Commit
ยท
8afcf40
1
Parent(s):
040c017
updated
Browse files- notebooks/data_exploration.ipynb +513 -0
notebooks/data_exploration.ipynb
ADDED
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# IFVI Value Factors Data Exploration\n",
|
8 |
+
"\n",
|
9 |
+
"This notebook provides a starting point for exploring and visualizing the IFVI Value Factors dataset. The dataset contains environmental value factors organized by region, impact type, and policy domain.\n",
|
10 |
+
"\n",
|
11 |
+
"## Dataset Overview\n",
|
12 |
+
"\n",
|
13 |
+
"The IFVI Value Factors dataset is organized in multiple ways:\n",
|
14 |
+
"- By region (continental regions, economic zones, development status)\n",
|
15 |
+
"- By impact type (health, ecosystem, economic, social impacts)\n",
|
16 |
+
"- By policy domain (climate, air quality, land use, waste management, water resources)\n",
|
17 |
+
"\n",
|
18 |
+
"Data is available in multiple formats: JSON, CSV, and Parquet."
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "markdown",
|
23 |
+
"metadata": {},
|
24 |
+
"source": [
|
25 |
+
"## Setup and Dependencies\n",
|
26 |
+
"\n",
|
27 |
+
"First, let's import the necessary libraries for data exploration and visualization."
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": null,
|
33 |
+
"metadata": {},
|
34 |
+
"outputs": [],
|
35 |
+
"source": [
|
36 |
+
"# Import standard data analysis libraries\n",
|
37 |
+
"import pandas as pd\n",
|
38 |
+
"import numpy as np\n",
|
39 |
+
"import matplotlib.pyplot as plt\n",
|
40 |
+
"import seaborn as sns\n",
|
41 |
+
"import json\n",
|
42 |
+
"import os\n",
|
43 |
+
"from pathlib import Path\n",
|
44 |
+
"import glob\n",
|
45 |
+
"\n",
|
46 |
+
"# Set up plotting\n",
|
47 |
+
"plt.style.use('ggplot')\n",
|
48 |
+
"sns.set(style=\"whitegrid\")\n",
|
49 |
+
"%matplotlib inline\n",
|
50 |
+
"plt.rcParams['figure.figsize'] = (12, 8)\n",
|
51 |
+
"\n",
|
52 |
+
"# Display settings for pandas\n",
|
53 |
+
"pd.set_option('display.max_columns', None)\n",
|
54 |
+
"pd.set_option('display.max_rows', 100)\n",
|
55 |
+
"pd.set_option('display.width', 1000)"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "markdown",
|
60 |
+
"metadata": {},
|
61 |
+
"source": [
|
62 |
+
"## Data Loading Functions\n",
|
63 |
+
"\n",
|
64 |
+
"Let's define some helper functions to load data from different sources and formats."
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": null,
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"# Define the base data directory\n",
|
74 |
+
"DATA_DIR = Path('../data')\n",
|
75 |
+
"\n",
|
76 |
+
"def load_json_file(file_path):\n",
|
77 |
+
" \"\"\"Load a JSON file into a Python dictionary.\"\"\"\n",
|
78 |
+
" try:\n",
|
79 |
+
" with open(file_path, 'r') as f:\n",
|
80 |
+
" return json.load(f)\n",
|
81 |
+
" except Exception as e:\n",
|
82 |
+
" print(f\"Error loading {file_path}: {e}\")\n",
|
83 |
+
" return None\n",
|
84 |
+
"\n",
|
85 |
+
"def load_csv_file(file_path):\n",
|
86 |
+
" \"\"\"Load a CSV file into a pandas DataFrame.\"\"\"\n",
|
87 |
+
" try:\n",
|
88 |
+
" return pd.read_csv(file_path)\n",
|
89 |
+
" except Exception as e:\n",
|
90 |
+
" print(f\"Error loading {file_path}: {e}\")\n",
|
91 |
+
" return None\n",
|
92 |
+
" \n",
|
93 |
+
"def load_parquet_file(file_path):\n",
|
94 |
+
" \"\"\"Load a Parquet file into a pandas DataFrame.\"\"\"\n",
|
95 |
+
" try:\n",
|
96 |
+
" return pd.read_parquet(file_path)\n",
|
97 |
+
" except Exception as e:\n",
|
98 |
+
" print(f\"Error loading {file_path}: {e}\")\n",
|
99 |
+
" return None\n",
|
100 |
+
" \n",
|
101 |
+
"def get_available_regions():\n",
|
102 |
+
" \"\"\"Get a list of available regions in the dataset.\"\"\"\n",
|
103 |
+
" continental_dir = DATA_DIR / 'by-region' / 'continental'\n",
|
104 |
+
" if continental_dir.exists():\n",
|
105 |
+
" return [d.name for d in continental_dir.iterdir() if d.is_dir()]\n",
|
106 |
+
" return []\n",
|
107 |
+
"\n",
|
108 |
+
"def get_available_impact_types():\n",
|
109 |
+
" \"\"\"Get a list of available impact types in the dataset.\"\"\"\n",
|
110 |
+
" impact_dir = DATA_DIR / 'by-impact-type'\n",
|
111 |
+
" if impact_dir.exists():\n",
|
112 |
+
" return [d.name for d in impact_dir.iterdir() if d.is_dir()]\n",
|
113 |
+
" return []"
|
114 |
+
]
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "markdown",
|
118 |
+
"metadata": {},
|
119 |
+
"source": [
|
120 |
+
"## Exploring the Dataset Structure\n",
|
121 |
+
"\n",
|
122 |
+
"Let's explore the structure of the dataset to understand what's available."
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"execution_count": null,
|
128 |
+
"metadata": {},
|
129 |
+
"outputs": [],
|
130 |
+
"source": [
|
131 |
+
"# Check available regions\n",
|
132 |
+
"regions = get_available_regions()\n",
|
133 |
+
"print(f\"Available regions: {regions}\")\n",
|
134 |
+
"\n",
|
135 |
+
"# Check available impact types\n",
|
136 |
+
"impact_types = get_available_impact_types()\n",
|
137 |
+
"print(f\"Available impact types: {impact_types}\")"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "markdown",
|
142 |
+
"metadata": {},
|
143 |
+
"source": [
|
144 |
+
"## Loading Aggregated Data\n",
|
145 |
+
"\n",
|
146 |
+
"Let's start by loading some of the aggregated data files to get an overview of the dataset."
|
147 |
+
]
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"cell_type": "code",
|
151 |
+
"execution_count": null,
|
152 |
+
"metadata": {},
|
153 |
+
"outputs": [],
|
154 |
+
"source": [
|
155 |
+
"# Load composite value factors from CSV\n",
|
156 |
+
"composite_csv_path = DATA_DIR / 'aggregated' / 'composite_value_factors.csv'\n",
|
157 |
+
"if composite_csv_path.exists():\n",
|
158 |
+
" composite_df = load_csv_file(composite_csv_path)\n",
|
159 |
+
" if composite_df is not None:\n",
|
160 |
+
" print(\"Composite Value Factors (CSV):\")\n",
|
161 |
+
" display(composite_df.head())\n",
|
162 |
+
"else:\n",
|
163 |
+
" print(f\"File not found: {composite_csv_path}\")\n",
|
164 |
+
" \n",
|
165 |
+
"# Try loading some CSV files from the csv directory\n",
|
166 |
+
"csv_files = list(Path(DATA_DIR / 'csv' / 'by-methodology').glob('*.csv'))\n",
|
167 |
+
"if csv_files:\n",
|
168 |
+
" print(f\"\\nFound {len(csv_files)} CSV files in by-methodology directory\")\n",
|
169 |
+
" for file_path in csv_files[:3]: # Show first 3 files\n",
|
170 |
+
" print(f\"\\nLoading {file_path.name}:\")\n",
|
171 |
+
" df = load_csv_file(file_path)\n",
|
172 |
+
" if df is not None:\n",
|
173 |
+
" display(df.head())"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "markdown",
|
178 |
+
"metadata": {},
|
179 |
+
"source": [
|
180 |
+
"## Exploring Regional Data\n",
|
181 |
+
"\n",
|
182 |
+
"Let's explore the data for specific regions."
|
183 |
+
]
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"cell_type": "code",
|
187 |
+
"execution_count": null,
|
188 |
+
"metadata": {},
|
189 |
+
"outputs": [],
|
190 |
+
"source": [
|
191 |
+
"# Function to get countries in a region\n",
|
192 |
+
"def get_countries_in_region(region):\n",
|
193 |
+
" region_dir = DATA_DIR / 'by-region' / 'continental' / region\n",
|
194 |
+
" if region_dir.exists():\n",
|
195 |
+
" return [f.stem for f in region_dir.glob('*.json')]\n",
|
196 |
+
" return []\n",
|
197 |
+
"\n",
|
198 |
+
"# Check countries in each region\n",
|
199 |
+
"for region in regions:\n",
|
200 |
+
" countries = get_countries_in_region(region)\n",
|
201 |
+
" print(f\"{region}: {len(countries)} countries\")\n",
|
202 |
+
" if countries:\n",
|
203 |
+
" print(f\" Sample countries: {', '.join(countries[:5])}...\")"
|
204 |
+
]
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"cell_type": "markdown",
|
208 |
+
"metadata": {},
|
209 |
+
"source": [
|
210 |
+
"## Loading Country-Specific Data\n",
|
211 |
+
"\n",
|
212 |
+
"Let's load data for a specific country and explore it."
|
213 |
+
]
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"cell_type": "code",
|
217 |
+
"execution_count": null,
|
218 |
+
"metadata": {},
|
219 |
+
"outputs": [],
|
220 |
+
"source": [
|
221 |
+
"# Choose a sample country (adjust as needed)\n",
|
222 |
+
"sample_region = regions[0] if regions else None\n",
|
223 |
+
"if sample_region:\n",
|
224 |
+
" countries = get_countries_in_region(sample_region)\n",
|
225 |
+
" sample_country = countries[0] if countries else None\n",
|
226 |
+
" \n",
|
227 |
+
" if sample_country:\n",
|
228 |
+
" country_file = DATA_DIR / 'by-region' / 'continental' / sample_region / f\"{sample_country}.json\"\n",
|
229 |
+
" print(f\"Loading data for {sample_country} in {sample_region}\")\n",
|
230 |
+
" country_data = load_json_file(country_file)\n",
|
231 |
+
" \n",
|
232 |
+
" if country_data:\n",
|
233 |
+
" # Display basic information about the country data\n",
|
234 |
+
" print(f\"\\nData keys: {list(country_data.keys()) if isinstance(country_data, dict) else 'Not a dictionary'}\")\n",
|
235 |
+
" \n",
|
236 |
+
" # Convert to DataFrame if possible for easier exploration\n",
|
237 |
+
" if isinstance(country_data, dict):\n",
|
238 |
+
" try:\n",
|
239 |
+
" # This is a placeholder - adjust based on actual data structure\n",
|
240 |
+
" country_df = pd.json_normalize(country_data)\n",
|
241 |
+
" display(country_df.head())\n",
|
242 |
+
" except Exception as e:\n",
|
243 |
+
" print(f\"Could not convert to DataFrame: {e}\")"
|
244 |
+
]
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"cell_type": "markdown",
|
248 |
+
"metadata": {},
|
249 |
+
"source": [
|
250 |
+
"## Exploring Impact Type Data\n",
|
251 |
+
"\n",
|
252 |
+
"Let's explore data organized by impact type."
|
253 |
+
]
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"cell_type": "code",
|
257 |
+
"execution_count": null,
|
258 |
+
"metadata": {},
|
259 |
+
"outputs": [],
|
260 |
+
"source": [
|
261 |
+
"# Function to get files in an impact type directory\n",
|
262 |
+
"def get_files_in_impact_type(impact_type):\n",
|
263 |
+
" impact_dir = DATA_DIR / 'by-impact-type' / impact_type\n",
|
264 |
+
" if impact_dir.exists():\n",
|
265 |
+
" return list(impact_dir.glob('**/*.*'))\n",
|
266 |
+
" return []\n",
|
267 |
+
"\n",
|
268 |
+
"# Check files in each impact type\n",
|
269 |
+
"for impact_type in impact_types:\n",
|
270 |
+
" files = get_files_in_impact_type(impact_type)\n",
|
271 |
+
" print(f\"{impact_type}: {len(files)} files\")\n",
|
272 |
+
" if files:\n",
|
273 |
+
" print(f\" Sample files: {', '.join(str(f.relative_to(DATA_DIR / 'by-impact-type')) for f in files[:3])}...\")"
|
274 |
+
]
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"cell_type": "markdown",
|
278 |
+
"metadata": {},
|
279 |
+
"source": [
|
280 |
+
"## Data Visualization Examples\n",
|
281 |
+
"\n",
|
282 |
+
"Let's create some example visualizations based on the available data."
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "code",
|
287 |
+
"execution_count": null,
|
288 |
+
"metadata": {},
|
289 |
+
"outputs": [],
|
290 |
+
"source": [
|
291 |
+
"# Example 1: Bar chart comparing values across countries (placeholder)\n",
|
292 |
+
"# Replace with actual data loading and processing based on your exploration\n",
|
293 |
+
"def plot_country_comparison(region, value_factor, n_countries=10):\n",
|
294 |
+
" \"\"\"Plot a comparison of a specific value factor across countries in a region.\"\"\"\n",
|
295 |
+
" # This is a placeholder - replace with actual data loading logic\n",
|
296 |
+
" countries = get_countries_in_region(region)[:n_countries]\n",
|
297 |
+
" \n",
|
298 |
+
" # Placeholder for data - replace with actual data\n",
|
299 |
+
" np.random.seed(42) # For reproducibility\n",
|
300 |
+
" values = np.random.rand(len(countries)) * 100\n",
|
301 |
+
" \n",
|
302 |
+
" plt.figure(figsize=(12, 8))\n",
|
303 |
+
" plt.bar(countries, values)\n",
|
304 |
+
" plt.title(f\"{value_factor} Comparison Across {region} Countries\")\n",
|
305 |
+
" plt.xlabel(\"Country\")\n",
|
306 |
+
" plt.ylabel(f\"{value_factor} Value\")\n",
|
307 |
+
" plt.xticks(rotation=45, ha='right')\n",
|
308 |
+
" plt.tight_layout()\n",
|
309 |
+
" plt.show()\n",
|
310 |
+
"\n",
|
311 |
+
"# Example visualization with placeholder data\n",
|
312 |
+
"if regions:\n",
|
313 |
+
" plot_country_comparison(regions[0], \"CO2 Emissions Value Factor\")"
|
314 |
+
]
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"cell_type": "code",
|
318 |
+
"execution_count": null,
|
319 |
+
"metadata": {},
|
320 |
+
"outputs": [],
|
321 |
+
"source": [
|
322 |
+
"# Example 2: Heatmap of correlations between different value factors (placeholder)\n",
|
323 |
+
"# Replace with actual data loading and processing\n",
|
324 |
+
"\n",
|
325 |
+
"# Placeholder for correlation data - replace with actual data\n",
|
326 |
+
"np.random.seed(42) # For reproducibility\n",
|
327 |
+
"factor_names = ['CO2', 'PM2.5', 'NOx', 'SOx', 'Land Use', 'Water Consumption']\n",
|
328 |
+
"corr_matrix = np.random.rand(len(factor_names), len(factor_names))\n",
|
329 |
+
"# Make it symmetric for a valid correlation matrix\n",
|
330 |
+
"corr_matrix = (corr_matrix + corr_matrix.T) / 2\n",
|
331 |
+
"np.fill_diagonal(corr_matrix, 1)\n",
|
332 |
+
"\n",
|
333 |
+
"# Create a DataFrame\n",
|
334 |
+
"corr_df = pd.DataFrame(corr_matrix, index=factor_names, columns=factor_names)\n",
|
335 |
+
"\n",
|
336 |
+
"# Plot the heatmap\n",
|
337 |
+
"plt.figure(figsize=(10, 8))\n",
|
338 |
+
"sns.heatmap(corr_df, annot=True, cmap='coolwarm', vmin=-1, vmax=1)\n",
|
339 |
+
"plt.title('Correlation Between Different Value Factors (Example)')\n",
|
340 |
+
"plt.tight_layout()\n",
|
341 |
+
"plt.show()"
|
342 |
+
]
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"cell_type": "markdown",
|
346 |
+
"metadata": {},
|
347 |
+
"source": [
|
348 |
+
"## Geographic Visualization\n",
|
349 |
+
"\n",
|
350 |
+
"Let's create a map visualization to show value factors across different regions."
|
351 |
+
]
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"cell_type": "code",
|
355 |
+
"execution_count": null,
|
356 |
+
"metadata": {},
|
357 |
+
"outputs": [],
|
358 |
+
"source": [
|
359 |
+
"# For geographic visualizations, we'll need additional libraries\n",
|
360 |
+
"# Uncomment and run if needed\n",
|
361 |
+
"# !pip install geopandas matplotlib\n",
|
362 |
+
"\n",
|
363 |
+
"# Example code for geographic visualization\n",
|
364 |
+
"try:\n",
|
365 |
+
" import geopandas as gpd\n",
|
366 |
+
" \n",
|
367 |
+
" # Load world map data\n",
|
368 |
+
" world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))\n",
|
369 |
+
" \n",
|
370 |
+
" # Placeholder for value factor data - replace with actual data\n",
|
371 |
+
" # Here we're just assigning random values to countries\n",
|
372 |
+
" np.random.seed(42) # For reproducibility\n",
|
373 |
+
" world['value_factor'] = np.random.rand(len(world)) * 100\n",
|
374 |
+
" \n",
|
375 |
+
" # Create the plot\n",
|
376 |
+
" fig, ax = plt.subplots(1, 1, figsize=(15, 10))\n",
|
377 |
+
" world.plot(column='value_factor', ax=ax, legend=True,\n",
|
378 |
+
" legend_kwds={'label': \"Value Factor (Example)\",\n",
|
379 |
+
" 'orientation': \"horizontal\"},\n",
|
380 |
+
" cmap='YlOrRd')\n",
|
381 |
+
" ax.set_title('Global Distribution of Value Factors (Example)', fontsize=15)\n",
|
382 |
+
" plt.tight_layout()\n",
|
383 |
+
" plt.show()\n",
|
384 |
+
" \n",
|
385 |
+
"except ImportError:\n",
|
386 |
+
" print(\"To create geographic visualizations, install geopandas:\")\n",
|
387 |
+
" print(\"pip install geopandas matplotlib\")"
|
388 |
+
]
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"cell_type": "markdown",
|
392 |
+
"metadata": {},
|
393 |
+
"source": [
|
394 |
+
"## Time Series Analysis\n",
|
395 |
+
"\n",
|
396 |
+
"If the data contains time series information, we can analyze trends over time."
|
397 |
+
]
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"cell_type": "code",
|
401 |
+
"execution_count": null,
|
402 |
+
"metadata": {},
|
403 |
+
"outputs": [],
|
404 |
+
"source": [
|
405 |
+
"# Placeholder for time series data - replace with actual data if available\n",
|
406 |
+
"# Generate example time series data\n",
|
407 |
+
"dates = pd.date_range(start='2015-01-01', end='2024-01-01', freq='M')\n",
|
408 |
+
"np.random.seed(42) # For reproducibility\n",
|
409 |
+
"values = np.cumsum(np.random.randn(len(dates))) + 50 # Random walk with drift\n",
|
410 |
+
"\n",
|
411 |
+
"# Create a DataFrame\n",
|
412 |
+
"ts_df = pd.DataFrame({'Date': dates, 'Value Factor': values})\n",
|
413 |
+
"\n",
|
414 |
+
"# Plot the time series\n",
|
415 |
+
"plt.figure(figsize=(14, 7))\n",
|
416 |
+
"plt.plot(ts_df['Date'], ts_df['Value Factor'])\n",
|
417 |
+
"plt.title('Value Factor Trend Over Time (Example)', fontsize=15)\n",
|
418 |
+
"plt.xlabel('Date')\n",
|
419 |
+
"plt.ylabel('Value Factor')\n",
|
420 |
+
"plt.grid(True)\n",
|
421 |
+
"plt.tight_layout()\n",
|
422 |
+
"plt.show()"
|
423 |
+
]
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"cell_type": "markdown",
|
427 |
+
"metadata": {},
|
428 |
+
"source": [
|
429 |
+
"## Comparative Analysis\n",
|
430 |
+
"\n",
|
431 |
+
"Let's compare value factors across different categories or regions."
|
432 |
+
]
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"cell_type": "code",
|
436 |
+
"execution_count": null,
|
437 |
+
"metadata": {},
|
438 |
+
"outputs": [],
|
439 |
+
"source": [
|
440 |
+
"# Placeholder for comparative data - replace with actual data\n",
|
441 |
+
"categories = ['Health Impacts', 'Ecosystem Impacts', 'Economic Impacts', 'Social Impacts']\n",
|
442 |
+
"regions_sample = ['Africa', 'Asia', 'Europe', 'North America', 'South America']\n",
|
443 |
+
"\n",
|
444 |
+
"# Generate random data for demonstration\n",
|
445 |
+
"np.random.seed(42) # For reproducibility\n",
|
446 |
+
"data = np.random.rand(len(regions_sample), len(categories)) * 100\n",
|
447 |
+
"\n",
|
448 |
+
"# Create a DataFrame\n",
|
449 |
+
"comp_df = pd.DataFrame(data, index=regions_sample, columns=categories)\n",
|
450 |
+
"\n",
|
451 |
+
"# Plot the data\n",
|
452 |
+
"comp_df.plot(kind='bar', figsize=(14, 8))\n",
|
453 |
+
"plt.title('Value Factors by Impact Type Across Regions (Example)', fontsize=15)\n",
|
454 |
+
"plt.xlabel('Region')\n",
|
455 |
+
"plt.ylabel('Value Factor')\n",
|
456 |
+
"plt.legend(title='Impact Type')\n",
|
457 |
+
"plt.grid(axis='y')\n",
|
458 |
+
"plt.tight_layout()\n",
|
459 |
+
"plt.show()"
|
460 |
+
]
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"cell_type": "markdown",
|
464 |
+
"metadata": {},
|
465 |
+
"source": [
|
466 |
+
"## Next Steps\n",
|
467 |
+
"\n",
|
468 |
+
"Based on this initial exploration, here are some suggested next steps:\n",
|
469 |
+
"\n",
|
470 |
+
"1. **Deeper Data Exploration**:\n",
|
471 |
+
" - Explore the structure of country-specific JSON files in detail\n",
|
472 |
+
" - Analyze the relationships between different value factors\n",
|
473 |
+
" - Compare value factors across different regions and impact types\n",
|
474 |
+
"\n",
|
475 |
+
"2. **Advanced Visualizations**:\n",
|
476 |
+
" - Create interactive visualizations using libraries like Plotly\n",
|
477 |
+
" - Develop choropleth maps to show global distribution of value factors\n",
|
478 |
+
" - Create dashboards for comprehensive data exploration\n",
|
479 |
+
"\n",
|
480 |
+
"3. **Statistical Analysis**:\n",
|
481 |
+
" - Perform correlation analysis between different value factors\n",
|
482 |
+
" - Conduct cluster analysis to identify groups of countries with similar profiles\n",
|
483 |
+
" - Develop predictive models based on the value factors\n",
|
484 |
+
"\n",
|
485 |
+
"4. **Policy Implications**:\n",
|
486 |
+
" - Analyze how value factors relate to policy decisions\n",
|
487 |
+
" - Compare value factors with actual policy implementations\n",
|
488 |
+
" - Evaluate the economic implications of different value factors"
|
489 |
+
]
|
490 |
+
}
|
491 |
+
],
|
492 |
+
"metadata": {
|
493 |
+
"kernelspec": {
|
494 |
+
"display_name": "Python 3",
|
495 |
+
"language": "python",
|
496 |
+
"name": "python3"
|
497 |
+
},
|
498 |
+
"language_info": {
|
499 |
+
"codemirror_mode": {
|
500 |
+
"name": "ipython",
|
501 |
+
"version": 3
|
502 |
+
},
|
503 |
+
"file_extension": ".py",
|
504 |
+
"mimetype": "text/x-python",
|
505 |
+
"name": "python",
|
506 |
+
"nbconvert_exporter": "python",
|
507 |
+
"pygments_lexer": "ipython3",
|
508 |
+
"version": "3.8.10"
|
509 |
+
}
|
510 |
+
},
|
511 |
+
"nbformat": 4,
|
512 |
+
"nbformat_minor": 4
|
513 |
+
}
|