Commit
Β·
f70942e
1
Parent(s):
33a2d5c
updated
Browse files- .vscode/settings.json +0 -3
- .vscode/tasks.json +0 -0
- main-sections-links.json +112 -0
- scripts/convert_csv_to_json.py +0 -214
- scripts/extract_country_links.py +0 -86
.vscode/settings.json
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:564b1e82a3739463441daa8c2e3d06f005c613b0c9613e91ca4cdcf4cebe6a6e
|
3 |
-
size 151
|
|
|
|
|
|
|
|
.vscode/tasks.json
DELETED
File without changes
|
main-sections-links.json
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"data_sections": [
|
3 |
+
{
|
4 |
+
"category": "Data Files Root",
|
5 |
+
"name": "Main Data Directory",
|
6 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data",
|
7 |
+
"emoji": "π"
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"category": "Aggregated Value Factors",
|
11 |
+
"name": "Aggregated Data (CSV, JSON, Parquet)",
|
12 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data/aggregated",
|
13 |
+
"emoji": "π"
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"category": "Value Factors by Type/Methodology",
|
17 |
+
"name": "Impact Type Data (JSON)",
|
18 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data/by-impact-type",
|
19 |
+
"emoji": "π"
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"category": "Value Factors by Geography",
|
23 |
+
"name": "Continental Data Root",
|
24 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data/by-region/continental",
|
25 |
+
"emoji": "π"
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"category": "CSV Format Data",
|
29 |
+
"name": "CSV Data Files",
|
30 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data/csv",
|
31 |
+
"emoji": "π"
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"category": "Data By Impact Type",
|
35 |
+
"name": "Air Pollution Data",
|
36 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data/by-impact-type/air-pollution",
|
37 |
+
"emoji": "π«οΈ"
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"category": "Data By Impact Type",
|
41 |
+
"name": "GHG Impacts Data (1 Impact Only)",
|
42 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data/by-impact-type/ghg",
|
43 |
+
"emoji": "π"
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"category": "Data By Impact Type",
|
47 |
+
"name": "Land Conversion Data",
|
48 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data/by-impact-type/land-conversion",
|
49 |
+
"emoji": "π±"
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"category": "Data By Impact Type",
|
53 |
+
"name": "Land Use Data",
|
54 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data/by-impact-type/land-use",
|
55 |
+
"emoji": "πΏ"
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"category": "Data By Impact Type",
|
59 |
+
"name": "Waste Data",
|
60 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data/by-impact-type/waste",
|
61 |
+
"emoji": "ποΈ"
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"category": "Data By Impact Type",
|
65 |
+
"name": "Water Consumption Data",
|
66 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data/by-impact-type/water-consumption",
|
67 |
+
"emoji": "π§"
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"category": "Data By Impact Type",
|
71 |
+
"name": "Water Pollution Data (JSON Chunked Due To Size)",
|
72 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data/by-impact-type/water-pollution",
|
73 |
+
"emoji": "π¦"
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"category": "Data By Region",
|
77 |
+
"name": "Africa",
|
78 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data/by-region/continental/Africa",
|
79 |
+
"emoji": "π"
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"category": "Data By Region",
|
83 |
+
"name": "Asia",
|
84 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data/by-region/continental/Asia",
|
85 |
+
"emoji": "π"
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"category": "Data By Region",
|
89 |
+
"name": "Europe",
|
90 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data/by-region/continental/Europe",
|
91 |
+
"emoji": "π"
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"category": "Data By Region",
|
95 |
+
"name": "North America",
|
96 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data/by-region/continental/North%20America",
|
97 |
+
"emoji": "π"
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"category": "Data By Region",
|
101 |
+
"name": "Oceania",
|
102 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data/by-region/continental/Oceania",
|
103 |
+
"emoji": "π"
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"category": "Data By Region",
|
107 |
+
"name": "South America",
|
108 |
+
"url": "https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/tree/main/data/by-region/continental/South%20America",
|
109 |
+
"emoji": "π"
|
110 |
+
}
|
111 |
+
]
|
112 |
+
}
|
scripts/convert_csv_to_json.py
DELETED
@@ -1,214 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
"""
|
3 |
-
Script to convert CSV files to JSON for the IFVI Value Factors dataset.
|
4 |
-
This script fetches CSV data from GitHub and creates JSON files for the missing impact types.
|
5 |
-
"""
|
6 |
-
|
7 |
-
import os
|
8 |
-
import json
|
9 |
-
import pandas as pd
|
10 |
-
import requests
|
11 |
-
from pathlib import Path
|
12 |
-
from io import StringIO
|
13 |
-
|
14 |
-
# Get the repository root directory
|
15 |
-
REPO_ROOT = Path(__file__).parent.parent.absolute()
|
16 |
-
|
17 |
-
# GitHub repository URL for the CSV files
|
18 |
-
GITHUB_CSV_BASE_URL = "https://raw.githubusercontent.com/danielrosehill/Global-Value-Factors-Explorer/main/Data/GVFD-Deriv/data/csv/by-methodology"
|
19 |
-
|
20 |
-
def create_directory_if_not_exists(directory_path):
|
21 |
-
"""
|
22 |
-
Create a directory if it doesn't exist.
|
23 |
-
|
24 |
-
Args:
|
25 |
-
directory_path (Path): Path to the directory to create
|
26 |
-
"""
|
27 |
-
if not directory_path.exists():
|
28 |
-
os.makedirs(directory_path)
|
29 |
-
print(f"Created directory: {directory_path}")
|
30 |
-
|
31 |
-
def fetch_csv_from_github(impact_type):
|
32 |
-
"""
|
33 |
-
Fetch a CSV file from GitHub.
|
34 |
-
|
35 |
-
Args:
|
36 |
-
impact_type (str): Name of the impact type (e.g., 'land-conversion')
|
37 |
-
|
38 |
-
Returns:
|
39 |
-
pandas.DataFrame or None: DataFrame containing the CSV data, or None if the fetch failed
|
40 |
-
"""
|
41 |
-
csv_url = f"{GITHUB_CSV_BASE_URL}/{impact_type}.csv"
|
42 |
-
print(f"Fetching CSV from: {csv_url}")
|
43 |
-
|
44 |
-
try:
|
45 |
-
response = requests.get(csv_url)
|
46 |
-
response.raise_for_status() # Raise an exception for HTTP errors
|
47 |
-
|
48 |
-
# Parse the CSV content
|
49 |
-
csv_content = StringIO(response.text)
|
50 |
-
df = pd.read_csv(csv_content)
|
51 |
-
|
52 |
-
print(f"Successfully fetched CSV for {impact_type}")
|
53 |
-
return df
|
54 |
-
|
55 |
-
except Exception as e:
|
56 |
-
print(f"Error fetching CSV for {impact_type}: {str(e)}")
|
57 |
-
return None
|
58 |
-
|
59 |
-
def convert_csv_to_json(impact_type, output_filename=None, split_file=False, num_parts=4):
|
60 |
-
"""
|
61 |
-
Convert a CSV file to JSON for a specific impact type.
|
62 |
-
|
63 |
-
Args:
|
64 |
-
impact_type (str): Name of the impact type (e.g., 'land-conversion')
|
65 |
-
output_filename (str, optional): Name of the output JSON file.
|
66 |
-
Defaults to impact_type + '.json'
|
67 |
-
split_file (bool, optional): Whether to split the file into multiple parts.
|
68 |
-
Defaults to False.
|
69 |
-
num_parts (int, optional): Number of parts to split the file into.
|
70 |
-
Defaults to 4.
|
71 |
-
|
72 |
-
Returns:
|
73 |
-
bool: True if conversion was successful, False otherwise
|
74 |
-
"""
|
75 |
-
# Fetch the CSV data from GitHub
|
76 |
-
df = fetch_csv_from_github(impact_type)
|
77 |
-
|
78 |
-
if df is None:
|
79 |
-
print(f"Failed to fetch CSV data for {impact_type}")
|
80 |
-
return False
|
81 |
-
|
82 |
-
# Create the output directory
|
83 |
-
output_dir = REPO_ROOT / "data" / "by-impact-type" / impact_type
|
84 |
-
create_directory_if_not_exists(output_dir)
|
85 |
-
|
86 |
-
# Set the output filename if not provided
|
87 |
-
if output_filename is None:
|
88 |
-
output_filename = f"{impact_type}_by_impact.json"
|
89 |
-
|
90 |
-
try:
|
91 |
-
# Convert the DataFrame to a nested dictionary structure
|
92 |
-
# Get the column names
|
93 |
-
columns = df.columns.tolist()
|
94 |
-
|
95 |
-
# Create a hierarchical structure
|
96 |
-
metadata = {
|
97 |
-
"impact_type": impact_type,
|
98 |
-
"description": f"Value factors for {impact_type}",
|
99 |
-
"source": f"Derived from {impact_type}.csv",
|
100 |
-
"columns": columns
|
101 |
-
}
|
102 |
-
|
103 |
-
if not split_file:
|
104 |
-
# Regular processing for non-split files
|
105 |
-
data = {
|
106 |
-
"metadata": metadata,
|
107 |
-
"data": {}
|
108 |
-
}
|
109 |
-
|
110 |
-
# Convert DataFrame to dictionary
|
111 |
-
# If the DataFrame has 'Country' or 'Region' columns, organize by those
|
112 |
-
if 'Country' in df.columns:
|
113 |
-
for country in df['Country'].unique():
|
114 |
-
country_data = df[df['Country'] == country].to_dict(orient='records')
|
115 |
-
data['data'][country] = country_data
|
116 |
-
elif 'Region' in df.columns:
|
117 |
-
for region in df['Region'].unique():
|
118 |
-
region_data = df[df['Region'] == region].to_dict(orient='records')
|
119 |
-
data['data'][region] = region_data
|
120 |
-
else:
|
121 |
-
# If no country or region columns, just convert all rows
|
122 |
-
data['data']['all'] = df.to_dict(orient='records')
|
123 |
-
|
124 |
-
# Write the JSON file
|
125 |
-
output_path = output_dir / output_filename
|
126 |
-
with open(output_path, 'w') as f:
|
127 |
-
json.dump(data, f, indent=2)
|
128 |
-
|
129 |
-
print(f"Created JSON file: {output_path}")
|
130 |
-
|
131 |
-
else:
|
132 |
-
# Split processing for large files
|
133 |
-
# Calculate the size of each part
|
134 |
-
part_size = len(df) // num_parts
|
135 |
-
output_paths = []
|
136 |
-
|
137 |
-
# Process each part
|
138 |
-
for i in range(num_parts):
|
139 |
-
start_idx = i * part_size
|
140 |
-
end_idx = (i + 1) * part_size if i < num_parts - 1 else len(df)
|
141 |
-
|
142 |
-
df_part = df.iloc[start_idx:end_idx]
|
143 |
-
|
144 |
-
# Create data structure for this part
|
145 |
-
data_part = {
|
146 |
-
"metadata": {**metadata, "part": i + 1, "total_parts": num_parts},
|
147 |
-
"data": {}
|
148 |
-
}
|
149 |
-
|
150 |
-
# Convert DataFrame to dictionary for this part
|
151 |
-
if 'Country' in df_part.columns:
|
152 |
-
for country in df_part['Country'].unique():
|
153 |
-
country_data = df_part[df_part['Country'] == country].to_dict(orient='records')
|
154 |
-
data_part['data'][country] = country_data
|
155 |
-
elif 'Region' in df_part.columns:
|
156 |
-
for region in df_part['Region'].unique():
|
157 |
-
region_data = df_part[df_part['Region'] == region].to_dict(orient='records')
|
158 |
-
data_part['data'][region] = region_data
|
159 |
-
else:
|
160 |
-
data_part['data']['all'] = df_part.to_dict(orient='records')
|
161 |
-
|
162 |
-
# Write the JSON file for this part
|
163 |
-
base_name = output_filename.replace('.json', '')
|
164 |
-
output_path = output_dir / f"{base_name}_part{i+1}.json"
|
165 |
-
output_paths.append(output_path)
|
166 |
-
|
167 |
-
with open(output_path, 'w') as f:
|
168 |
-
json.dump(data_part, f, indent=2)
|
169 |
-
|
170 |
-
print(f"Created {num_parts} JSON files: {', '.join(str(p) for p in output_paths)}")
|
171 |
-
|
172 |
-
return True
|
173 |
-
|
174 |
-
except Exception as e:
|
175 |
-
print(f"Error converting {impact_type} to JSON: {str(e)}")
|
176 |
-
return False
|
177 |
-
|
178 |
-
def main():
|
179 |
-
"""
|
180 |
-
Main function to convert all missing impact types to JSON.
|
181 |
-
"""
|
182 |
-
# List of impact types to convert
|
183 |
-
impact_types = [
|
184 |
-
"land-conversion",
|
185 |
-
"land-use",
|
186 |
-
"water-pollution"
|
187 |
-
]
|
188 |
-
|
189 |
-
# Output filenames for each impact type
|
190 |
-
output_filenames = {
|
191 |
-
"land-conversion": "land_conversion_by_impact.json",
|
192 |
-
"land-use": "land_use_by_impact.json",
|
193 |
-
"water-pollution": "water_pollution_by_impact.json"
|
194 |
-
}
|
195 |
-
|
196 |
-
# Convert each impact type
|
197 |
-
for impact_type in impact_types:
|
198 |
-
output_filename = output_filenames.get(impact_type)
|
199 |
-
|
200 |
-
# Split the water-pollution file into four parts
|
201 |
-
split_file = (impact_type == "water-pollution")
|
202 |
-
num_parts = 4 if split_file else 2
|
203 |
-
|
204 |
-
success = convert_csv_to_json(impact_type, output_filename, split_file, num_parts)
|
205 |
-
|
206 |
-
if success:
|
207 |
-
print(f"Successfully converted {impact_type} to JSON")
|
208 |
-
else:
|
209 |
-
print(f"Failed to convert {impact_type} to JSON")
|
210 |
-
|
211 |
-
print("\nDone! You can now add and commit the files.")
|
212 |
-
|
213 |
-
if __name__ == "__main__":
|
214 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/extract_country_links.py
DELETED
@@ -1,86 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
"""
|
3 |
-
Script to extract all country links from the README.md file and create a comprehensive
|
4 |
-
country-data-links.json file.
|
5 |
-
"""
|
6 |
-
|
7 |
-
import re
|
8 |
-
import json
|
9 |
-
import os
|
10 |
-
|
11 |
-
# Path to the README.md file
|
12 |
-
readme_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "README.md")
|
13 |
-
output_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "country-data-links.json")
|
14 |
-
|
15 |
-
# Regular expression to match country entries in the README
|
16 |
-
# Format: | π©πΏ Algeria | [JSON](https://huggingface.co/datasets/danielrosehill/ifvi_valuefactors_deriv/blob/main/data/by-region/continental/Africa/Algeria.json) | ...
|
17 |
-
country_pattern = r'\|\s+(?:(\S+)\s+)?([^|]+)\s+\|\s+\[JSON\]\(([^)]+)\)\s+\|'
|
18 |
-
|
19 |
-
# Dictionary to store country data by continent
|
20 |
-
country_data = {
|
21 |
-
"Africa": [],
|
22 |
-
"Asia": [],
|
23 |
-
"Europe": [],
|
24 |
-
"North America": [],
|
25 |
-
"South America": [],
|
26 |
-
"Oceania": []
|
27 |
-
}
|
28 |
-
|
29 |
-
current_continent = None
|
30 |
-
|
31 |
-
# Read the README.md file
|
32 |
-
with open(readme_path, 'r', encoding='utf-8') as f:
|
33 |
-
readme_content = f.read()
|
34 |
-
|
35 |
-
# Split the content by lines
|
36 |
-
lines = readme_content.split('\n')
|
37 |
-
|
38 |
-
# Process each line
|
39 |
-
for line in lines:
|
40 |
-
# Check if this is a continent header
|
41 |
-
if "#### π Africa" in line or "#### π Asia" in line or "#### π Europe" in line or \
|
42 |
-
"#### π North America" in line or "#### π Oceania" in line or "#### π South America" in line:
|
43 |
-
if "Africa" in line:
|
44 |
-
current_continent = "Africa"
|
45 |
-
elif "Asia" in line:
|
46 |
-
current_continent = "Asia"
|
47 |
-
elif "Europe" in line:
|
48 |
-
current_continent = "Europe"
|
49 |
-
elif "North America" in line:
|
50 |
-
current_continent = "North America"
|
51 |
-
elif "Oceania" in line:
|
52 |
-
current_continent = "Oceania"
|
53 |
-
elif "South America" in line:
|
54 |
-
current_continent = "South America"
|
55 |
-
|
56 |
-
# If we're in a continent section, look for country entries
|
57 |
-
if current_continent and "|" in line:
|
58 |
-
# Find all country entries in the line
|
59 |
-
matches = re.findall(country_pattern, line)
|
60 |
-
for match in matches:
|
61 |
-
emoji, country, url = match
|
62 |
-
|
63 |
-
# Clean up the country name
|
64 |
-
country = country.strip()
|
65 |
-
|
66 |
-
# Add to the appropriate continent list
|
67 |
-
if current_continent in country_data and country and url:
|
68 |
-
country_data[current_continent].append({
|
69 |
-
"country": country,
|
70 |
-
"emoji": emoji.strip() if emoji else "",
|
71 |
-
"url": url
|
72 |
-
})
|
73 |
-
|
74 |
-
# Create the final JSON structure
|
75 |
-
final_json = {
|
76 |
-
"country_data": country_data
|
77 |
-
}
|
78 |
-
|
79 |
-
# Write to the output file
|
80 |
-
with open(output_path, 'w', encoding='utf-8') as f:
|
81 |
-
json.dump(final_json, f, indent=2)
|
82 |
-
|
83 |
-
print(f"Successfully extracted country links to {output_path}")
|
84 |
-
print(f"Total countries extracted: {sum(len(countries) for countries in country_data.values())}")
|
85 |
-
for continent, countries in country_data.items():
|
86 |
-
print(f" {continent}: {len(countries)} countries")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|