fp[model_index:] ds_index = fp.find('DATASET_') model_id = fp[:ds_index].replace('MODEL_', '').rstrip('_') author_index = model_id.find('-') model_id = model_id[:author_index] + '/' + model_id[author_index + 1:] ds_fp = fp[ds_index:] dataset_id = ds_fp.replace('DATASET_', '').rstrip('.jsonl') return (model_id, dataset_id) results = {} wer_metric = evaluate.load('wer') for result_file in result_files: manifest = read_manifest(result_file) (model_id_of_file, dataset_id) = parse_filepath(result_file) references = [datum['text'] for datum in manifest] predictions = [datum['pred_text'] for datum in manifest] time = [datum['time'] for datum in manifest] duration = [datum['duration'] for datum in manifest] compute_rtfx = all(time) and all(duration) wer = wer_metric.compute(references=references, predictions=predictions) wer = round(100 * wer, 2) if compute_rtfx: audio_length = sum(duration) inference_time = sum(time) rtfx = round(sum(duration) / sum(time), 4) else: audio_length = inference_time = rtfx = None result_key = f'{model_id_of_file} | {dataset_id}' results[result_key] = {'wer': wer, 'audio_length': audio_length, 'inference_time': inference_time, 'rtfx': rtfx} print('*' * 80) print('Results per dataset:') print('*' * 80) for (k, v) in results.items(): metrics = f"{k}: WER = {v['wer']:0.2f} %" if v['rtfx'] is not None: metrics += f", RTFx = {v['rtfx']:0.2f}" print(metrics) composite_wer = defaultdict(float) composite_audio_length = defaultdict(float) composite_inference_time = defaultdict(float) count_entries = defaultdict(int) for (k, v) in results.items(): key = k.split('|')[0].strip() composite_wer[key] += v['wer'] if v['rtfx'] is not None: composite_audio_length[key] += v['audio_length'] composite_inference_time[key] += v['inference_time'] else: composite_audio_length[key] = composite_inference_time[key] = None count_entries[key] += 1 print() print('*' * 80) print('Composite Results:') print('*' * 80) for (k, v) in composite_wer.items(): wer = v / count_entries[k] print(f'{k}: WER = {wer:0.2f} %') for k in composite_audio_length: if composite_audio_length[k] is not None: rtfx = composite_audio_length[k] / composite_inference_time[k] print(f'{k}: RTFx = {rtfx:0.2f}') print('*' * 80) return (composite_wer, results) # File: open_asr_leaderboard-main/normalizer/normalizer.py import re import unicodedata from fractions import Fraction from typing import Iterator, List, Match, Optional, Union from .english_abbreviations import english_spelling_normalizer import regex ADDITIONAL_DIACRITICS = {'œ': 'oe', 'Œ': 'OE', 'ø': 'o', 'Ø': 'O', 'æ': 'ae', 'Æ': 'AE', 'ß': 'ss', 'ẞ': 'SS', 'đ': 'd', 'Đ': 'D', 'ð': 'd', 'Ð': 'D', 'þ': 'th', 'Þ': 'th', 'ł': 'l', 'Ł': 'L'} def remove_symbols_and_diacritics(s: str, keep=''): def replace_character(char): if char in keep: return char elif char in ADDITIONAL_DIACRITICS: return ADDITIONAL_DIACRITICS[char] elif unicodedata.category(char) == 'Mn': return '' elif unicodedata.category(char)[0] in 'MSP': return ' ' return char return ''.join((replace_character(c) for c in unicodedata.normalize('NFKD', s))) def remove_symbols(s: str): return ''.join((' ' if unicodedata.category(c)[0] in 'MSP' else c for c in unicodedata.normalize('NFKC', s))) class BasicTextNormalizer: def __init__(self, remove_diacritics: bool=False, split_letters: bool=False): self.clean = remove_symbols_and_diacritics if remove_diacritics else remove_symbols self.split_letters = split_letters def __call__(self, s: str): s = s.lower() s = re.sub('[<\\[][^>\\]]*[>\\]]', '', s) s = re.sub('\\(([^)]+?)\\)', '', s) s = self.clean(s).lower() if self.split_letters: s = ' '.join(regex.findall('\\X', s, regex.U)) s = re.sub('\\s+', ' ', s) return s class EnglishNumberNormalizer: def __init__(self): super().__init__() self.zeros = {'o', 'oh', 'zero'} self.ones = {name: i for (i, name) in enumerate(['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten', 'eleven', 'twelve', 'thirteen', 'fourteen', 'fifteen', 'sixteen', 'seventeen', 'eighteen', 'nineteen'], start=1)} self.ones_plural = {'sixes' if name == 'six' else name + 's': (value, 's') for (name, value) in self.ones.items()} self.ones_ordinal = {'zeroth': (0, 'th'), 'first': (1, 'st'), 'second': (2, 'nd'), 'third': (3, 'rd'), 'fifth': (5, 'th'), 'twelfth': (12, 'th'), **{name + ('h' if name.endswith('t') else 'th'): (value, 'th') for (name, value) in self.ones.items() if value > 3 and value != 5 and (value != 12)}} self.ones_suffixed = {**self.ones_plural, **self.ones_ordinal} self.tens = {'twenty': 20, 'thirty': 30, 'forty': 40, 'fifty': 50, 'sixty': 60, 'seventy': 70, 'eighty': 80, 'ninety': 90} self.tens_plural = {name.replace('y', 'ies'): (value, 's') for (name, value) in self.tens.items()} self.tens_ordinal = {name.replace('y', 'ieth'): (value, 'th') for (name, value) in self.tens.items()} self.tens_suffixed = {**self.tens_plural, **self.tens_ordinal} self.multipliers = {'hundred': 100, 'thousand': 1000, 'million': 1000000, 'billion': 1000000000, 'trillion': 1000000000000, 'quadrillion': 1000000000000000, 'quintillion': 1000000000000000000, 'sextillion': 1000000000000000000000, 'septillion': 1000000000000000000000000, 'octillion': 1000000000000000000000000000, 'nonillion': 1000000000000000000000000000000, 'decillion': 1000000000000000000000000000000000} self.multipliers_plural = {name + 's': (value, 's') for (name, value) in self.multipliers.items()} self.multipliers_ordinal = {name + 'th': (value, 'th') for (name, value) in self.multipliers.items()} self.multipliers_suffixed = {**self.multipliers_plural, **self.multipliers_ordinal} self.decimals = {*self.ones, *self.tens, *self.zeros} self.preceding_prefixers = {'minus': '-', 'negative': '-', 'plus': '+', 'positive': '+'} self.following_prefixers = {'pound': '£', 'pounds': '£', 'euro': '€', 'euros': '€', 'dollar': '$', 'dollars': '$', 'cent': '¢', 'cents': '¢'} self.prefixes = set(list(self.preceding_prefixers.values()) + list(self.following_prefixers.values())) self.suffixers = {'per': {'cent': '%'}, 'percent': '%'} self.specials = {'and', 'double', 'triple', 'point'} self.words = {key for mapping in [self.zeros, self.ones, self.ones_suffixed, self.tens, self.tens_suffixed, self.multipliers, self.multipliers_suffixed, self.preceding_prefixers, self.following_prefixers, self.suffixers, self.specials] for key in mapping} self.literal_words = {'one', 'ones'} def process_words(self, words: List[str]) -> Iterator[str]: prefix: Optional[str] = None value: Optional[Union[str, int]] = None skip = False def to_fraction(s: str): try: return Fraction(s) except ValueError: return None def output(result: Union[str, int]): nonlocal prefix, value result = str(result) if prefix is not None: result = prefix + result value = None prefix = None return result if len(words) == 0: return for (i, current) in enumerate(words): prev = words[i - 1] if i != 0 else None next = words[i + 1] if i != len(words) - 1 else None if skip: skip = False continue next_is_numeric = next is not None and re.match('^\\d+(\\.\\d+)?$', next) has_prefix = current[0] in self.prefixes current_without_prefix = current[1:] if has_prefix else current if re.match('^\\d+(\\.\\d+)?$', current_without_prefix): f = to_fraction(current_without_prefix) if f is None: raise ValueError('Converting the fraction failed') if value is not None: if isinstance(value, str) and value.endswith('.'): value = str(value) + str(current) continue else: yield output(value) prefix = current[0] if has_prefix else prefix if f.denominator == 1: value = f.numerator else: value = current_without_prefix elif current not in self.words: if value is not None: yield output(value) yield output(current) elif current in self.zeros: value = str(value or '') + '0' elif current in self.ones: ones = self.ones[current] if value is None: value = ones elif isinstance(value, str) or prev in self.ones: if prev in self.tens and ones < 10: value = value[:-1] + str(ones) else: value = str(value) + str(ones) elif ones < 10: if value % 10 == 0: value += ones else: value = str(value) + str(ones) elif value % 100 == 0: value += ones else: value = str(value) + str(ones) elif current in self.ones_suffixed: (ones, suffix) = self.ones_suffixed[current] if value is None: yield output(str(ones) + suffix) elif isinstance(value, str) or prev in self.ones: if prev in self.tens and ones < 10: yield output(value[:-1] + str(ones) + suffix) else: yield output(str(value) + str(ones) + suffix) elif ones < 10: if value % 10 == 0: yield output(str(value + ones) + suffix) else: yield output(str(value) + str(ones) + suffix) elif value % 100 == 0: yield output(str(value + ones) + suffix) else: yield output(str(value) + str(ones) + suffix) value = None elif current in self.tens: tens = self.tens[current] if value is None: value = tens elif isinstance(value, str): value = str(value) + str(tens) elif value % 100 == 0: value += tens else: value = str(value) + str(tens) elif current in self.tens_suffixed: (tens, suffix) = self.tens_suffixed[current] if value is None: yield output(str(tens) + suffix) elif isinstance(value, str): yield output(str(value) + str(tens) + suffix) elif value % 100 == 0: yield output(str(value + tens) + suffix) else: yield output(str(value) + str(tens) + suffix) elif current in self.multipliers: multiplier = self.multipliers[current] if value is None: value = multiplier elif isinstance(value, str) or value == 0: f = to_fraction(value) p = f * multiplier if f is not None else None if f is not None and p.denominator == 1: value = p.numerator else: yield output(value) value = multiplier else: before = value // 1000 * 1000 residual = value % 1000 value = before + residual * multiplier elif current in self.multipliers_suffixed: (multiplier, suffix) = self.multipliers_suffixed[current] if value is None: yield output(str(multiplier) + suffix) elif isinstance(value, str): f = to_fraction(value) p = f * multiplier if f is not None else None if f is not None and p.denominator == 1: yield output(str(p.numerator) + suffix) else: yield output(value) yield output(str(multiplier) + suffix) else: before = value // 1000 * 1000 residual = value % 1000 value = before + residual * multiplier yield output(str(value) + suffix) value = None elif current in self.preceding_prefixers: if value is not None: yield output(value) if next in self.words or next_is_numeric: prefix = self.preceding_prefixers[current] else: yield output(current) elif current in self.following_prefixers: if value is not None: prefix = self.following_prefixers[current] yield output(value) else: yield output(current) elif current in self.suffixers: if value is not None: suffix = self.suffixers[current] if isinstance(suffix, dict): if next in suffix: yield output(str(value) + suffix[next]) skip = True else: yield output(value) yield output(current) else: yield output(str(value) + suffix) else: yield output(current) elif current in self.specials: if next not in self.words and (not next_is_numeric): if value is not None: yield output(value) yield output(current) elif current == 'and': if prev not in self.multipliers: if value is not None: yield output(value) yield output(current) elif current == 'double' or current == 'triple': if next in self.ones or next in self.zeros: repeats = 2 if current == 'double' else 3 ones = self.ones.get(next, 0) value = str(value or '') + str(ones) * repeats skip = True else: if value is not None: yield output(value) yield output(current) elif current == 'point': if next in self.decimals or next_is_numeric: value = str(value or '') + '.' else: raise ValueError(f'Unexpected token: {current}') else: raise ValueError(f'Unexpected token: {current}') if value is not None: yield output(value) def preprocess(self, s: str): results = [] segments = re.split('\\band\\s+a\\s+half\\b', s) for (i, segment) in enumerate(segments): if len(segment.strip()) == 0: continue if i == len(segments) - 1: results.append(segment) else: results.append(segment) last_word = segment.rsplit(maxsplit=2)[-1] if last_word in self.decimals or last_word in self.multipliers: results.append('point five') else: results.append('and a half') s = ' '.join(results) s = re.sub('([a-z])([0-9])', '\\1 \\2', s) s = re.sub('([0-9])([a-z])', '\\1 \\2', s) s = re.sub('([0-9])\\s+(st|nd|rd|th|s)\\b', '\\1\\2', s) return s def postprocess(self, s: str): def combine_cents(m: Match): try: currency = m.group(1) integer = m.group(2) cents = int(m.group(3)) return f'{currency}{integer}.{cents:02d}' except ValueError: return m.string def extract_cents(m: Match): try: return f'¢{int(m.group(1))}' except ValueError: return m.string s = re.sub('([€£$])([0-9]+) (?:and )?¢([0-9]{1,2})\\b', combine_cents, s) s = re.sub('[€£$]0.([0-9]{1,2})\\b', extract_cents, s) s = re.sub('\\b1(s?)\\b', 'one\\1', s) return s def __call__(self, s: str): s = self.preprocess(s) s = ' '.join((word for word in self.process_words(s.split()) if word is not None)) s = self.postprocess(s) return s class EnglishSpellingNormalizer: def __init__(self, english_spelling_mapping): self.mapping = english_spelling_mapping def __call__(self, s: str): return ' '.join((self.mapping.get(word, word) for word in s.split())) class EnglishTextNormalizer: def __init__(self, english_spelling_mapping=english_spelling_normalizer): self.ignore_patterns = '\\b(hmm|mm|mhm|mmm|uh|um)\\b' self.replacers = {"\\bwon't\\b": 'will not', "\\bcan't\\b": 'can not', "\\blet's\\b": 'let us', "\\bain't\\b": 'aint', "\\by'all\\b": 'you all', '\\bwanna\\b': 'want to', '\\bgotta\\b': 'got to', '\\bgonna\\b': 'going to', "\\bi'ma\\b": 'i am going to', '\\bimma\\b': 'i am going to', '\\bwoulda\\b': 'would have', '\\bcoulda\\b': 'could have', '\\bshoulda\\b': 'should have', "\\bma'am\\b": 'madam', '\\bmr\\b': 'mister ', '\\bmrs\\b': 'missus ', '\\bst\\b': 'saint ', '\\bdr\\b': 'doctor ', '\\bprof\\b': 'professor ', '\\bcapt\\b': 'captain ', '\\bgov\\b': 'governor ', '\\bald\\b': 'alderman ', '\\bgen\\b': 'general ', '\\bsen\\b': 'senator ', '\\brep\\b': 'representative ', '\\bpres\\b': 'president ', '\\brev\\b': 'reverend ', '\\bhon\\b': 'honorable ', '\\basst\\b': 'assistant ', '\\bassoc\\b': 'associate ', '\\blt\\b': 'lieutenant ', '\\bcol\\b': 'colonel ', '\\bjr\\b': 'junior ', '\\bsr\\b': 'senior ', '\\besq\\b': 'esquire ', "'d been\\b": ' had been', "'s been\\b": ' has been', "'d gone\\b": ' had gone', "'s gone\\b": ' has gone', "'d done\\b": ' had done', "'s got\\b": ' has got', "n't\\b": ' not', "'re\\b": ' are', "'s\\b": ' is', "'d\\b": ' would', "'ll\\b": ' will', "'t\\b": ' not', "'ve\\b": ' have', "'m\\b": ' am'} self.standardize_numbers = EnglishNumberNormalizer() self.standardize_spellings = EnglishSpellingNormalizer(english_spelling_mapping) def __call__(self, s: str): s = s.lower() s = re.sub('[<\\[][^>\\]]*[>\\]]', '', s) s = re.sub('\\(([^)]+?)\\)', '', s) s = re.sub(self.ignore_patterns, '', s) s = re.sub("\\s+'", "'", s) for (pattern, replacement) in self.replacers.items(): s = re.sub(pattern, replacement, s) s = re.sub('(\\d),(\\d)', '\\1\\2', s) s = re.sub('\\.([^0-9]|$)', ' \\1', s) s = remove_symbols_and_diacritics(s, keep='.%$¢€£') s = self.standardize_numbers(s) s = self.standardize_spellings(s) s = re.sub('[.$¢€£]([^0-9])', ' \\1', s) s = re.sub('([^0-9])%', '\\1 ', s) s = re.sub('\\s+', ' ', s) return s # File: open_asr_leaderboard-main/speechbrain/run_eval.py """""" import argparse import time import evaluate from normalizer import data_utils from tqdm import tqdm import torch import speechbrain.inference.ASR as ASR from speechbrain.utils.data_utils import batch_pad_right import os def get_model(speechbrain_repository: str, speechbrain_pretrained_class_name: str, **kwargs): run_opt_defaults = {'device': 'cpu', 'data_parallel_count': -1, 'data_parallel_backend': False, 'distributed_launch': False, 'distributed_backend': 'nccl', 'jit_module_keys': None} run_opts = {**run_opt_defaults, **kwargs} kwargs = {'source': f'{speechbrain_repository}', 'savedir': f'pretrained_models/{speechbrain_repository}', 'run_opts': run_opts} try: model_class = getattr(ASR, speechbrain_pretrained_class_name) except AttributeError: raise AttributeError(f'SpeechBrain Pretrained class: {speechbrain_pretrained_class_name} not found in pretrained.py') return model_class.from_hparams(**kwargs) def main(args): if args.device == -1: device = 'cpu' else: device = f'cuda:{args.device}' model = get_model(args.source, args.speechbrain_pretrained_class_name, device=device) def benchmark(batch): audios = [torch.from_numpy(sample['array']) for sample in batch['audio']] minibatch_size = len(audios) start_time = time.time() (audios, audio_lens) = batch_pad_right(audios) audios = audios.to(device) audio_lens = audio_lens.to(device) (predictions, _) = model.transcribe_batch(audios, audio_lens) runtime = time.time() - start_time batch['transcription_time_s'] = minibatch_size * [runtime / minibatch_size] batch['predictions'] = [data_utils.normalizer(pred) for pred in predictions] batch['references'] = batch['norm_text'] return batch if args.warmup_steps is not None: dataset = data_utils.load_data(args) dataset = data_utils.prepare_data(dataset) num_warmup_samples = args.warmup_steps * args.batch_size if args.streaming: warmup_dataset = dataset.take(num_warmup_samples) else: warmup_dataset = dataset.select(range(min(num_warmup_samples, len(dataset)))) warmup_dataset = iter(warmup_dataset.map(benchmark, batch_size=args.batch_size, batched=True)) for _ in tqdm(warmup_dataset, desc='Warming up...'): continue dataset = data_utils.load_data(args) if args.max_eval_samples is not None and args.max_eval_samples > 0: print(f'Subsampling dataset to first {args.max_eval_samples} samples!') if args.streaming: dataset = dataset.take(args.max_eval_samples) else: dataset = dataset.select(range(min(args.max_eval_samples, len(dataset)))) dataset = data_utils.prepare_data(dataset) dataset = dataset.map(benchmark, batch_size=args.batch_size, batched=True, remove_columns=['audio']) all_results = {'audio_length_s': [], 'transcription_time_s': [], 'predictions': [], 'references': []} result_iter = iter(dataset) for result in tqdm(result_iter, desc='Samples...'): for key in all_results: all_results[key].append(result[key]) manifest_path = data_utils.write_manifest(all_results['references'], all_results['predictions'], args.source, args.dataset_path, args.dataset, args.split, audio_length=all_results['audio_length_s'], transcription_time=all_results['transcription_time_s']) print('Results saved at path:', os.path.abspath(manifest_path)) wer_metric = evaluate.load('wer') wer = wer_metric.compute(references=all_results['references'], predictions=all_results['predictions']) wer = round(100 * wer, 2) rtfx = round(sum(all_results['audio_length_s']) / sum(all_results['transcription_time_s']), 2) print('WER:', wer, '%', 'RTFx:', rtfx) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--source', type=str, required=True, help='SpeechBrain model repository. E.g. `asr-crdnn-rnnlm-librispeech`') parser.add_argument('--speechbrain_pretrained_class_name', type=str, required=True, help='SpeechBrain pretrained class name. E.g. `EncoderASR`') parser.add_argument('--dataset_path', type=str, default='hf-audio/esb-datasets-test-only-sorted', help='Dataset path. By default, it is `esb/datasets`') parser.add_argument('--dataset', type=str, required=True, help="Dataset name. *E.g.* `'librispeech_asr` for the LibriSpeech ASR dataset, or `'common_voice'` for Common Voice. The full list of dataset names can be found at `https://huggingface.co/datasets/esb/datasets`") parser.add_argument('--split', type=str, default='test', help="Split of the dataset. *E.g.* `'validation`' for the dev split, or `'test'` for the test split.") parser.add_argument('--device', type=int, default=-1, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.') parser.add_argument('--batch_size', type=int, default=16, help='Number of samples to go through each streamed batch.') parser.add_argument('--max_eval_samples', type=int, default=None, help='Number of samples to be evaluated. Put a lower number e.g. 64 for testing this script.') parser.add_argument('--no-streaming', dest='streaming', action='store_false', help="Choose whether you'd like to download the entire dataset or stream it during the evaluation.") parser.add_argument('--warmup_steps', type=int, default=5, help='Number of warm-up steps to run before launching the timed runs.') args = parser.parse_args() parser.set_defaults(streaming=True) main(args) # File: open_asr_leaderboard-main/transformers/run_eval.py import argparse import os import torch from torch.nn.attention import sdpa_kernel, SDPBackend from transformers import AutoConfig, AutoModelForSpeechSeq2Seq, AutoModelForCTC, AutoProcessor, MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING import evaluate from normalizer import data_utils import time from tqdm import tqdm wer_metric = evaluate.load('wer') torch.set_float32_matmul_precision('high') def main(args): config = AutoConfig.from_pretrained(args.model_id) cls_model = AutoModelForSpeechSeq2Seq if type(config) in MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING else AutoModelForCTC model = cls_model.from_pretrained(args.model_id, torch_dtype=torch.bfloat16, attn_implementation='sdpa').to(args.device) processor = AutoProcessor.from_pretrained(args.model_id) model_input_name = processor.model_input_names[0] if model.can_generate(): gen_kwargs = {'max_new_tokens': args.max_new_tokens} if getattr(model.generation_config, 'is_multilingual'): gen_kwargs['language'] = 'en' gen_kwargs['task'] = 'transcribe' elif args.max_new_tokens: raise ValueError('`max_new_tokens` should only be set for auto-regressive models, but got a CTC model.') if args.torch_compile: model.forward = torch.compile(model.forward, mode=args.compile_mode, fullgraph=True) if model.can_generate(): model.generation_config.cache_implementation = 'static' def benchmark(batch, min_new_tokens=None): audios = [audio['array'] for audio in batch['audio']] minibatch_size = len(audios) start_time = time.time() padding_size = None if minibatch_size != args.batch_size and args.torch_compile: padding_size = args.batch_size - minibatch_size padding_audios = [audios[-1] for _ in range(padding_size)] audios.extend(padding_audios) if not model.can_generate(): inputs = processor(audios, sampling_rate=16000, truncation=False, padding='longest', return_tensors='pt', return_attention_mask=True) else: inputs = processor(audios, sampling_rate=16000, return_tensors='pt', device=args.device) inputs = inputs.to(args.device) inputs[model_input_name] = inputs[model_input_name].to(torch.bfloat16) with sdpa_kernel(SDPBackend.MATH if args.torch_compile else SDPBackend.FLASH_ATTENTION): if model.can_generate(): pred_ids = model.generate(**inputs, **gen_kwargs, min_new_tokens=min_new_tokens) else: with torch.no_grad(): logits = model(**inputs).logits pred_ids = logits.argmax(-1) if padding_size is not None: pred_ids = pred_ids[:-padding_size, ...] pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True) runtime = time.time() - start_time batch['transcription_time_s'] = minibatch_size * [runtime / minibatch_size] batch['predictions'] = [data_utils.normalizer(pred) for pred in pred_text] batch['references'] = batch['norm_text'] return batch if args.warmup_steps is not None: dataset = data_utils.load_data(args) dataset = data_utils.prepare_data(dataset) num_warmup_samples = args.warmup_steps * args.batch_size if args.streaming: warmup_dataset = dataset.take(num_warmup_samples) else: warmup_dataset = dataset.select(range(min(num_warmup_samples, len(dataset)))) warmup_dataset = iter(warmup_dataset.map(benchmark, batch_size=args.batch_size, batched=True, fn_kwargs={'min_new_tokens': args.max_new_tokens})) for _ in tqdm(warmup_dataset, desc='Warming up...'): continue dataset = data_utils.load_data(args) if args.max_eval_samples is not None and args.max_eval_samples > 0: print(f'Subsampling dataset to first {args.max_eval_samples} samples!') if args.streaming: dataset = dataset.take(args.max_eval_samples) else: dataset = dataset.select(range(min(args.max_eval_samples, len(dataset)))) dataset = data_utils.prepare_data(dataset) dataset = dataset.map(benchmark, batch_size=args.batch_size, batched=True, remove_columns=['audio']) all_results = {'audio_length_s': [], 'transcription_time_s': [], 'predictions': [], 'references': []} result_iter = iter(dataset) for result in tqdm(result_iter, desc='Samples...'): for key in all_results: all_results[key].append(result[key]) manifest_path = data_utils.write_manifest(all_results['references'], all_results['predictions'], args.model_id, args.dataset_path, args.dataset, args.split, audio_length=all_results['audio_length_s'], transcription_time=all_results['transcription_time_s']) print('Results saved at path:', os.path.abspath(manifest_path)) wer = wer_metric.compute(references=all_results['references'], predictions=all_results['predictions']) wer = round(100 * wer, 2) rtfx = round(sum(all_results['audio_length_s']) / sum(all_results['transcription_time_s']), 2) print('WER:', wer, '%', 'RTFx:', rtfx) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers') parser.add_argument('--dataset_path', type=str, default='esb/datasets', help='Dataset path. By default, it is `esb/datasets`') parser.add_argument('--dataset', type=str, required=True, help="Dataset name. *E.g.* `'librispeech_asr` for the LibriSpeech ASR dataset, or `'common_voice'` for Common Voice. The full list of dataset names can be found at `https://huggingface.co/datasets/esb/datasets`") parser.add_argument('--split', type=str, default='test', help="Split of the dataset. *E.g.* `'validation`' for the dev split, or `'test'` for the test split.") parser.add_argument('--device', type=int, default=-1, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.') parser.add_argument('--batch_size', type=int, default=16, help='Number of samples to go through each streamed batch.') parser.add_argument('--max_eval_samples', type=int, default=None, help='Number of samples to be evaluated. Put a lower number e.g. 64 for testing this script.') parser.add_argument('--no-streaming', dest='streaming', action='store_false', help="Choose whether you'd like to download the entire dataset or stream it during the evaluation.") parser.add_argument('--max_new_tokens', type=int, default=None, help='Maximum number of tokens to generate (for auto-regressive models).') parser.add_argument('--torch_compile', action='store_true', help='Whether to JIT compile the forward pass of the model.') parser.add_argument('--compile_mode', type=str, default='max-autotune', help="Mode for torch compiling model forward pass. Can be either 'default', 'reduce-overhead', 'max-autotune' or 'max-autotune-no-cudagraphs'.") parser.add_argument('--warmup_steps', type=int, default=10, help='Number of warm-up steps to run before launching the timed runs.') args = parser.parse_args() parser.set_defaults(streaming=False) main(args) |