File size: 5,379 Bytes
38f47f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"id": "056aa255-fda1-4cde-be24-459f6ad2c8b9",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/anaconda3/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3165: DtypeWarning: Columns (4) have mixed types.Specify dtype option on import or set low_memory=False.\n",
" has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n"
]
}
],
"source": [
"import pandas as pd\n",
"\n",
"df = pd.read_csv('raw/bq-results-20211206-133858-irtkgx60el7i.csv').drop(['ParentUrl', 'ParentAuthor', 'ParentTime', 'ParentScore'], axis=1)\n",
"df.text = df.text.str.replace('<p>', '\\n')\n",
"strings_to_remove = ['rel=\"nofollow\"', '<pre>', '</pre>', '<i>', '</i>', '<code>', '</code>', '>']\n",
"email_regex = '[a-zA-Z0-9._-]{0,30}@[a-zA-Z0-9._-]{0,20}\\.[a-zA-Z0-9_-]{2,3}'\n",
"munged_url_regex = 'http(s)?:\\&\\#.*?\\<\\/a>'\n",
"\n",
"for string in strings_to_remove:\n",
" df.text = df.text.str.replace(string, '')\n",
"\n",
"\n",
"df.text = df.text.replace(email_regex, 'REDACTED_EMAIL', regex=True)\n",
"df.text = df.text.replace(munged_url_regex, '', regex=True)\n",
"\n",
" # fix some unicode issues\n",
"df.text = df.text.str.replace(''', \"'\")\n",
"df.text = df.text.str.replace('/', \"/\")\n",
"df.text = df.text.str.replace(\""\", '\"')\n",
"\n",
"hiring_df = df[df.ParentTitle.str.lower().str.contains('who is hiring')]\n",
"wants_to_be_hired_df = df[df.ParentTitle.str.lower().str.contains('wants to be hired')]\n",
"freelancer_df = df[df.ParentTitle.str.lower().str.contains('freelancer')]\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "57ca7c96-d94c-4e65-8113-da7729558247",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/dan.becker/Desktop/hackernews_hiring_dataset/. is already a clone of https://huggingface.co/datasets/dansbecker/hackernews_hiring_posts. Make sure you pull the latest changes with `repo.git_pull()`.\n"
]
}
],
"source": [
"import datasets\n",
"from huggingface_hub import create_repo\n",
"from huggingface_hub import Repository\n",
"\n",
"all_datasets = datasets.dataset_dict.DatasetDict({'hiring': datasets.Dataset.from_pandas(hiring_df),\n",
" 'wants_to_be_hired': datasets.Dataset.from_pandas(wants_to_be_hired_df),\n",
" 'freelancer': datasets.Dataset.from_pandas(freelancer_df)})\n",
"data_path = './data'\n",
"all_datasets.save_to_disk(data_path)\n",
"\n",
"repo_url = 'https://huggingface.co/datasets/dansbecker/hackernews_hiring_posts'\n",
"repo = Repository(local_dir=\".\", clone_from=repo_url)\n",
"repo.git_add(data_path)\n",
"repo.git_commit(\"Push data from notebook\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "2e7fbc2c-550e-4266-b7f2-63287953fdc7",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d92654a5fdf7471b8fdf02eedd65fd24",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Upload file data/hiring/dataset.arrow: 0%| | 32.0k/78.8M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7f86380237d1442a83c03c15ce1a492d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Upload file data/freelancer/dataset.arrow: 0%| | 32.0k/10.8M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a15bce1da7ed412ca9359adc53dfa92f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Upload file data/wants_to_be_hired/dataset.arrow: 0%| | 32.0k/11.0M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"To https://huggingface.co/datasets/dansbecker/hackernews_hiring_posts\n",
" d59d452..6f68ddf main -> main\n",
"\n"
]
},
{
"data": {
"text/plain": [
"'https://huggingface.co/datasets/dansbecker/hackernews_hiring_posts/commit/6f68ddf7d649bf6d5892197cce8cd2963559946d'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"repo.git_push()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|