
Coordinating Distributed Systems
Theory and practice

Daniele Venzano

Eurecom

Daniele Venzano (Eurecom) Coordinating Distributed Systems 1 / 62



Introduction

Introduction

Daniele Venzano (Eurecom) Coordinating Distributed Systems 2 / 62



Introduction

Outline

What is a distributed system?

The consensus problem
I A few examples of distributed consensus
I CAP theorem
I Eventually consistent Vs Strongly consistent
I Fault tolerance: possible faults in distributed systems

Consensus protocols
I Two phase commit
I Paxos overview
I Raft from A to Z

Implementations - ZooKeeper
I History
I Architecture
I Data model
I Higher-level primitives

Daniele Venzano (Eurecom) Coordinating Distributed Systems 3 / 62



Introduction What is a distributed system?

What is a distributed system?

A set of processes seeking to achieve some common goal by
communicating with each other

Daniele Venzano (Eurecom) Coordinating Distributed Systems 4 / 62



Introduction What is a distributed system?

What is a distributed system?

Like a software matrioshka
I Multi-threaded process
I Multi-process on a single server
I Multiple processes in a set of servers in the same datacenter
I Multiple processes in a set of geographically distributed

servers

Why?
I Inherent distribution (sensors, peer-to-peer, publish-subscribe, ...)
I Engineering choice (fault tolerance, replication, performance, ...)

These processes need to coordinate to reach a common goal:
I data aggregation
I synchronization
I transactions
I ...

Daniele Venzano (Eurecom) Coordinating Distributed Systems 5 / 62



The consensus problem

The consensus problem

Daniele Venzano (Eurecom) Coordinating Distributed Systems 6 / 62



The consensus problem Examples of the consensus problem

Wedding consensus

The priest follows a well known protocol to reach a consensus:
1 Priest: Alice, will you marry Bob ?
2 Alice: yes
3 Priest: Bob, will you marry Alice ?
4 Bob: yes
5 Priest: You are now husband and wife

In distributed systems this becomes:
1 Coordinator: Alice, can you commit key X with value 5 ?
2 Alice: yes, I can
3 Coordinator: Bob, can you commit key X with value 5 ?
4 Bob: yes, I can
5 Coordinator: Ok, both of you record that X has now a value of 5

What if Bob flees from the church?

Daniele Venzano (Eurecom) Coordinating Distributed Systems 7 / 62



The consensus problem Examples of the consensus problem

The two generals

City
Blue army

Green army

Two generals want to attack a city
They can only use unreliable messengers to communicate
They need to attack at the same time to succeed

An infinite number of messages is needed for each general to be sure
the other agrees on the time of the attack.

Daniele Venzano (Eurecom) Coordinating Distributed Systems 8 / 62



The consensus problem Examples of the consensus problem

A few examples

Common functionality in distributed systems:
aggregate functions: sensors calculating average temperature
synchronization: agree on a value
reliable broadcast: a message sent to a group is received by all or
none
atomic commit: ensure that processes reach a common decision
whether to commit or abort a transaction
leader election: ensure there is only one process in charge at a
given time

Daniele Venzano (Eurecom) Coordinating Distributed Systems 9 / 62



The consensus problem Examples of the consensus problem

The CAP theorem

Daniele Venzano (Eurecom) Coordinating Distributed Systems 10 / 62



The consensus problem CAP theorem

Properties of a distributed system

Linearizability1: a given set of operations is linearizable if it
appears to the rest of the system to occur instantaneously

I Writes are linearizable operations if every read receives the most
recent write

Availability: a system is available if every request to a non-failing
node always receives a response, eventually

I Reading stale data is ok, though
Partition tolerance

I The system continues to function properly even if the network loses
or delays an arbitrary number of messages

The CAP theorem links these three properties.

1The CAP theorem calls Consistency what is actually Linearizability
Daniele Venzano (Eurecom) Coordinating Distributed Systems 11 / 62



The consensus problem CAP theorem

CAP theorem - 1
The theorem says: between C A P, you can choose only two

P

C A
CA

CP AP

(... but you need the P ...)
Daniele Venzano (Eurecom) Coordinating Distributed Systems 12 / 62



The consensus problem CAP theorem

CAP theorem - 2 - Why not all three?

1. add pen to
shopping basket

2. OK added

3. What is inside my
shopping basket?

4. nothing

If there is a network partition either C or A will break

Daniele Venzano (Eurecom) Coordinating Distributed Systems 13 / 62



The consensus problem CAP theorem

CAP theorem - 3 - P

Network partitions occur outside anyone’s control in real life
Cannot sacrifice the Partition-Tolerance property
In the event of a network partition either A or C is maintained: it is
the choice of the designer
Practical distributed systems are CP or AP
Some can be configured to shift between CP and AP (tunable
consistency)

Note: a network partition can also be a very slow link

Daniele Venzano (Eurecom) Coordinating Distributed Systems 14 / 62



The consensus problem CAP theorem

CAP theorem - 4 - Summary

First stated by Eric Brewer (Berkeley) at the PODC 2000 keynote
Formally proved by Gilbert and Lynch, 2002[4]

The CAP theorem formally states the trade-offs among different
distributed systems properties
In practice network Partitions occur, the designer can choose one
of Consistency or Availability
The choice heavily depends on what your application/business
logic is

Daniele Venzano (Eurecom) Coordinating Distributed Systems 15 / 62



The consensus problem CAP theorem

CAP theorem - 5 - Summary

CP-oriented systems:
BigTable, Hbase, MongoDB, Redis, MemCacheDB, Scalaris,
ZooKeeper1

AP-oriented systems:
Amazon Dynamo, CouchDB, Cassandra2, SimpleDB, Riak,
Voldemort

In-depth articles on the misuse of the CAP theorem in describing real
systems:

https://codahale.com/
you-cant-sacrifice-partition-tolerance/

https://martin.kleppmann.com/2015/05/11/
please-stop-calling-databases-cp-or-ap.html

2CA or CP tunable
Daniele Venzano (Eurecom) Coordinating Distributed Systems 16 / 62

https://codahale.com/you-cant-sacrifice-partition-tolerance/
https://codahale.com/you-cant-sacrifice-partition-tolerance/
https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html
https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html


The consensus problem CAP theorem

Consistency models

Eventual consistency: after a successful write, eventually every
read from the distributed system will return the written value, if no
new updates are made to it

Strong consistency: after a successful write, all reads from the
distributed system will return the new value

Example: update a tag on a Facebook photo (a geo-distributed
database)

Daniele Venzano (Eurecom) Coordinating Distributed Systems 17 / 62



The consensus problem CAP theorem

Fault tolerance in distributed systems

Fault examples:
Simple: network partitions, hardware or software crashes,
outdated/malicious nodes (byzantine faults)
Complex: feedback loops that overcompensate in good faith
(examples in next slides)

Faults will always happen, design tolerance mechanisms:
Replication: master-slave (→ failover) or load balancing
Isolation: malfunctioning components do not affect the system as
a whole

Daniele Venzano (Eurecom) Coordinating Distributed Systems 18 / 62



The consensus problem CAP theorem

Amazon DynamoDB crash (2015/09/20)

DynamoDB: distributed NoSQL database from Amazon web services
(AWS)

1 Network disruption caused timeouts of some storage servers
2 The affected servers tried to re-establish their membership
3 A change of usage pattern caused membership data to be

unexpectedly large
4 Membership servers started to overload
5 More storage servers timed-out on health checks to membership

servers
6 Cascading failure, stabilized at 55% error rate for customers

Post-mortem: https://aws.amazon.com/message/5467D2/

Daniele Venzano (Eurecom) Coordinating Distributed Systems 19 / 62

https://aws.amazon.com/message/5467D2/


The consensus problem CAP theorem

More real-world failures

Google: https://status.cloud.google.com/summary
Facebook: https:
//www.facebook.com/notes/facebook-engineering/
more-details-on-todays-outage/431441338919

Apple: http://appleinsider.com/articles/16/06/02/
apples-app-stores-apple-tv-itunes-other-services-hit-with-downtime

Microsoft (Azure): https:
//azure.microsoft.com/en-us/status/history/

Daniele Venzano (Eurecom) Coordinating Distributed Systems 20 / 62

https://status.cloud.google.com/summary
https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919
https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919
https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919
http://appleinsider.com/articles/16/06/02/apples-app-stores-apple-tv-itunes-other-services-hit-with-downtime
http://appleinsider.com/articles/16/06/02/apples-app-stores-apple-tv-itunes-other-services-hit-with-downtime
https://azure.microsoft.com/en-us/status/history/
https://azure.microsoft.com/en-us/status/history/


Consensus protocols

Consensus protocols

Daniele Venzano (Eurecom) Coordinating Distributed Systems 21 / 62



Consensus protocols Overview

Consensus protocols overview

Simplest (but can hang forever):
Two-phase commit

Traditionally studied for modern distributed systems:
Paxos
Raft
ZAB

Other:
Lock-step (used in some multiplayer video games)
The proof-of-work from Bitcoin

Daniele Venzano (Eurecom) Coordinating Distributed Systems 22 / 62



Consensus protocols Two-phase commit

Two-phase commit

Simplest protocol for consensus

Coordinator

Other nodes

Phase 1 Phase 2

Phase 1
I One coordinator node C suggests a value to the other nodes
I C gathers the responses

Phase 2
I If all nodes agree, C sends a commit command, abort otherwise

Daniele Venzano (Eurecom) Coordinating Distributed Systems 23 / 62



Consensus protocols Two-phase commit

Two-phase commit - Why it is not enough?

Two phase commit cannot make progress if there are simple
failures.[10]

Coordinator

Other nodes

Phase 1 Phase 2

If C fails, nothing can be done until it is restarted
I If C fails in phase 1, it has to abort the commit and retry
I If C fails in phase 2, it has to replay the outcome (commit/abort)
I In both cases the outcome is uncertain until C restarts

If just one of the other nodes crashes, is slow or unreachable, the
value cannot be committed.

Daniele Venzano (Eurecom) Coordinating Distributed Systems 24 / 62



Consensus protocols State-machine replication

State-machine replication

Node 1

Node 2

Node 3

Node 4

Paxos and Raft implement distributed state machines
State machines are fully deterministic
Committed operations are executed by all state machines in the
cluster in the same order

Example operation: set variable x to value 5

Daniele Venzano (Eurecom) Coordinating Distributed Systems 25 / 62



Consensus protocols Paxos

Paxos

Old and well-known family of protocols for distributed consensus.
first presented in 1989, paper published in 1998[6]
has been formally proven to be safe

Complex and difficult to implement
Basic Paxos protocol decides on a single output value
Multi-Paxos extends the Basic protocol for practical use
Many variants: cheap, fast, generalized, byzantine
No reference implementation
Many papers try to make it more approachable[8, 7, 3]

Daniele Venzano (Eurecom) Coordinating Distributed Systems 26 / 62



Consensus protocols Paxos

A Paxos round - 1

Leader

Agents

1 2 3 4 5

Announce
leader

Ack
Propose
new state

Ack Commit

Phase 1 of a very simplified Paxos round:
A node in the cluster self-appoints leader and chooses a new
ballot ID
Sends a ballot proposal to the other nodes (1)
The other nodes return the highest ballot ID they know (2)
If a majority responds with the proposed ID, the protocol can
proceed
The other nodes can include also their proposal for the value

Daniele Venzano (Eurecom) Coordinating Distributed Systems 27 / 62



Consensus protocols Paxos

A Paxos round - 2

Leader

Agents

1 2 3 4 5

Announce
leader

Ack
Propose
new state

Ack Commit

Phase 2 of a very simplified Paxos round:
The leader resolves any conflicting proposal for the value
The leader proposes the new value (3)
The leader receives the answers (4)
If a majority accepts the new value, it is final for this round (5)
Otherwise a new round must be started

Daniele Venzano (Eurecom) Coordinating Distributed Systems 28 / 62



Consensus protocols Paxos

Paxos - conclusions

The original Paxos defines the protocol for one output value
Multiple rounds can happen at the same time, even in single
Paxos
Paxos is complex to understand and implement

I There are five different roles (only two are shown)
I The leader can decide to work with a subset of the available nodes

(a quorum)
I Even in the same round there can be multiple proposals, each with

an identifier
I ... and we haven’t even mentioned the state machine ...

Daniele Venzano (Eurecom) Coordinating Distributed Systems 29 / 62



Raft

Raft

Daniele Venzano (Eurecom) Coordinating Distributed Systems 30 / 62



Raft Introduction

Introduction

Modern implementation of a consensus protocol
Published at Usenix ATC 2014[9]
Has been built to be easy to understand and implement

Random facts:
The authors released a reference C++ implementation (LogCabin)
Many implementations in other languages
Lots of educational material, lectures and assignments are
available3

3These slides are based on the original Raft paper[9] and the slide deck from
Michael Freedman (Princeton, COS-418).

Daniele Venzano (Eurecom) Coordinating Distributed Systems 31 / 62



Raft Introduction

Introduction

Raft maintains a distributed log containing state machine
commands
The elected leader handles all communication with the clients
(→ no communication until a leader is elected)
and has the control on which entries are committed to the log
The other nodes are passive replicators
Snapshotting is used to keep the log size limited
Periodic heartbeats are used to check if nodes are alive
All nodes are known in advance

Daniele Venzano (Eurecom) Coordinating Distributed Systems 32 / 62



Raft Introduction

Node states

At any given time, each node is either:
I Leader: handles client requests, manages the log
I Follower: passively replicates the log and the state machine
I Candidate: transition state used during elections

Normal operation, with N nodes (N must be odd):
I 1 leader
I N-1 followers
I 0 candidates

Daniele Venzano (Eurecom) Coordinating Distributed Systems 33 / 62



Raft Leader election

Election terms

time

Term 1 Term 2 Term 3 Term 4 Term 5

Elections Split vote /
failed election Normal operation

Time is divided into terms, each identified by a monotonically
increasing ID
Each node records the term he believes to be the current one
All messages are labeled with a term ID ⇒ term IDs are used to
identify obsolete information

Daniele Venzano (Eurecom) Coordinating Distributed Systems 34 / 62



Raft Leader election

Elections

How an election starts:
Each node has a (bounded) random timer, the election timeout
If a node does not receive any leader heartbeat before the
timeout, it starts an election

The node that starts an election:
Increments the term ID, becomes Candidate and votes for itself
Sends a request to vote to all other nodes until either:

I Receives a majority of votes → becomes Leader
I Receives a message from another leader → becomes Follower
I No-one wins before the election timeout expires again → starts a

new election

Daniele Venzano (Eurecom) Coordinating Distributed Systems 35 / 62



Raft Leader election

Election properties

Safety: there is at most one winner/leader per term
I Each voter votes only once per term
I There cannot be two majorities in the same term

Liveness: a leader will eventually be elected
I The election is started after a random timeout
I The randomness guarantees there will be different candidates at

different times
I Faults (hence new terms) happen in days/weeks/months, an

election lasts milliseconds/seconds

Daniele Venzano (Eurecom) Coordinating Distributed Systems 36 / 62



Raft Log replication

Normal operation

L
O
G

L
O
G

L
O
G

L
O
G

Client L F F F

1 Clients send commands to the current leader
2 The leader logs a new (uncommitted) entry
3 The leader sends the new entry to all nodes in the next heartbeat
4 Once a majority answers, the leader commits the new entry
5 The leader answers the client
6 The leader asks all nodes to commit the entry in the next

heartbeat
7 The nodes commit the entry in their logs

Daniele Venzano (Eurecom) Coordinating Distributed Systems 37 / 62



Raft Failure scenarios

What if ... the leader fails

Short answer:
easy, after the election timeout expires a new leader is elected

What happens to uncommitted entries?
The client will never receive the commit ack (will retry later)
Uncommitted entries in the followers will eventually be overwritten
by the new leader

And when it restarts?
It will restart as a follower
It will set its internal term ID according to the first heartbeat
message it receives
The leader will send missing log entries

Daniele Venzano (Eurecom) Coordinating Distributed Systems 38 / 62



Raft Failure scenarios

What if ... a follower fails

Short answer:
nothing happens

And when it restarts?
Same as when the leader restarts
It will restart as a follower
It will set its internal term ID according to the first heartbeat
message it receives
The leader will send missing log entries

Daniele Venzano (Eurecom) Coordinating Distributed Systems 39 / 62



Raft Failure scenarios

What if ... there is a 50/50 vote

Short answer:
no leader is elected, election timeout expires, new term, new election

This case is called split majority:
An even number of voters
Two equal subsets equal in size vote for different leaders
The two candidates count the votes and see that there is no
majority

Very low probability:
two candidates at the same time (random election timeout)
messages to initiate election arrive at the same time

Daniele Venzano (Eurecom) Coordinating Distributed Systems 40 / 62



Raft Failure scenarios

What if ... there is a network partition

Short answer:
the majority rule ensures only half of the partition commits new entries

What happens:
The biggest partition will elect a leader, incrementing the term ID
The smaller one will be unable to do anything: all operations
require a majority

And when the partition is healed?
The minority partition will receive heartbeats with a bigger term ID
The leader in the minority partition (if any), will immediately step
down
Uncommitted log entries will be overwritten

Daniele Venzano (Eurecom) Coordinating Distributed Systems 41 / 62



Raft Conclusions

Learning tools and Raft summary

Raft interactive demos:
1 Raftscope: http://bigfoot-m2.eurecom.fr/raftscope/
2 Secret lives of data:
http://thesecretlivesofdata.com/raft/

Raft is a consensus protocol
Consistently replicates a distributed log of state machine
commands
In each term a leader is elected
Hard timeouts drive elections and heartbeats
The leader is responsible for client communication and log
replication

Daniele Venzano (Eurecom) Coordinating Distributed Systems 42 / 62

http://bigfoot-m2.eurecom.fr/raftscope/
http://thesecretlivesofdata.com/raft/


Implementations Overview

Some implementations of consensus protocols

ZooKeeper (ZAB)

Consul (Raft + Serf)

etcd (Raft)

OpenReplica/ConCoord (Paxos)

Daniele Venzano (Eurecom) Coordinating Distributed Systems 43 / 62



ZooKeeper

ZooKeeper

Daniele Venzano (Eurecom) Coordinating Distributed Systems 44 / 62



ZooKeeper

Motivation

When building a distributed system you have two options:

Build your own coordination primitive each time
I Buggy and error-prone approach

Use an external coordination system
I Adds external dependencies, more complex deployments
I Does not reinvent the wheel
I Use a well-known and tested system

Recent examples of coordination systems:
Chubby from Google[2] (lock service)
Centrifuge from Microsoft[1] (Lease service)

Daniele Venzano (Eurecom) Coordinating Distributed Systems 45 / 62



ZooKeeper History

History

ZooKeeper was originally (2008) part of the Hadoop suite, since 2011
it is a stand-alone Apache project

Objectives4:
Provide common services needed by distributed systems

I Configuration
I Group management
I Naming
I Presence protocols
I Distributed synchronization

Have a simple interface
Have a highly available architecture

4See also the Tao of ZooKeeper:
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Tao

Daniele Venzano (Eurecom) Coordinating Distributed Systems 46 / 62

https://cwiki.apache.org/confluence/display/ZOOKEEPER/Tao


ZooKeeper Architecture

Architecture

ZooKeeper service

Server Server Server
Leader

Server Server

Client Client Client Client Client Client Client

ZooKeeper itself is distributed, for performance and fault tolerance
Uses the ZAB consensus protocol
Clients can talk to any server, but all update operations are
handled by an elected leader
Data is kept in-memory for performance
Snapshots and transaction logs on persistent storage

Daniele Venzano (Eurecom) Coordinating Distributed Systems 47 / 62



ZooKeeper Architecture

Architecture - ZAB

The ZAB is the consensus protocol used by ZooKeeper
It does not use state machine replication like Paxos or Raft
Totally orders write requests using a majority of ZooKeeper
processes
Leader sequences the requests and invokes ZAB atomic
broadcast
Strictly ordered state updates are applied by non-leaders

ZooKeeper developers focused on strong ordering guarantees for all
operations[5]

Daniele Venzano (Eurecom) Coordinating Distributed Systems 48 / 62



ZooKeeper Architecture

ZooKeeper and the CAP theorem

ZooKeeper is AP by default:
reads return local (cached) data that may be stale

The client may use the sync command before a read:
It makes ZooKeeper flush all caches
Performance penalty
Makes ZooKeeper CP

Note: writes are always synchronized through the leader.

Daniele Venzano (Eurecom) Coordinating Distributed Systems 49 / 62



ZooKeeper Data model

Data model

znode /

znode
/app1

<data>

<data><data>

<data>

znode
/app2

/app1/n1 /app1/n2 /app1/n3

Hierarchical namespace (like a file system)
Each data node is called znode
Any znode can contain data and have children znodes

Daniele Venzano (Eurecom) Coordinating Distributed Systems 50 / 62



ZooKeeper Data model

znodes

Znodes can be:
Regular: created and destroyed by the client
Ephemeral: created by the client, but ZooKeeper will delete it if the
client disconnects
Sequential: created by the client, but the name is generated by
ZooKeeper using a counter
Ephemeral + Sequential: combines the two above

Znodes have version counters that are updated each time their content
changes

Daniele Venzano (Eurecom) Coordinating Distributed Systems 51 / 62



ZooKeeper Data model

Watches

A client can set a watch on a znode. ZooKeeper will call back the client
when:

The data in the znode changes
A children node is created or destroyed

Watches are very useful to implement locks and leader elections with
good performance

Daniele Venzano (Eurecom) Coordinating Distributed Systems 52 / 62



ZooKeeper Examples and use cases

Implementing consensus

Briefly:
A number of processes need to agree on a value
Each one proposes a value
The decision must be unanimous

Each process proposes:

create(PATH, my_value, SEQUENTIAL)

Each process decides:

C = getChildren(PATH)
> Select znode z in C with smallest sequence suffix <
agreed_value = getData(PATH + z)

Daniele Venzano (Eurecom) Coordinating Distributed Systems 53 / 62



ZooKeeper Examples and use cases

Implementing configuration management

Briefly:
A number of processes need to access common configuration
The config can change dynamically

Each process does:

CONFIG_PATH = /app/config
config = getData(CONFIG_PATH, watch=TRUE)
while (TRUE) {

> wait for watch notification on CONFIG_PATH <
config = getData(CONFIG_PATH, watch=TRUE)

}

Daniele Venzano (Eurecom) Coordinating Distributed Systems 54 / 62



ZooKeeper Examples and use cases

Implementing group membership

Briefly:
A number of processes provide the same service (load balancing)
Leverage ephemeral znodes

Each process joins the group:

create(GROUP_PATH + proc_name,
[address], EPHEMERAL)

Clients list the group members:

getChildren(GROUP_PATH + proc_name, watch=TRUE)

The watch is used to get notified about membership changes

Daniele Venzano (Eurecom) Coordinating Distributed Systems 55 / 62



ZooKeeper Conclusions

Conclusions

ZooKeeper is a high-performance coordination service for
distributed applications
Internally uses the ZAB consensus protocol
Clients manipulate data in form of hierarchical znodes, similar to a
file system
Complex, higher level primitives can be built on top of the
ZooKeeper API

ZooKeeper documentation:
https://zookeeper.apache.org/doc/r3.4.9/

Daniele Venzano (Eurecom) Coordinating Distributed Systems 56 / 62

https://zookeeper.apache.org/doc/r3.4.9/


ZooKeeper Laboratory session

Laboratory session - leader election

Context:
Sensors are streaming data to your cluster
Need a central node to do aggregations, the system must be
highly available
Implement the leader election algorithm on top of ZooKeeper

Objective:
1 Start three processes
2 One of them will become the active leader
3 Stop/crash the leader
4 One of the surviving processes automatically takes the lead
5 The crashed node restarts without disrupting the current

leadership (bonus question)

Daniele Venzano (Eurecom) Coordinating Distributed Systems 57 / 62



ZooKeeper Laboratory session

References

Daniele Venzano (Eurecom) Coordinating Distributed Systems 58 / 62



References

References I

[1] ADYA, A., DUNAGAN, J., AND WOLMAN, A.
Centrifuge: Integrated lease management and partitioning for
cloud services.
In Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation (Berkeley, CA, USA, 2010),
NSDI’10, USENIX Association, pp. 1–1.

[2] BURROWS, M.
The chubby lock service for loosely-coupled distributed systems.
In Proceedings of the 7th Symposium on Operating Systems
Design and Implementation (Berkeley, CA, USA, 2006), OSDI ’06,
USENIX Association, pp. 335–350.

Daniele Venzano (Eurecom) Coordinating Distributed Systems 59 / 62



References

References II

[3] CHANDRA, T. D., GRIESEMER, R., AND REDSTONE, J.
Paxos made live: An engineering perspective.
In Proceedings of the Twenty-sixth Annual ACM Symposium on
Principles of Distributed Computing (New York, NY, USA, 2007),
PODC ’07, ACM, pp. 398–407.

[4] GILBERT, S., AND LYNCH, N.
Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services.
SIGACT News 33, 2 (June 2002), 51–59.

[5] JUNQUEIRA, F. P., REED, B. C., AND SERAFINI, M.
Zab: High-performance broadcast for primary-backup systems.
In Proceedings of the 2011 IEEE/IFIP 41st International
Conference on Dependable Systems&Networks (Washington,
DC, USA, 2011), DSN ’11, IEEE Computer Society, pp. 245–256.

Daniele Venzano (Eurecom) Coordinating Distributed Systems 60 / 62



References

References III

[6] LAMPORT, L.
The part-time parliament.
ACM Trans. Comput. Syst. 16, 2 (May 1998), 133–169.

[7] LAMPORT, L.
Paxos made simple.
SIGACT News 32, 4 (Dec. 2001), 51–58.

[8] LAMPSON, B. W.
How to build a highly available system using consensus.
http://research.microsoft.com/en-us/um/people/
blampson/58-Consensus/WebPage.html.

[9] ONGARO, D., AND OUSTERHOUT, J.
In search of an understandable consensus algorithm.
In 2014 USENIX Annual Technical Conference (USENIX ATC 14)
(Philadelphia, PA, June 2014), USENIX Association, pp. 305–319.

Daniele Venzano (Eurecom) Coordinating Distributed Systems 61 / 62

http://research.microsoft.com/en-us/um/people/blampson/58-Consensus/WebPage.html
http://research.microsoft.com/en-us/um/people/blampson/58-Consensus/WebPage.html


References

References IV

[10] ROBINSON, H.
Consensus protocols: Two-phase commit.
http://the-paper-trail.org/blog/
consensus-protocols-two-phase-commit/.

Daniele Venzano (Eurecom) Coordinating Distributed Systems 62 / 62

http://the-paper-trail.org/blog/consensus-protocols-two-phase-commit/
http://the-paper-trail.org/blog/consensus-protocols-two-phase-commit/

	Introduction
	What is a distributed system?

	The consensus problem
	Examples of the consensus problem

	The consensus problem
	CAP theorem

	Consensus protocols
	Overview
	Two-phase commit
	State-machine replication
	Paxos

	Raft
	Introduction
	Leader election
	Log replication
	Failure scenarios
	Conclusions

	Implementations
	Overview

	ZooKeeper
	History
	Architecture
	Data model
	Examples and use cases
	Conclusions
	Laboratory session

	References

