import base64 from PIL import Image import io import os import pandas as pd from datasets import load_dataset def decode_and_save_images(df, output_dir): for i, (image_base64, caption) in enumerate(zip(df['image'], df['caption'])): # Decode and save the image image_data = base64.b64decode(image_base64) image = Image.open(io.BytesIO(image_data)) image.save(os.path.join(output_dir, f"image_{i}.png")) # Save the caption with open(os.path.join(output_dir, f"caption_{i}.txt"), 'w') as file: file.write(caption) print(f"Saved Image and Caption {i}") def main(): # Load dataset from Hugging Face dataset = load_dataset("dataautogpt3/Dalle3") # Assuming the first split contains the data df = pd.DataFrame(dataset[next(iter(dataset))]) # Specify your desired output directory here output_dir = '/path/to/your/desired/output' # Replace with your specific path os.makedirs(output_dir, exist_ok=True) # Process and save images and captions decode_and_save_images(df, output_dir) if __name__ == "__main__": main()