import requests import csv import pandas as pd import matplotlib.pyplot as plt from datetime import datetime from pathlib import Path import os # Get the repository root (works both for local and GitHub Actions) if 'GITHUB_WORKSPACE' in os.environ: REPO_ROOT = Path(os.environ['GITHUB_WORKSPACE']) else: # Find git root when running locally current_dir = Path(__file__).resolve().parent while current_dir != current_dir.parent: if (current_dir / '.git').exists(): REPO_ROOT = current_dir break current_dir = current_dir.parent else: raise RuntimeError("Not in a git repository") # Define paths relative to repository root CSV_PATH = REPO_ROOT / 'daily_downloads.csv' IMAGE_PATH = REPO_ROOT / 'download_statistics.png' README_PATH = REPO_ROOT / 'README.md' API_URL = "https://huggingface.co/api/datasets/danielrosehill/ifvi_valuefactors_deriv?expand[]=downloads&expand[]=downloadsAllTime" def update_csv(): response = requests.get(API_URL) data = response.json() downloads = data.get('downloads', 0) today = datetime.now().strftime('%Y-%m-%d') try: with open(CSV_PATH, mode='r') as file: reader = csv.reader(file) rows = list(reader) except FileNotFoundError: rows = [["Date", "Total Downloads"]] with open(CSV_PATH, mode='w', newline='') as file: writer = csv.writer(file) writer.writerows(rows) writer.writerow([today, downloads]) def generate_image(): data = pd.read_csv(CSV_PATH) data['Date'] = pd.to_datetime(data['Date']) data = data.sort_values('Date') plt.figure(figsize=(10, 6)) plt.plot(data['Date'], data['Total Downloads'], marker='o', label='Total Downloads') plt.title('Download Statistics Over Time') plt.xlabel('Date') plt.ylabel('Total Downloads') plt.grid(True) plt.legend() plt.xticks(rotation=45) plt.tight_layout() plt.savefig(IMAGE_PATH) plt.close() def update_readme(): with open(README_PATH, 'r') as file: content = file.read() start_marker = "## Download Statistics" image_text = f"\n\n![Download Statistics](download_statistics.png)\n" if start_marker not in content: content += f"\n\n{start_marker}{image_text}" else: parts = content.split(start_marker) next_section = parts[1].find("##") if next_section == -1: parts[1] = image_text else: parts[1] = image_text + parts[1][next_section:] content = start_marker.join(parts) with open(README_PATH, 'w') as file: file.write(content) if __name__ == "__main__": update_csv() generate_image() update_readme()