|
|
|
""" |
|
Example script demonstrating how to load the IFVI Value Factors dataset |
|
in different formats (JSON, CSV, Parquet). |
|
""" |
|
|
|
import os |
|
import json |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
from pathlib import Path |
|
|
|
|
|
REPO_ROOT = Path(__file__).parent.parent.parent.absolute() |
|
|
|
def load_json_data(country_name): |
|
""" |
|
Load value factors for a specific country from JSON file. |
|
|
|
Args: |
|
country_name (str): Name of the country |
|
|
|
Returns: |
|
dict: Value factors data for the country |
|
""" |
|
|
|
continents = ["Africa", "Asia", "Europe", "North America", "Oceania", "South America"] |
|
|
|
for continent in continents: |
|
country_path = REPO_ROOT / "data" / "by-territory" / "by-continent" / continent / f"{country_name}.json" |
|
if country_path.exists(): |
|
|
|
|
|
|
|
|
|
|
|
composite_path = REPO_ROOT / "data" / "composite-data" / "all-formats" / "composite_value_factors.json" |
|
if composite_path.exists(): |
|
with open(composite_path, 'r') as f: |
|
data = json.load(f) |
|
|
|
if country_name in data: |
|
return data[country_name] |
|
|
|
print(f"Country file found but using composite data instead: {country_path}") |
|
return {} |
|
|
|
print(f"Country not found: {country_name}") |
|
return {} |
|
|
|
def load_csv_data(): |
|
""" |
|
Load the entire dataset from CSV. |
|
|
|
Returns: |
|
pandas.DataFrame: Value factors data |
|
""" |
|
csv_path = REPO_ROOT / "data" / "composite-data" / "all-formats" / "composite_value_factors.csv" |
|
if csv_path.exists(): |
|
return pd.read_csv(csv_path) |
|
else: |
|
print(f"CSV file not found: {csv_path}") |
|
return pd.DataFrame() |
|
|
|
def load_parquet_data(): |
|
""" |
|
Load the entire dataset from Parquet. |
|
|
|
Returns: |
|
pandas.DataFrame: Value factors data |
|
""" |
|
parquet_path = REPO_ROOT / "data" / "composite-data" / "all-formats" / "composite_value_factors.parquet" |
|
if parquet_path.exists(): |
|
return pd.read_parquet(parquet_path) |
|
else: |
|
print(f"Parquet file not found: {parquet_path}") |
|
return pd.DataFrame() |
|
|
|
def compare_countries(countries, category, impact): |
|
""" |
|
Compare value factors across countries for a specific category and impact. |
|
|
|
Args: |
|
countries (list): List of country names |
|
category (str): Environmental impact category |
|
impact (str): Impact type |
|
|
|
Returns: |
|
pandas.DataFrame: Comparison data |
|
""" |
|
data = load_csv_data() |
|
if data.empty: |
|
return pd.DataFrame() |
|
|
|
|
|
filtered_data = data[(data['Category'] == category) & (data['Impact'] == impact)] |
|
|
|
|
|
country_data = filtered_data[filtered_data['Territory'].isin(countries)] |
|
|
|
return country_data |
|
|
|
def plot_country_comparison(countries, category, impact): |
|
""" |
|
Plot a comparison of value factors across countries. |
|
|
|
Args: |
|
countries (list): List of country names |
|
category (str): Environmental impact category |
|
impact (str): Impact type |
|
""" |
|
comparison_data = compare_countries(countries, category, impact) |
|
if comparison_data.empty: |
|
print("No data available for the specified parameters") |
|
return |
|
|
|
plt.figure(figsize=(10, 6)) |
|
plt.bar(comparison_data['Territory'], comparison_data['ValueFactor']) |
|
plt.title(f"{category} - {impact} Value Factors by Country") |
|
plt.xlabel("Country") |
|
plt.ylabel("Value Factor (USD)") |
|
plt.xticks(rotation=45) |
|
plt.tight_layout() |
|
|
|
|
|
output_dir = REPO_ROOT / "examples" / "outputs" |
|
output_dir.mkdir(parents=True, exist_ok=True) |
|
plt.savefig(output_dir / f"{category}_{impact}_comparison.png") |
|
plt.close() |
|
|
|
def main(): |
|
"""Main function demonstrating the use of the dataset.""" |
|
|
|
country_data = load_json_data("United States") |
|
print(f"Number of value factors for United States: {len(country_data) if country_data else 0}") |
|
|
|
|
|
csv_data = load_csv_data() |
|
print(f"CSV data shape: {csv_data.shape}") |
|
|
|
|
|
parquet_data = load_parquet_data() |
|
print(f"Parquet data shape: {parquet_data.shape}") |
|
|
|
|
|
countries_to_compare = ["United States", "China", "Germany", "Brazil", "India"] |
|
comparison = compare_countries(countries_to_compare, "PM2.5", "Primary Health") |
|
print("\nComparison of PM2.5 Primary Health value factors:") |
|
print(comparison[['Territory', 'Location', 'ValueFactor']].to_string(index=False)) |
|
|
|
|
|
plot_country_comparison(countries_to_compare, "PM2.5", "Primary Health") |
|
print("\nPlot saved to examples/outputs/PM2.5_Primary Health_comparison.png") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|