File size: 39,561 Bytes
860b549 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 |
""" Optimizer Factory w/ custom Weight Decay & Layer Decay support
Hacked together by / Copyright 2021 Ross Wightman
"""
import logging
from dataclasses import dataclass
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type, Union
from fnmatch import fnmatch
import importlib
import torch
import torch.nn as nn
import torch.optim
from ._param_groups import param_groups_layer_decay, param_groups_weight_decay
from ._types import ParamsT, OptimType, OptimizerCallable
from .adabelief import AdaBelief
from .adafactor import Adafactor
from .adafactor_bv import AdafactorBigVision
from .adahessian import Adahessian
from .adamp import AdamP
from .adamw import AdamWLegacy
from .adan import Adan
from .adopt import Adopt
from .lamb import Lamb
from .laprop import LaProp
from .lars import Lars
from .lion import Lion
from .lookahead import Lookahead
from .madgrad import MADGRAD
from .mars import Mars
from .nadam import NAdamLegacy
from .nadamw import NAdamW
from .nvnovograd import NvNovoGrad
from .radam import RAdamLegacy
from .rmsprop_tf import RMSpropTF
from .sgdp import SGDP
from .sgdw import SGDW
_logger = logging.getLogger(__name__)
def _import_class(class_string: str) -> Type:
"""Dynamically import a class from a string."""
try:
module_name, class_name = class_string.rsplit(".", 1)
module = importlib.import_module(module_name)
return getattr(module, class_name)
except (ImportError, AttributeError) as e:
raise ImportError(f"Could not import {class_string}: {e}")
@dataclass(frozen=True)
class OptimInfo:
"""Immutable configuration for an optimizer.
Attributes:
name: Unique identifier for the optimizer
opt_class: The optimizer class
description: Brief description of the optimizer's characteristics and behavior
has_eps: Whether the optimizer accepts epsilon parameter
has_momentum: Whether the optimizer accepts momentum parameter
has_betas: Whether the optimizer accepts a tuple of beta parameters
num_betas: number of betas in tuple (valid IFF has_betas = True)
defaults: Optional default parameters for the optimizer
"""
name: str
opt_class: Union[str, OptimType]
description: str = ''
has_eps: bool = True
has_momentum: bool = False
has_betas: bool = False
num_betas: int = 2
second_order: bool = False
defaults: Optional[Dict[str, Any]] = None
class OptimizerRegistry:
"""Registry managing optimizer configurations and instantiation.
This class provides a central registry for optimizer configurations and handles
their instantiation with appropriate parameter groups and settings.
"""
def __init__(self) -> None:
self._optimizers: Dict[str, OptimInfo] = {}
self._foreach_defaults: Set[str] = {'lion'}
def register(self, info: OptimInfo) -> None:
"""Register an optimizer configuration.
Args:
info: The OptimInfo configuration containing name, type and description
"""
name = info.name.lower()
if name in self._optimizers:
_logger.warning(f'Optimizer {name} already registered, overwriting')
self._optimizers[name] = info
def register_alias(self, alias: str, target: str) -> None:
"""Register an alias for an existing optimizer.
Args:
alias: The alias name
target: The target optimizer name
Raises:
KeyError: If target optimizer doesn't exist
"""
target = target.lower()
if target not in self._optimizers:
raise KeyError(f'Cannot create alias for non-existent optimizer {target}')
self._optimizers[alias.lower()] = self._optimizers[target]
def register_foreach_default(self, name: str) -> None:
"""Register an optimizer as defaulting to foreach=True."""
self._foreach_defaults.add(name.lower())
def list_optimizers(
self,
filter: Union[str, List[str]] = '',
exclude_filters: Optional[List[str]] = None,
with_description: bool = False
) -> List[Union[str, Tuple[str, str]]]:
"""List available optimizer names, optionally filtered.
Args:
filter: Wildcard style filter string (e.g., 'adam*')
exclude_filters: Optional list of wildcard patterns to exclude
with_description: If True, return tuples of (name, description)
Returns:
List of either optimizer names or (name, description) tuples
"""
names = sorted(self._optimizers.keys())
if filter:
if isinstance(filter, str):
filters = [filter]
else:
filters = filter
filtered_names = set()
for f in filters:
filtered_names.update(n for n in names if fnmatch(n, f))
names = sorted(filtered_names)
if exclude_filters:
for exclude_filter in exclude_filters:
names = [n for n in names if not fnmatch(n, exclude_filter)]
if with_description:
return [(name, self._optimizers[name].description) for name in names]
return names
def get_optimizer_info(self, name: str) -> OptimInfo:
"""Get the OptimInfo for an optimizer.
Args:
name: Name of the optimizer
Returns:
OptimInfo configuration
Raises:
ValueError: If optimizer is not found
"""
name = name.lower()
if name not in self._optimizers:
raise ValueError(f'Optimizer {name} not found in registry')
return self._optimizers[name]
def get_optimizer_class(
self,
name_or_info: Union[str, OptimInfo],
bind_defaults: bool = True,
) -> Union[OptimType, OptimizerCallable]:
"""Get the optimizer class with any default arguments applied.
This allows direct instantiation of optimizers with their default configs
without going through the full factory.
Args:
name_or_info: Name of the optimizer
bind_defaults: Bind default arguments to optimizer class via `partial` before returning
Returns:
Optimizer class or partial with defaults applied
Raises:
ValueError: If optimizer not found
"""
if isinstance(name_or_info, str):
opt_info = self.get_optimizer_info(name_or_info)
else:
assert isinstance(name_or_info, OptimInfo)
opt_info = name_or_info
if isinstance(opt_info.opt_class, str):
# Special handling for APEX and BNB optimizers
if opt_info.opt_class.startswith('apex.'):
assert torch.cuda.is_available(), 'CUDA required for APEX optimizers'
try:
opt_class = _import_class(opt_info.opt_class)
except ImportError as e:
raise ImportError('APEX optimizers require apex to be installed') from e
elif opt_info.opt_class.startswith('bitsandbytes.'):
assert torch.cuda.is_available(), 'CUDA required for bitsandbytes optimizers'
try:
opt_class = _import_class(opt_info.opt_class)
except ImportError as e:
raise ImportError('bitsandbytes optimizers require bitsandbytes to be installed') from e
else:
opt_class = _import_class(opt_info.opt_class)
else:
opt_class = opt_info.opt_class
# Return class or partial with defaults
if bind_defaults and opt_info.defaults:
opt_class = partial(opt_class, **opt_info.defaults)
return opt_class
def create_optimizer(
self,
model_or_params: Union[nn.Module, ParamsT],
opt: str,
lr: Optional[float] = None,
weight_decay: float = 0.,
momentum: float = 0.9,
foreach: Optional[bool] = None,
weight_decay_exclude_1d: bool = True,
layer_decay: Optional[float] = None,
param_group_fn: Optional[Callable[[nn.Module], ParamsT]] = None,
**kwargs: Any,
) -> torch.optim.Optimizer:
"""Create an optimizer instance.
Args:
model_or_params: Model or parameters to optimize
opt: Name of optimizer to create
lr: Learning rate
weight_decay: Weight decay factor
momentum: Momentum factor for applicable optimizers
foreach: Enable/disable foreach operation
weight_decay_exclude_1d: Whether to skip weight decay for 1d params (biases and norm affine)
layer_decay: Layer-wise learning rate decay
param_group_fn: Optional custom parameter grouping function
**kwargs: Additional optimizer-specific arguments
Returns:
Configured optimizer instance
Raises:
ValueError: If optimizer not found or configuration invalid
"""
# Get parameters to optimize
if isinstance(model_or_params, nn.Module):
# Extract parameters from a nn.Module, build param groups w/ weight-decay and/or layer-decay applied
no_weight_decay = getattr(model_or_params, 'no_weight_decay', lambda: set())()
if param_group_fn:
# run custom fn to generate param groups from nn.Module
params = param_group_fn(model_or_params)
elif layer_decay is not None:
params = param_groups_layer_decay(
model_or_params,
weight_decay=weight_decay,
layer_decay=layer_decay,
no_weight_decay_list=no_weight_decay,
weight_decay_exclude_1d=weight_decay_exclude_1d,
)
weight_decay = 0.
elif weight_decay and weight_decay_exclude_1d:
params = param_groups_weight_decay(
model_or_params,
weight_decay=weight_decay,
no_weight_decay_list=no_weight_decay,
)
weight_decay = 0.
else:
params = model_or_params.parameters()
else:
# pass parameters / parameter groups through to optimizer
params = model_or_params
# Parse optimizer name
opt_split = opt.lower().split('_')
opt_name = opt_split[-1]
use_lookahead = opt_split[0] == 'lookahead' if len(opt_split) > 1 else False
opt_info = self.get_optimizer_info(opt_name)
# Build optimizer arguments
opt_args: Dict[str, Any] = {'weight_decay': weight_decay, **kwargs}
# Add LR to args, if None optimizer default is used, some optimizers manage LR internally if None.
if lr is not None:
opt_args['lr'] = lr
# Apply optimizer-specific settings
if opt_info.defaults:
for k, v in opt_info.defaults.items():
opt_args.setdefault(k, v)
# timm has always defaulted momentum to 0.9 if optimizer supports momentum, keep for backward compat.
if opt_info.has_momentum:
opt_args.setdefault('momentum', momentum)
# Remove commonly used kwargs that aren't always supported
if not opt_info.has_eps:
opt_args.pop('eps', None)
if not opt_info.has_betas:
opt_args.pop('betas', None)
if foreach is not None:
# Explicitly activate or deactivate multi-tensor foreach impl.
# Not all optimizers support this, and those that do usually default to using
# multi-tensor impl if foreach is left as default 'None' and can be enabled.
opt_args.setdefault('foreach', foreach)
# Create optimizer
opt_class = self.get_optimizer_class(opt_info, bind_defaults=False)
optimizer = opt_class(params, **opt_args)
# Apply Lookahead if requested
if use_lookahead:
optimizer = Lookahead(optimizer)
return optimizer
def _register_sgd_variants(registry: OptimizerRegistry) -> None:
"""Register SGD-based optimizers"""
sgd_optimizers = [
OptimInfo(
name='sgd',
opt_class=torch.optim.SGD,
description='torch.Optim Stochastic Gradient Descent (SGD) with Nesterov momentum',
has_eps=False,
has_momentum=True,
defaults={'nesterov': True}
),
OptimInfo(
name='momentum',
opt_class=torch.optim.SGD,
description='torch.Optim Stochastic Gradient Descent (SGD) with classical momentum',
has_eps=False,
has_momentum=True,
defaults={'nesterov': False}
),
OptimInfo(
name='sgdp',
opt_class=SGDP,
description='SGD with built-in projection to unit norm sphere',
has_momentum=True,
defaults={'nesterov': True}
),
OptimInfo(
name='sgdw',
opt_class=SGDW,
description='SGD with decoupled weight decay and Nesterov momentum',
has_eps=False,
has_momentum=True,
defaults={'nesterov': True}
),
]
for opt in sgd_optimizers:
registry.register(opt)
def _register_adam_variants(registry: OptimizerRegistry) -> None:
"""Register Adam-based optimizers"""
adam_optimizers = [
OptimInfo(
name='adam',
opt_class=torch.optim.Adam,
description='torch.optim.Adam, Adaptive Moment Estimation',
has_betas=True
),
OptimInfo(
name='adamw',
opt_class=torch.optim.AdamW,
description='torch.optim.AdamW, Adam with decoupled weight decay',
has_betas=True
),
OptimInfo(
name='adamwlegacy',
opt_class=AdamWLegacy,
description='legacy impl of AdamW that pre-dates inclusion to torch.optim',
has_betas=True
),
OptimInfo(
name='adamp',
opt_class=AdamP,
description='Adam with built-in projection to unit norm sphere',
has_betas=True,
defaults={'wd_ratio': 0.01, 'nesterov': True}
),
OptimInfo(
name='nadam',
opt_class=torch.optim.NAdam,
description='torch.optim.NAdam, Adam with Nesterov momentum',
has_betas=True
),
OptimInfo(
name='nadamlegacy',
opt_class=NAdamLegacy,
description='legacy impl of NAdam that pre-dates inclusion in torch.optim',
has_betas=True
),
OptimInfo(
name='nadamw',
opt_class=NAdamW,
description='Adam with Nesterov momentum and decoupled weight decay, mlcommons/algorithmic-efficiency impl',
has_betas=True
),
OptimInfo(
name='radam',
opt_class=torch.optim.RAdam,
description='torch.optim.RAdam, Rectified Adam with variance adaptation',
has_betas=True
),
OptimInfo(
name='radamlegacy',
opt_class=RAdamLegacy,
description='legacy impl of RAdam that predates inclusion in torch.optim',
has_betas=True
),
OptimInfo(
name='radamw',
opt_class=torch.optim.RAdam,
description='torch.optim.RAdamW, Rectified Adam with variance adaptation and decoupled weight decay',
has_betas=True,
defaults={'decoupled_weight_decay': True}
),
OptimInfo(
name='adamax',
opt_class=torch.optim.Adamax,
description='torch.optim.Adamax, Adam with infinity norm for more stable updates',
has_betas=True
),
OptimInfo(
name='adafactor',
opt_class=Adafactor,
description='Memory-efficient implementation of Adam with factored gradients',
),
OptimInfo(
name='adafactorbv',
opt_class=AdafactorBigVision,
description='Big Vision variant of Adafactor with factored gradients, half precision momentum',
),
OptimInfo(
name='adopt',
opt_class=Adopt,
description='Modified Adam that can converge with any β2 with the optimal rate',
),
OptimInfo(
name='adoptw',
opt_class=Adopt,
description='Modified AdamW (decoupled decay) that can converge with any β2 with the optimal rate',
defaults={'decoupled': True}
),
]
for opt in adam_optimizers:
registry.register(opt)
def _register_lamb_lars(registry: OptimizerRegistry) -> None:
"""Register LAMB and LARS variants"""
lamb_lars_optimizers = [
OptimInfo(
name='lamb',
opt_class=Lamb,
description='Layer-wise Adaptive Moments for batch optimization',
has_betas=True
),
OptimInfo(
name='lambc',
opt_class=Lamb,
description='LAMB with trust ratio clipping for stability',
has_betas=True,
defaults={'trust_clip': True}
),
OptimInfo(
name='lambw',
opt_class=Lamb,
description='LAMB with decoupled weight decay',
has_betas=True,
defaults={'decoupled_decay': True}
),
OptimInfo(
name='lambcw',
opt_class=Lamb,
description='LAMB with trust ratio clipping for stability and decoupled decay',
has_betas=True,
defaults={'trust_clip': True, 'decoupled_decay': True}
),
OptimInfo(
name='lars',
opt_class=Lars,
description='Layer-wise Adaptive Rate Scaling',
has_momentum=True
),
OptimInfo(
name='larc',
opt_class=Lars,
description='LARS with trust ratio clipping for stability',
has_momentum=True,
defaults={'trust_clip': True}
),
OptimInfo(
name='nlars',
opt_class=Lars,
description='LARS with Nesterov momentum',
has_momentum=True,
defaults={'nesterov': True}
),
OptimInfo(
name='nlarc',
opt_class=Lars,
description='LARS with Nesterov momentum & trust ratio clipping',
has_momentum=True,
defaults={'nesterov': True, 'trust_clip': True}
),
]
for opt in lamb_lars_optimizers:
registry.register(opt)
def _register_cautious_optimizers(registry: OptimizerRegistry) -> None:
cautious_optimizers = [
OptimInfo(
name='cadafactor',
opt_class=Adafactor,
description='Cautious Adafactor',
defaults={'caution': True}
),
OptimInfo(
name='cadafactorbv',
opt_class=AdafactorBigVision,
description='Cautious Big Vision Adafactor',
defaults={'caution': True}
),
OptimInfo(
name='cadamw',
opt_class=AdamWLegacy,
description='Cautious AdamW',
has_betas=True,
defaults={'caution': True}
),
OptimInfo(
name='cadopt',
opt_class=Adopt,
description='Cautious Adopt',
defaults={'caution': True}
),
OptimInfo(
name='cadan',
opt_class=Adan,
description='Cautious Adaptive Nesterov Momentum Algorithm',
defaults={'caution': True, 'no_prox': False},
has_betas=True,
num_betas=3
),
OptimInfo(
name='cadanw',
opt_class=Adan,
description='Cautious Adaptive Nesterov Momentum with decoupled weight decay',
defaults={'caution': True, 'no_prox': True},
has_betas=True,
num_betas=3
),
OptimInfo(
name='cadoptw',
opt_class=Adopt,
description='Cautious AdoptW (decoupled decay)',
defaults={'decoupled': True, 'caution': True}
),
OptimInfo(
name='clamb',
opt_class=Lamb,
description='Cautious LAMB',
has_betas=True,
defaults={'caution': True}
),
OptimInfo(
name='clambw',
opt_class=Lamb,
description='Cautious LAMB with decoupled weight decay',
has_betas=True,
defaults={'caution': True, 'decoupled_decay': True}
),
OptimInfo(
name='claprop',
opt_class=LaProp,
description='Cautious LaProp',
has_betas=True,
defaults={'caution': True}
),
OptimInfo(
name='clion',
opt_class=Lion,
description='Cautious Lion',
has_eps=False,
has_betas=True,
defaults = {'caution': True}
),
OptimInfo(
name='cmars',
opt_class=Mars,
description='Cautious MARS',
has_betas=True,
defaults={'caution': True}
),
OptimInfo(
name='cnadamw',
opt_class=NAdamW,
description='Cautious NAdamW',
has_betas=True,
defaults={'caution': True}
),
OptimInfo(
name='crmsproptf',
opt_class=RMSpropTF,
description='Cautious TensorFlow-style RMSprop',
has_momentum=True,
defaults={'alpha': 0.9, 'caution': True}
),
OptimInfo(
name='csgdw',
opt_class=SGDW,
description='Cautious SGD with decoupled weight decay and Nesterov momentum',
has_eps=False,
has_momentum=True,
defaults={'nesterov': True, 'caution': True}
),
]
for opt in cautious_optimizers:
registry.register(opt)
def _register_other_optimizers(registry: OptimizerRegistry) -> None:
"""Register miscellaneous optimizers"""
other_optimizers = [
OptimInfo(
name='adabelief',
opt_class=AdaBelief,
description='Adapts learning rate based on gradient prediction error',
has_betas=True,
defaults={'rectify': False}
),
OptimInfo(
name='radabelief',
opt_class=AdaBelief,
description='Rectified AdaBelief with variance adaptation',
has_betas=True,
defaults={'rectify': True}
),
OptimInfo(
name='adadelta',
opt_class=torch.optim.Adadelta,
description='torch.optim.Adadelta, Adapts learning rates based on running windows of gradients'
),
OptimInfo(
name='adagrad',
opt_class=torch.optim.Adagrad,
description='torch.optim.Adagrad, Adapts learning rates using cumulative squared gradients',
defaults={'eps': 1e-8}
),
OptimInfo(
name='adan',
opt_class=Adan,
description='Adaptive Nesterov Momentum Algorithm',
defaults={'no_prox': False},
has_betas=True,
num_betas=3
),
OptimInfo(
name='adanw',
opt_class=Adan,
description='Adaptive Nesterov Momentum with decoupled weight decay',
defaults={'no_prox': True},
has_betas=True,
num_betas=3
),
OptimInfo(
name='adahessian',
opt_class=Adahessian,
description='An Adaptive Second Order Optimizer',
has_betas=True,
second_order=True,
),
OptimInfo(
name='laprop',
opt_class=LaProp,
description='Separating Momentum and Adaptivity in Adam',
has_betas=True,
),
OptimInfo(
name='lion',
opt_class=Lion,
description='Evolved Sign Momentum optimizer for improved convergence',
has_eps=False,
has_betas=True
),
OptimInfo(
name='madgrad',
opt_class=MADGRAD,
description='Momentum-based Adaptive gradient method',
has_momentum=True
),
OptimInfo(
name='madgradw',
opt_class=MADGRAD,
description='MADGRAD with decoupled weight decay',
has_momentum=True,
defaults={'decoupled_decay': True}
),
OptimInfo(
name='mars',
opt_class=Mars,
description='Unleashing the Power of Variance Reduction for Training Large Models',
has_betas=True,
),
OptimInfo(
name='novograd',
opt_class=NvNovoGrad,
description='Normalized Adam with L2 norm gradient normalization',
has_betas=True
),
OptimInfo(
name='rmsprop',
opt_class=torch.optim.RMSprop,
description='torch.optim.RMSprop, Root Mean Square Propagation',
has_momentum=True,
defaults={'alpha': 0.9}
),
OptimInfo(
name='rmsproptf',
opt_class=RMSpropTF,
description='TensorFlow-style RMSprop implementation, Root Mean Square Propagation',
has_momentum=True,
defaults={'alpha': 0.9}
),
]
for opt in other_optimizers:
registry.register(opt)
registry.register_foreach_default('lion')
def _register_apex_optimizers(registry: OptimizerRegistry) -> None:
"""Register APEX optimizers (lazy import)"""
apex_optimizers = [
OptimInfo(
name='fusedsgd',
opt_class='apex.optimizers.FusedSGD',
description='NVIDIA APEX fused SGD implementation for faster training',
has_eps=False,
has_momentum=True,
defaults={'nesterov': True}
),
OptimInfo(
name='fusedadam',
opt_class='apex.optimizers.FusedAdam',
description='NVIDIA APEX fused Adam implementation',
has_betas=True,
defaults={'adam_w_mode': False}
),
OptimInfo(
name='fusedadamw',
opt_class='apex.optimizers.FusedAdam',
description='NVIDIA APEX fused AdamW implementation',
has_betas=True,
defaults={'adam_w_mode': True}
),
OptimInfo(
name='fusedlamb',
opt_class='apex.optimizers.FusedLAMB',
description='NVIDIA APEX fused LAMB implementation',
has_betas=True
),
OptimInfo(
name='fusednovograd',
opt_class='apex.optimizers.FusedNovoGrad',
description='NVIDIA APEX fused NovoGrad implementation',
has_betas=True,
defaults={'betas': (0.95, 0.98)}
),
]
for opt in apex_optimizers:
registry.register(opt)
def _register_bnb_optimizers(registry: OptimizerRegistry) -> None:
"""Register bitsandbytes optimizers (lazy import)"""
bnb_optimizers = [
OptimInfo(
name='bnbsgd',
opt_class='bitsandbytes.optim.SGD',
description='bitsandbytes SGD',
has_eps=False,
has_momentum=True,
defaults={'nesterov': True}
),
OptimInfo(
name='bnbsgd8bit',
opt_class='bitsandbytes.optim.SGD8bit',
description='bitsandbytes 8-bit SGD with dynamic quantization',
has_eps=False,
has_momentum=True,
defaults={'nesterov': True}
),
OptimInfo(
name='bnbadam',
opt_class='bitsandbytes.optim.Adam',
description='bitsandbytes Adam',
has_betas=True
),
OptimInfo(
name='bnbadam8bit',
opt_class='bitsandbytes.optim.Adam',
description='bitsandbytes 8-bit Adam with dynamic quantization',
has_betas=True
),
OptimInfo(
name='bnbadamw',
opt_class='bitsandbytes.optim.AdamW',
description='bitsandbytes AdamW',
has_betas=True
),
OptimInfo(
name='bnbadamw8bit',
opt_class='bitsandbytes.optim.AdamW',
description='bitsandbytes 8-bit AdamW with dynamic quantization',
has_betas=True
),
OptimInfo(
'bnblion',
'bitsandbytes.optim.Lion',
description='bitsandbytes Lion',
has_eps=False,
has_betas=True
),
OptimInfo(
'bnblion8bit',
'bitsandbytes.optim.Lion8bit',
description='bitsandbytes 8-bit Lion with dynamic quantization',
has_eps=False,
has_betas=True
),
OptimInfo(
'bnbademamix',
'bitsandbytes.optim.AdEMAMix',
description='bitsandbytes AdEMAMix',
has_betas=True,
num_betas=3,
),
OptimInfo(
'bnbademamix8bit',
'bitsandbytes.optim.AdEMAMix8bit',
description='bitsandbytes 8-bit AdEMAMix with dynamic quantization',
has_betas=True,
num_betas=3,
),
]
for opt in bnb_optimizers:
registry.register(opt)
default_registry = OptimizerRegistry()
def _register_default_optimizers() -> None:
"""Register all default optimizers to the global registry."""
# Register all optimizer groups
_register_sgd_variants(default_registry)
_register_adam_variants(default_registry)
_register_lamb_lars(default_registry)
_register_other_optimizers(default_registry)
_register_apex_optimizers(default_registry)
_register_bnb_optimizers(default_registry)
_register_cautious_optimizers(default_registry)
# Register aliases
default_registry.register_alias('nesterov', 'sgd')
default_registry.register_alias('nesterovw', 'sgdw')
# Initialize default registry
_register_default_optimizers()
# Public API
def list_optimizers(
filter: Union[str, List[str]] = '',
exclude_filters: Optional[List[str]] = None,
with_description: bool = False,
) -> List[Union[str, Tuple[str, str]]]:
"""List available optimizer names, optionally filtered.
List all registered optimizers, with optional filtering using wildcard patterns.
Optimizers can be filtered using include and exclude patterns, and can optionally
return descriptions with each optimizer name.
Args:
filter: Wildcard style filter string or list of filter strings
(e.g., 'adam*' for all Adam variants, or ['adam*', '*8bit'] for
Adam variants and 8-bit optimizers). Empty string means no filtering.
exclude_filters: Optional list of wildcard patterns to exclude. For example,
['*8bit', 'fused*'] would exclude 8-bit and fused implementations.
with_description: If True, returns tuples of (name, description) instead of
just names. Descriptions provide brief explanations of optimizer characteristics.
Returns:
If with_description is False:
List of optimizer names as strings (e.g., ['adam', 'adamw', ...])
If with_description is True:
List of tuples of (name, description) (e.g., [('adam', 'Adaptive Moment...'), ...])
Examples:
>>> list_optimizers()
['adam', 'adamw', 'sgd', ...]
>>> list_optimizers(['la*', 'nla*']) # List lamb & lars
['lamb', 'lambc', 'larc', 'lars', 'nlarc', 'nlars']
>>> list_optimizers('*adam*', exclude_filters=['bnb*', 'fused*']) # Exclude bnb & apex adam optimizers
['adam', 'adamax', 'adamp', 'adamw', 'nadam', 'nadamw', 'radam']
>>> list_optimizers(with_description=True) # Get descriptions
[('adabelief', 'Adapts learning rate based on gradient prediction error'),
('adadelta', 'torch.optim Adadelta, Adapts learning rates based on running windows of gradients'),
('adafactor', 'Memory-efficient implementation of Adam with factored gradients'),
...]
"""
return default_registry.list_optimizers(filter, exclude_filters, with_description)
def get_optimizer_info(name: str) -> OptimInfo:
"""Get the OptimInfo for an optimizer.
Args:
name: Name of the optimizer
Returns:
OptimInfo configuration
Raises:
ValueError: If optimizer is not found
"""
return default_registry.get_optimizer_info(name)
def get_optimizer_class(
name: str,
bind_defaults: bool = True,
) -> Union[OptimType, OptimizerCallable]:
"""Get optimizer class by name with option to bind default arguments.
Retrieves the optimizer class or a partial function with default arguments bound.
This allows direct instantiation of optimizers with their default configurations
without going through the full factory.
Args:
name: Name of the optimizer to retrieve (e.g., 'adam', 'sgd')
bind_defaults: If True, returns a partial function with default arguments from OptimInfo bound.
If False, returns the raw optimizer class.
Returns:
If bind_defaults is False:
The optimizer class (e.g., torch.optim.Adam)
If bind_defaults is True:
A partial function with default arguments bound
Raises:
ValueError: If optimizer name is not found in registry
Examples:
>>> # Get SGD with nesterov momentum default
>>> SGD = get_optimizer_class('sgd') # nesterov=True bound
>>> opt = SGD(model.parameters(), lr=0.1, momentum=0.9)
>>> # Get raw optimizer class
>>> SGD = get_optimizer_class('sgd')
>>> opt = SGD(model.parameters(), lr=1e-3, momentum=0.9)
"""
return default_registry.get_optimizer_class(name, bind_defaults=bind_defaults)
def create_optimizer_v2(
model_or_params: Union[nn.Module, ParamsT],
opt: str = 'sgd',
lr: Optional[float] = None,
weight_decay: float = 0.,
momentum: float = 0.9,
foreach: Optional[bool] = None,
filter_bias_and_bn: bool = True,
layer_decay: Optional[float] = None,
param_group_fn: Optional[Callable[[nn.Module], ParamsT]] = None,
**kwargs: Any,
) -> torch.optim.Optimizer:
"""Create an optimizer instance via timm registry.
Creates and configures an optimizer with appropriate parameter groups and settings.
Supports automatic parameter group creation for weight decay and layer-wise learning
rates, as well as custom parameter grouping.
Args:
model_or_params: A PyTorch model or an iterable of parameters/parameter groups.
If a model is provided, parameters will be automatically extracted and grouped
based on the other arguments.
opt: Name of the optimizer to create (e.g., 'adam', 'adamw', 'sgd').
Use list_optimizers() to see available options.
lr: Learning rate. If None, will use the optimizer's default.
weight_decay: Weight decay factor. Will be used to create param groups if model_or_params is a model.
momentum: Momentum factor for optimizers that support it. Only used if the
chosen optimizer accepts a momentum parameter.
foreach: Enable/disable foreach (multi-tensor) implementation if available.
If None, will use optimizer-specific defaults.
filter_bias_and_bn: If True, bias, norm layer parameters (all 1d params) will not have
weight decay applied. Only used when model_or_params is a model and
weight_decay > 0.
layer_decay: Optional layer-wise learning rate decay factor. If provided,
learning rates will be scaled by layer_decay^(max_depth - layer_depth).
Only used when model_or_params is a model.
param_group_fn: Optional function to create custom parameter groups.
If provided, other parameter grouping options will be ignored.
**kwargs: Additional optimizer-specific arguments (e.g., betas for Adam).
Returns:
Configured optimizer instance.
Examples:
>>> # Basic usage with a model
>>> optimizer = create_optimizer_v2(model, 'adamw', lr=1e-3)
>>> # SGD with momentum and weight decay
>>> optimizer = create_optimizer_v2(
... model, 'sgd', lr=0.1, momentum=0.9, weight_decay=1e-4
... )
>>> # Adam with layer-wise learning rate decay
>>> optimizer = create_optimizer_v2(
... model, 'adam', lr=1e-3, layer_decay=0.7
... )
>>> # Custom parameter groups
>>> def group_fn(model):
... return [
... {'params': model.backbone.parameters(), 'lr': 1e-4},
... {'params': model.head.parameters(), 'lr': 1e-3}
... ]
>>> optimizer = create_optimizer_v2(
... model, 'sgd', param_group_fn=group_fn
... )
Note:
Parameter group handling precedence:
1. If param_group_fn is provided, it will be used exclusively
2. If layer_decay is provided, layer-wise groups will be created
3. If weight_decay > 0 and filter_bias_and_bn is True, weight decay groups will be created
4. Otherwise, all parameters will be in a single group
"""
return default_registry.create_optimizer(
model_or_params,
opt=opt,
lr=lr,
weight_decay=weight_decay,
momentum=momentum,
foreach=foreach,
weight_decay_exclude_1d=filter_bias_and_bn,
layer_decay=layer_decay,
param_group_fn=param_group_fn,
**kwargs
)
def optimizer_kwargs(cfg):
""" cfg/argparse to kwargs helper
Convert optimizer args in argparse args or cfg like object to keyword args for updated create fn.
"""
kwargs = dict(
opt=cfg.opt,
lr=cfg.lr,
weight_decay=cfg.weight_decay,
momentum=cfg.momentum,
)
if getattr(cfg, 'opt_eps', None) is not None:
kwargs['eps'] = cfg.opt_eps
if getattr(cfg, 'opt_betas', None) is not None:
kwargs['betas'] = cfg.opt_betas
if getattr(cfg, 'layer_decay', None) is not None:
kwargs['layer_decay'] = cfg.layer_decay
if getattr(cfg, 'opt_args', None) is not None:
kwargs.update(cfg.opt_args)
if getattr(cfg, 'opt_foreach', None) is not None:
kwargs['foreach'] = cfg.opt_foreach
return kwargs
def create_optimizer(
args,
model: Union[nn.Module, ParamsT],
filter_bias_and_bn: bool = True,
) -> torch.optim.Optimizer:
""" Legacy optimizer factory for backwards compatibility.
NOTE: Use create_optimizer_v2 for new code.
"""
return create_optimizer_v2(
model,
**optimizer_kwargs(cfg=args),
filter_bias_and_bn=filter_bias_and_bn,
)
|