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Introduction
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What is a distributed system?

The consensus problem
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Introduction What is a distributed system?

What is a distributed system?

A set of processes seeking to achieve some common goal by
communicating with each other
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Introduction What is a distributed system?

What is a distributed system?

Like a software matrioshka
I Multi-threaded process
I Multi-process on a single server
I Multiple processes in a set of servers in the same datacenter
I Multiple processes in a set of geographically distributed

servers

Why?
I Inherent distribution (sensors, peer-to-peer, publish-subscribe, ...)
I Engineering choice (fault tolerance, replication, performance, ...)

These processes need to coordinate to reach a common goal:
I data aggregation
I synchronization
I transactions
I ...
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The consensus problem

The consensus problem
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The consensus problem Examples of the consensus problem

Wedding consensus

The priest follows a well known protocol to reach a consensus:
1 Priest: Alice, will you marry Bob ?
2 Alice: yes
3 Priest: Bob, will you marry Alice ?
4 Bob: yes
5 Priest: You are now husband and wife

In distributed systems this becomes:
1 Coordinator: Alice, can you commit key X with value 5 ?
2 Alice: yes, I can
3 Coordinator: Bob, can you commit key X with value 5 ?
4 Bob: yes, I can
5 Coordinator: Ok, both of you record that X has now a value of 5

What if Bob flees from the church?
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The consensus problem Examples of the consensus problem

The two generals

City
Blue army

Green army

Two generals want to attack a city
They can only use unreliable messengers to communicate
They need to attack at the same time to succeed

An infinite number of messages is needed for each general to be sure
the other agrees on the time of the attack.
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The consensus problem Examples of the consensus problem

A few examples

Common functionality in distributed systems:
aggregate functions: sensors calculating average temperature
synchronization: agree on a value
reliable broadcast: a message sent to a group is received by all or
none
atomic commit: ensure that processes reach a common decision
whether to commit or abort a transaction
leader election: ensure there is only one process in charge at a
given time
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The consensus problem Examples of the consensus problem

The CAP theorem
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The consensus problem CAP theorem

Properties of a distributed system

Linearizability1: a given set of operations is linearizable if it
appears to the rest of the system to occur instantaneously

I Writes are linearizable operations if every read receives the most
recent write

Availability: a system is available if every request to a non-failing
node always receives a response, eventually

I Reading stale data is ok, though
Partition tolerance

I The system continues to function properly even if the network loses
or delays an arbitrary number of messages

The CAP theorem links these three properties.

1The CAP theorem calls Consistency what is actually Linearizability
Daniele Venzano (Eurecom) Coordinating Distributed Systems 11 / 62



The consensus problem CAP theorem

CAP theorem - 1
The theorem says: between C A P, you can choose only two

P

C A
CA

CP AP

(... but you need the P ...)
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The consensus problem CAP theorem

CAP theorem - 2 - Why not all three?

1. add pen to
shopping basket

2. OK added

3. What is inside my
shopping basket?

4. nothing

If there is a network partition either C or A will break
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The consensus problem CAP theorem

CAP theorem - 3 - P

Network partitions occur outside anyone’s control in real life
Cannot sacrifice the Partition-Tolerance property
In the event of a network partition either A or C is maintained: it is
the choice of the designer
Practical distributed systems are CP or AP
Some can be configured to shift between CP and AP (tunable
consistency)

Note: a network partition can also be a very slow link
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The consensus problem CAP theorem

CAP theorem - 4 - Summary

First stated by Eric Brewer (Berkeley) at the PODC 2000 keynote
Formally proved by Gilbert and Lynch, 2002[4]

The CAP theorem formally states the trade-offs among different
distributed systems properties
In practice network Partitions occur, the designer can choose one
of Consistency or Availability
The choice heavily depends on what your application/business
logic is
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The consensus problem CAP theorem

CAP theorem - 5 - Summary

CP-oriented systems:
BigTable, Hbase, MongoDB, Redis, MemCacheDB, Scalaris,
ZooKeeper1

AP-oriented systems:
Amazon Dynamo, CouchDB, Cassandra2, SimpleDB, Riak,
Voldemort

In-depth articles on the misuse of the CAP theorem in describing real
systems:

https://codahale.com/
you-cant-sacrifice-partition-tolerance/

https://martin.kleppmann.com/2015/05/11/
please-stop-calling-databases-cp-or-ap.html

2CA or CP tunable
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The consensus problem CAP theorem

Consistency models

Eventual consistency: after a successful write, eventually every
read from the distributed system will return the written value, if no
new updates are made to it

Strong consistency: after a successful write, all reads from the
distributed system will return the new value

Example: update a tag on a Facebook photo (a geo-distributed
database)
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The consensus problem CAP theorem

Fault tolerance in distributed systems

Fault examples:
Simple: network partitions, hardware or software crashes,
outdated/malicious nodes (byzantine faults)
Complex: feedback loops that overcompensate in good faith
(examples in next slides)

Faults will always happen, design tolerance mechanisms:
Replication: master-slave (→ failover) or load balancing
Isolation: malfunctioning components do not affect the system as
a whole

Daniele Venzano (Eurecom) Coordinating Distributed Systems 18 / 62



The consensus problem CAP theorem

Amazon DynamoDB crash (2015/09/20)

DynamoDB: distributed NoSQL database from Amazon web services
(AWS)

1 Network disruption caused timeouts of some storage servers
2 The affected servers tried to re-establish their membership
3 A change of usage pattern caused membership data to be

unexpectedly large
4 Membership servers started to overload
5 More storage servers timed-out on health checks to membership

servers
6 Cascading failure, stabilized at 55% error rate for customers

Post-mortem: https://aws.amazon.com/message/5467D2/
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The consensus problem CAP theorem

More real-world failures

Google: https://status.cloud.google.com/summary
Facebook: https:
//www.facebook.com/notes/facebook-engineering/
more-details-on-todays-outage/431441338919

Apple: http://appleinsider.com/articles/16/06/02/
apples-app-stores-apple-tv-itunes-other-services-hit-with-downtime

Microsoft (Azure): https:
//azure.microsoft.com/en-us/status/history/
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Consensus protocols

Consensus protocols
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Consensus protocols Overview

Consensus protocols overview

Simplest (but can hang forever):
Two-phase commit

Traditionally studied for modern distributed systems:
Paxos
Raft
ZAB

Other:
Lock-step (used in some multiplayer video games)
The proof-of-work from Bitcoin
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Consensus protocols Two-phase commit

Two-phase commit

Simplest protocol for consensus

Coordinator

Other nodes

Phase 1 Phase 2

Phase 1
I One coordinator node C suggests a value to the other nodes
I C gathers the responses

Phase 2
I If all nodes agree, C sends a commit command, abort otherwise
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Consensus protocols Two-phase commit

Two-phase commit - Why it is not enough?

Two phase commit cannot make progress if there are simple
failures.[10]

Coordinator

Other nodes

Phase 1 Phase 2

If C fails, nothing can be done until it is restarted
I If C fails in phase 1, it has to abort the commit and retry
I If C fails in phase 2, it has to replay the outcome (commit/abort)
I In both cases the outcome is uncertain until C restarts

If just one of the other nodes crashes, is slow or unreachable, the
value cannot be committed.
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Consensus protocols State-machine replication

State-machine replication

Node 1

Node 2

Node 3

Node 4

Paxos and Raft implement distributed state machines
State machines are fully deterministic
Committed operations are executed by all state machines in the
cluster in the same order

Example operation: set variable x to value 5
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Consensus protocols Paxos

Paxos

Old and well-known family of protocols for distributed consensus.
first presented in 1989, paper published in 1998[6]
has been formally proven to be safe

Complex and difficult to implement
Basic Paxos protocol decides on a single output value
Multi-Paxos extends the Basic protocol for practical use
Many variants: cheap, fast, generalized, byzantine
No reference implementation
Many papers try to make it more approachable[8, 7, 3]
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Consensus protocols Paxos

A Paxos round - 1

Leader

Agents

1 2 3 4 5

Announce
leader

Ack
Propose
new state

Ack Commit

Phase 1 of a very simplified Paxos round:
A node in the cluster self-appoints leader and chooses a new
ballot ID
Sends a ballot proposal to the other nodes (1)
The other nodes return the highest ballot ID they know (2)
If a majority responds with the proposed ID, the protocol can
proceed
The other nodes can include also their proposal for the value
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Consensus protocols Paxos

A Paxos round - 2

Leader

Agents

1 2 3 4 5

Announce
leader

Ack
Propose
new state

Ack Commit

Phase 2 of a very simplified Paxos round:
The leader resolves any conflicting proposal for the value
The leader proposes the new value (3)
The leader receives the answers (4)
If a majority accepts the new value, it is final for this round (5)
Otherwise a new round must be started
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Consensus protocols Paxos

Paxos - conclusions

The original Paxos defines the protocol for one output value
Multiple rounds can happen at the same time, even in single
Paxos
Paxos is complex to understand and implement

I There are five different roles (only two are shown)
I The leader can decide to work with a subset of the available nodes

(a quorum)
I Even in the same round there can be multiple proposals, each with

an identifier
I ... and we haven’t even mentioned the state machine ...
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Raft

Raft
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Raft Introduction

Introduction

Modern implementation of a consensus protocol
Published at Usenix ATC 2014[9]
Has been built to be easy to understand and implement

Random facts:
The authors released a reference C++ implementation (LogCabin)
Many implementations in other languages
Lots of educational material, lectures and assignments are
available3

3These slides are based on the original Raft paper[9] and the slide deck from
Michael Freedman (Princeton, COS-418).
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Raft Introduction

Introduction

Raft maintains a distributed log containing state machine
commands
The elected leader handles all communication with the clients
(→ no communication until a leader is elected)
and has the control on which entries are committed to the log
The other nodes are passive replicators
Snapshotting is used to keep the log size limited
Periodic heartbeats are used to check if nodes are alive
All nodes are known in advance
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Raft Introduction

Node states

At any given time, each node is either:
I Leader: handles client requests, manages the log
I Follower: passively replicates the log and the state machine
I Candidate: transition state used during elections

Normal operation, with N nodes (N must be odd):
I 1 leader
I N-1 followers
I 0 candidates
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Raft Leader election

Election terms

time

Term 1 Term 2 Term 3 Term 4 Term 5

Elections Split vote /
failed election Normal operation

Time is divided into terms, each identified by a monotonically
increasing ID
Each node records the term he believes to be the current one
All messages are labeled with a term ID ⇒ term IDs are used to
identify obsolete information
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Raft Leader election

Elections

How an election starts:
Each node has a (bounded) random timer, the election timeout
If a node does not receive any leader heartbeat before the
timeout, it starts an election

The node that starts an election:
Increments the term ID, becomes Candidate and votes for itself
Sends a request to vote to all other nodes until either:

I Receives a majority of votes → becomes Leader
I Receives a message from another leader → becomes Follower
I No-one wins before the election timeout expires again → starts a

new election
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Raft Leader election

Election properties

Safety: there is at most one winner/leader per term
I Each voter votes only once per term
I There cannot be two majorities in the same term

Liveness: a leader will eventually be elected
I The election is started after a random timeout
I The randomness guarantees there will be different candidates at

different times
I Faults (hence new terms) happen in days/weeks/months, an

election lasts milliseconds/seconds
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Raft Log replication

Normal operation

L
O
G

L
O
G

L
O
G

L
O
G

Client L F F F

1 Clients send commands to the current leader
2 The leader logs a new (uncommitted) entry
3 The leader sends the new entry to all nodes in the next heartbeat
4 Once a majority answers, the leader commits the new entry
5 The leader answers the client
6 The leader asks all nodes to commit the entry in the next

heartbeat
7 The nodes commit the entry in their logs
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Raft Failure scenarios

What if ... the leader fails

Short answer:
easy, after the election timeout expires a new leader is elected

What happens to uncommitted entries?
The client will never receive the commit ack (will retry later)
Uncommitted entries in the followers will eventually be overwritten
by the new leader

And when it restarts?
It will restart as a follower
It will set its internal term ID according to the first heartbeat
message it receives
The leader will send missing log entries
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Raft Failure scenarios

What if ... a follower fails

Short answer:
nothing happens

And when it restarts?
Same as when the leader restarts
It will restart as a follower
It will set its internal term ID according to the first heartbeat
message it receives
The leader will send missing log entries
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Raft Failure scenarios

What if ... there is a 50/50 vote

Short answer:
no leader is elected, election timeout expires, new term, new election

This case is called split majority:
An even number of voters
Two equal subsets equal in size vote for different leaders
The two candidates count the votes and see that there is no
majority

Very low probability:
two candidates at the same time (random election timeout)
messages to initiate election arrive at the same time
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Raft Failure scenarios

What if ... there is a network partition

Short answer:
the majority rule ensures only half of the partition commits new entries

What happens:
The biggest partition will elect a leader, incrementing the term ID
The smaller one will be unable to do anything: all operations
require a majority

And when the partition is healed?
The minority partition will receive heartbeats with a bigger term ID
The leader in the minority partition (if any), will immediately step
down
Uncommitted log entries will be overwritten
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Raft Conclusions

Learning tools and Raft summary

Raft interactive demos:
1 Raftscope: http://bigfoot-m2.eurecom.fr/raftscope/
2 Secret lives of data:
http://thesecretlivesofdata.com/raft/

Raft is a consensus protocol
Consistently replicates a distributed log of state machine
commands
In each term a leader is elected
Hard timeouts drive elections and heartbeats
The leader is responsible for client communication and log
replication
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Implementations Overview

Some implementations of consensus protocols

ZooKeeper (ZAB)

Consul (Raft + Serf)

etcd (Raft)

OpenReplica/ConCoord (Paxos)
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ZooKeeper

ZooKeeper
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ZooKeeper

Motivation

When building a distributed system you have two options:

Build your own coordination primitive each time
I Buggy and error-prone approach

Use an external coordination system
I Adds external dependencies, more complex deployments
I Does not reinvent the wheel
I Use a well-known and tested system

Recent examples of coordination systems:
Chubby from Google[2] (lock service)
Centrifuge from Microsoft[1] (Lease service)
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ZooKeeper History

History

ZooKeeper was originally (2008) part of the Hadoop suite, since 2011
it is a stand-alone Apache project

Objectives4:
Provide common services needed by distributed systems

I Configuration
I Group management
I Naming
I Presence protocols
I Distributed synchronization

Have a simple interface
Have a highly available architecture

4See also the Tao of ZooKeeper:
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Tao
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ZooKeeper Architecture

Architecture

ZooKeeper service

Server Server Server
Leader

Server Server

Client Client Client Client Client Client Client

ZooKeeper itself is distributed, for performance and fault tolerance
Uses the ZAB consensus protocol
Clients can talk to any server, but all update operations are
handled by an elected leader
Data is kept in-memory for performance
Snapshots and transaction logs on persistent storage
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ZooKeeper Architecture

Architecture - ZAB

The ZAB is the consensus protocol used by ZooKeeper
It does not use state machine replication like Paxos or Raft
Totally orders write requests using a majority of ZooKeeper
processes
Leader sequences the requests and invokes ZAB atomic
broadcast
Strictly ordered state updates are applied by non-leaders

ZooKeeper developers focused on strong ordering guarantees for all
operations[5]
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ZooKeeper Architecture

ZooKeeper and the CAP theorem

ZooKeeper is AP by default:
reads return local (cached) data that may be stale

The client may use the sync command before a read:
It makes ZooKeeper flush all caches
Performance penalty
Makes ZooKeeper CP

Note: writes are always synchronized through the leader.
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ZooKeeper Data model

Data model

znode /

znode
/app1

<data>

<data><data>

<data>

znode
/app2

/app1/n1 /app1/n2 /app1/n3

Hierarchical namespace (like a file system)
Each data node is called znode
Any znode can contain data and have children znodes
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ZooKeeper Data model

znodes

Znodes can be:
Regular: created and destroyed by the client
Ephemeral: created by the client, but ZooKeeper will delete it if the
client disconnects
Sequential: created by the client, but the name is generated by
ZooKeeper using a counter
Ephemeral + Sequential: combines the two above

Znodes have version counters that are updated each time their content
changes
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ZooKeeper Data model

Watches

A client can set a watch on a znode. ZooKeeper will call back the client
when:

The data in the znode changes
A children node is created or destroyed

Watches are very useful to implement locks and leader elections with
good performance
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ZooKeeper Examples and use cases

Implementing consensus

Briefly:
A number of processes need to agree on a value
Each one proposes a value
The decision must be unanimous

Each process proposes:

create(PATH, my_value, SEQUENTIAL)

Each process decides:

C = getChildren(PATH)
> Select znode z in C with smallest sequence suffix <
agreed_value = getData(PATH + z)
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ZooKeeper Examples and use cases

Implementing configuration management

Briefly:
A number of processes need to access common configuration
The config can change dynamically

Each process does:

CONFIG_PATH = /app/config
config = getData(CONFIG_PATH, watch=TRUE)
while (TRUE) {

> wait for watch notification on CONFIG_PATH <
config = getData(CONFIG_PATH, watch=TRUE)

}
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ZooKeeper Examples and use cases

Implementing group membership

Briefly:
A number of processes provide the same service (load balancing)
Leverage ephemeral znodes

Each process joins the group:

create(GROUP_PATH + proc_name,
[address], EPHEMERAL)

Clients list the group members:

getChildren(GROUP_PATH + proc_name, watch=TRUE)

The watch is used to get notified about membership changes
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ZooKeeper Conclusions

Conclusions

ZooKeeper is a high-performance coordination service for
distributed applications
Internally uses the ZAB consensus protocol
Clients manipulate data in form of hierarchical znodes, similar to a
file system
Complex, higher level primitives can be built on top of the
ZooKeeper API

ZooKeeper documentation:
https://zookeeper.apache.org/doc/r3.4.9/
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ZooKeeper Laboratory session

Laboratory session - leader election

Context:
Sensors are streaming data to your cluster
Need a central node to do aggregations, the system must be
highly available
Implement the leader election algorithm on top of ZooKeeper

Objective:
1 Start three processes
2 One of them will become the active leader
3 Stop/crash the leader
4 One of the surviving processes automatically takes the lead
5 The crashed node restarts without disrupting the current

leadership (bonus question)
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ZooKeeper Laboratory session

References
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