File size: 111,481 Bytes
5f72933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
# Changelog

## Jan 19, 2025
* Fix loading of LeViT safetensor weights, remove conversion code which should have been deactivated
* Add 'SO150M' ViT weights trained with SBB recipes, decent results, but not optimal shape for ImageNet-12k/1k pretrain/ft
  * `vit_so150m_patch16_reg4_gap_256.sbb_e250_in12k_ft_in1k` - 86.7% top-1
  * `vit_so150m_patch16_reg4_gap_384.sbb_e250_in12k_ft_in1k` - 87.4% top-1
  * `vit_so150m_patch16_reg4_gap_256.sbb_e250_in12k`
* Misc typing, typo, etc. cleanup
* 1.0.14 release to get above LeViT fix out

## Jan 9, 2025
* Add support to train and validate in pure `bfloat16` or `float16`
* `wandb` project name arg added by https://github.com/caojiaolong, use arg.experiment for name
* Fix old issue w/ checkpoint saving not working on filesystem w/o hard-link support (e.g. FUSE fs mounts)
* 1.0.13 release

## Jan 6, 2025
* Add `torch.utils.checkpoint.checkpoint()` wrapper in `timm.models` that defaults `use_reentrant=False`, unless `TIMM_REENTRANT_CKPT=1` is set in env.

## Dec 31, 2024
* `convnext_nano` 384x384 ImageNet-12k pretrain & fine-tune. https://huggingface.co/models?search=convnext_nano%20r384
* Add AIM-v2 encoders from https://github.com/apple/ml-aim, see on Hub: https://huggingface.co/models?search=timm%20aimv2
* Add PaliGemma2 encoders from https://github.com/google-research/big_vision to existing PaliGemma, see on Hub: https://huggingface.co/models?search=timm%20pali2
* Add missing L/14 DFN2B 39B CLIP ViT, `vit_large_patch14_clip_224.dfn2b_s39b`
* Fix existing `RmsNorm` layer & fn to match standard formulation, use PT 2.5 impl when possible. Move old impl to `SimpleNorm` layer, it's LN w/o centering or bias. There were only two `timm` models using it, and they have been updated.
* Allow override of `cache_dir` arg for model creation
* Pass through `trust_remote_code` for HF datasets wrapper
* `inception_next_atto` model added by creator
* Adan optimizer caution, and Lamb decoupled weighgt decay options
* Some feature_info metadata fixed by https://github.com/brianhou0208
* All OpenCLIP and JAX (CLIP, SigLIP, Pali, etc) model weights that used load time remapping were given their own HF Hub instances so that they work with `hf-hub:` based loading, and thus will work with new Transformers `TimmWrapperModel`

## Nov 28, 2024
* More optimizers
  * Add MARS optimizer (https://arxiv.org/abs/2411.10438, https://github.com/AGI-Arena/MARS)
  * Add LaProp optimizer (https://arxiv.org/abs/2002.04839, https://github.com/Z-T-WANG/LaProp-Optimizer)
  * Add masking from 'Cautious Optimizers' (https://arxiv.org/abs/2411.16085, https://github.com/kyleliang919/C-Optim) to Adafactor, Adafactor Big Vision, AdamW (legacy), Adopt, Lamb, LaProp, Lion, NadamW, RMSPropTF, SGDW
  * Cleanup some docstrings and type annotations re optimizers and factory
* Add MobileNet-V4 Conv Medium models pretrained on in12k and fine-tuned in1k @ 384x384
  * https://huggingface.co/timm/mobilenetv4_conv_medium.e250_r384_in12k_ft_in1k
  * https://huggingface.co/timm/mobilenetv4_conv_medium.e250_r384_in12k
  * https://huggingface.co/timm/mobilenetv4_conv_medium.e180_ad_r384_in12k
  * https://huggingface.co/timm/mobilenetv4_conv_medium.e180_r384_in12k
* Add small cs3darknet, quite good for the speed
  * https://huggingface.co/timm/cs3darknet_focus_s.ra4_e3600_r256_in1k

## Nov 12, 2024
* Optimizer factory refactor
  * New factory works by registering optimizers using an OptimInfo dataclass w/ some key traits
  * Add `list_optimizers`, `get_optimizer_class`, `get_optimizer_info` to reworked `create_optimizer_v2` fn to explore optimizers, get info or class
  * deprecate `optim.optim_factory`, move fns to `optim/_optim_factory.py` and `optim/_param_groups.py` and encourage import via `timm.optim`
* Add Adopt (https://github.com/iShohei220/adopt) optimizer
* Add 'Big Vision' variant of Adafactor (https://github.com/google-research/big_vision/blob/main/big_vision/optax.py) optimizer
* Fix original Adafactor to pick better factorization dims for convolutions
* Tweak LAMB optimizer with some improvements in torch.where functionality since original, refactor clipping a bit
* dynamic img size support in vit, deit, eva improved to support resize from non-square patch grids, thanks https://github.com/wojtke
*
## Oct 31, 2024
Add a set of new very well trained ResNet & ResNet-V2 18/34 (basic block) weights. See https://huggingface.co/blog/rwightman/resnet-trick-or-treat

## Oct 19, 2024
* Cleanup torch amp usage to avoid cuda specific calls, merge support for Ascend (NPU) devices from [MengqingCao](https://github.com/MengqingCao) that should work now in PyTorch 2.5 w/ new device extension autoloading feature. Tested Intel Arc (XPU) in Pytorch 2.5 too and it (mostly) worked.

## Oct 16, 2024
* Fix error on importing from deprecated path `timm.models.registry`, increased priority of existing deprecation warnings to be visible
* Port weights of InternViT-300M (https://huggingface.co/OpenGVLab/InternViT-300M-448px) to `timm` as `vit_intern300m_patch14_448`

### Oct 14, 2024
* Pre-activation (ResNetV2) version of 18/18d/34/34d ResNet model defs added by request (weights pending)
* Release 1.0.10

### Oct 11, 2024
* MambaOut (https://github.com/yuweihao/MambaOut) model & weights added. A cheeky take on SSM vision models w/o the SSM (essentially ConvNeXt w/ gating). A mix of original weights + custom variations & weights.

|model                                                                                                                |img_size|top1  |top5  |param_count|
|---------------------------------------------------------------------------------------------------------------------|--------|------|------|-----------|
|[mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k)|384     |87.506|98.428|101.66     |
|[mambaout_base_plus_rw.sw_e150_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_in12k_ft_in1k)|288     |86.912|98.236|101.66     |
|[mambaout_base_plus_rw.sw_e150_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_in12k_ft_in1k)|224     |86.632|98.156|101.66     |
|[mambaout_base_tall_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_tall_rw.sw_e500_in1k)                  |288     |84.974|97.332|86.48      |
|[mambaout_base_wide_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_wide_rw.sw_e500_in1k)                  |288     |84.962|97.208|94.45      |
|[mambaout_base_short_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_short_rw.sw_e500_in1k)                |288     |84.832|97.27 |88.83      |
|[mambaout_base.in1k](http://huggingface.co/timm/mambaout_base.in1k)                                                  |288     |84.72 |96.93 |84.81      |
|[mambaout_small_rw.sw_e450_in1k](http://huggingface.co/timm/mambaout_small_rw.sw_e450_in1k)                          |288     |84.598|97.098|48.5       |
|[mambaout_small.in1k](http://huggingface.co/timm/mambaout_small.in1k)                                                |288     |84.5  |96.974|48.49      |
|[mambaout_base_wide_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_wide_rw.sw_e500_in1k)                  |224     |84.454|96.864|94.45      |
|[mambaout_base_tall_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_tall_rw.sw_e500_in1k)                  |224     |84.434|96.958|86.48      |
|[mambaout_base_short_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_short_rw.sw_e500_in1k)                |224     |84.362|96.952|88.83      |
|[mambaout_base.in1k](http://huggingface.co/timm/mambaout_base.in1k)                                                  |224     |84.168|96.68 |84.81      |
|[mambaout_small.in1k](http://huggingface.co/timm/mambaout_small.in1k)                                                |224     |84.086|96.63 |48.49      |
|[mambaout_small_rw.sw_e450_in1k](http://huggingface.co/timm/mambaout_small_rw.sw_e450_in1k)                          |224     |84.024|96.752|48.5       |
|[mambaout_tiny.in1k](http://huggingface.co/timm/mambaout_tiny.in1k)                                                  |288     |83.448|96.538|26.55      |
|[mambaout_tiny.in1k](http://huggingface.co/timm/mambaout_tiny.in1k)                                                  |224     |82.736|96.1  |26.55      |
|[mambaout_kobe.in1k](http://huggingface.co/timm/mambaout_kobe.in1k)                                                  |288     |81.054|95.718|9.14       |
|[mambaout_kobe.in1k](http://huggingface.co/timm/mambaout_kobe.in1k)                                                  |224     |79.986|94.986|9.14       |
|[mambaout_femto.in1k](http://huggingface.co/timm/mambaout_femto.in1k)                                                |288     |79.848|95.14 |7.3        |
|[mambaout_femto.in1k](http://huggingface.co/timm/mambaout_femto.in1k)                                                |224     |78.87 |94.408|7.3        |

* SigLIP SO400M ViT fine-tunes on ImageNet-1k @ 378x378, added 378x378 option for existing SigLIP 384x384 models
  *  [vit_so400m_patch14_siglip_378.webli_ft_in1k](https://huggingface.co/timm/vit_so400m_patch14_siglip_378.webli_ft_in1k) - 89.42 top-1
  *  [vit_so400m_patch14_siglip_gap_378.webli_ft_in1k](https://huggingface.co/timm/vit_so400m_patch14_siglip_gap_378.webli_ft_in1k) - 89.03
* SigLIP SO400M ViT encoder from recent multi-lingual (i18n) variant, patch16 @ 256x256 (https://huggingface.co/timm/ViT-SO400M-16-SigLIP-i18n-256). OpenCLIP update pending.
* Add two ConvNeXt 'Zepto' models & weights (one w/ overlapped stem and one w/ patch stem). Uses RMSNorm, smaller than previous 'Atto', 2.2M params.
  * [convnext_zepto_rms_ols.ra4_e3600_r224_in1k](https://huggingface.co/timm/convnext_zepto_rms_ols.ra4_e3600_r224_in1k) - 73.20 top-1 @ 224
  * [convnext_zepto_rms.ra4_e3600_r224_in1k](https://huggingface.co/timm/convnext_zepto_rms.ra4_e3600_r224_in1k) - 72.81 @ 224

### Sept 2024
* Add a suite of tiny test models for improved unit tests and niche low-resource applications (https://huggingface.co/blog/rwightman/timm-tiny-test)
* Add MobileNetV4-Conv-Small (0.5x) model (https://huggingface.co/posts/rwightman/793053396198664)
  * [mobilenetv4_conv_small_050.e3000_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small_050.e3000_r224_in1k) - 65.81 top-1 @ 256, 64.76 @ 224
* Add MobileNetV3-Large variants trained with MNV4 Small recipe
  * [mobilenetv3_large_150d.ra4_e3600_r256_in1k](http://hf.co/timm/mobilenetv3_large_150d.ra4_e3600_r256_in1k) - 81.81 @ 320, 80.94 @ 256
  * [mobilenetv3_large_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv3_large_100.ra4_e3600_r224_in1k) - 77.16 @ 256, 76.31 @ 224

### Aug 21, 2024
* Updated SBB ViT models trained on ImageNet-12k and fine-tuned on ImageNet-1k, challenging quite a number of much larger, slower models

| model | top1 | top5 | param_count | img_size |
| -------------------------------------------------- | ------ | ------ | ----------- | -------- |
| [vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k) | 87.438 | 98.256 | 64.11 | 384 |
| [vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k) | 86.608 | 97.934 | 64.11 | 256 |
| [vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k) | 86.594 | 98.02 | 60.4 | 384 |
| [vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k) | 85.734 | 97.61 | 60.4 | 256 |
* MobileNet-V1 1.25, EfficientNet-B1, & ResNet50-D weights w/ MNV4 baseline challenge recipe

| model                                                                                                                    | top1   | top5   | param_count | img_size |
|--------------------------------------------------------------------------------------------------------------------------|--------|--------|-------------|----------|
| [resnet50d.ra4_e3600_r224_in1k](http://hf.co/timm/resnet50d.ra4_e3600_r224_in1k)                                         | 81.838 | 95.922 | 25.58       | 288      |
| [efficientnet_b1.ra4_e3600_r240_in1k](http://hf.co/timm/efficientnet_b1.ra4_e3600_r240_in1k)                             | 81.440 | 95.700 | 7.79        | 288      |
| [resnet50d.ra4_e3600_r224_in1k](http://hf.co/timm/resnet50d.ra4_e3600_r224_in1k)                                         | 80.952 | 95.384 | 25.58       | 224      |
| [efficientnet_b1.ra4_e3600_r240_in1k](http://hf.co/timm/efficientnet_b1.ra4_e3600_r240_in1k)                             | 80.406 | 95.152 | 7.79        | 240      |
| [mobilenetv1_125.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_125.ra4_e3600_r224_in1k)                             | 77.600 | 93.804 | 6.27        | 256      |
| [mobilenetv1_125.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_125.ra4_e3600_r224_in1k)                             | 76.924 | 93.234 | 6.27        | 224      |

* Add SAM2 (HieraDet) backbone arch & weight loading support
* Add Hiera Small weights trained w/ abswin pos embed on in12k & fine-tuned on 1k

|model                            |top1  |top5  |param_count|
|---------------------------------|------|------|-----------|
|hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k    |84.912|97.260|35.01      |
|hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k |84.560|97.106|35.01      |

### Aug 8, 2024
* Add RDNet ('DenseNets Reloaded', https://arxiv.org/abs/2403.19588), thanks [Donghyun Kim](https://github.com/dhkim0225)

### July 28, 2024
* Add `mobilenet_edgetpu_v2_m` weights w/ `ra4` mnv4-small based recipe. 80.1% top-1 @ 224 and 80.7 @ 256.
* Release 1.0.8

### July 26, 2024
* More MobileNet-v4 weights, ImageNet-12k pretrain w/ fine-tunes, and anti-aliased ConvLarge models

| model                                                                                            |top1  |top1_err|top5  |top5_err|param_count|img_size|
|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------|
| [mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k)|84.99 |15.01   |97.294|2.706   |32.59      |544     |
| [mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k)|84.772|15.228  |97.344|2.656   |32.59      |480     |
| [mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k)|84.64 |15.36   |97.114|2.886   |32.59      |448     |
| [mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k)|84.314|15.686  |97.102|2.898   |32.59      |384     |
| [mobilenetv4_conv_aa_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e600_r384_in1k)     |83.824|16.176  |96.734|3.266   |32.59      |480     |
| [mobilenetv4_conv_aa_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e600_r384_in1k)             |83.244|16.756  |96.392|3.608   |32.59      |384     |
| [mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k)|82.99 |17.01   |96.67 |3.33    |11.07      |320     |
| [mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k)|82.364|17.636  |96.256|3.744   |11.07      |256     |

* Impressive MobileNet-V1 and EfficientNet-B0 baseline challenges (https://huggingface.co/blog/rwightman/mobilenet-baselines)

| model                                                                                            |top1  |top1_err|top5  |top5_err|param_count|img_size|
|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------|
| [efficientnet_b0.ra4_e3600_r224_in1k](http://hf.co/timm/efficientnet_b0.ra4_e3600_r224_in1k)                       |79.364|20.636  |94.754|5.246   |5.29       |256     |
| [efficientnet_b0.ra4_e3600_r224_in1k](http://hf.co/timm/efficientnet_b0.ra4_e3600_r224_in1k)                       |78.584|21.416  |94.338|5.662   |5.29       |224     |
| [mobilenetv1_100h.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100h.ra4_e3600_r224_in1k)                     |76.596|23.404  |93.272|6.728   |5.28       |256     |
| [mobilenetv1_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100.ra4_e3600_r224_in1k)                       |76.094|23.906  |93.004|6.996   |4.23       |256     |
| [mobilenetv1_100h.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100h.ra4_e3600_r224_in1k)                     |75.662|24.338  |92.504|7.496   |5.28       |224     |
| [mobilenetv1_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100.ra4_e3600_r224_in1k)                       |75.382|24.618  |92.312|7.688   |4.23       |224     |

* Prototype of `set_input_size()` added to vit and swin v1/v2 models to allow changing image size, patch size, window size after model creation.
* Improved support in swin for different size handling, in addition to `set_input_size`, `always_partition` and `strict_img_size` args have been added to `__init__` to allow more flexible input size constraints
* Fix out of order indices info for intermediate 'Getter' feature wrapper, check out or range indices for same.
* Add several `tiny` < .5M param models for testing that are actually trained on ImageNet-1k

|model                       |top1  |top1_err|top5  |top5_err|param_count|img_size|crop_pct|
|----------------------------|------|--------|------|--------|-----------|--------|--------|
|test_efficientnet.r160_in1k |47.156|52.844  |71.726|28.274  |0.36       |192     |1.0     |
|test_byobnet.r160_in1k      |46.698|53.302  |71.674|28.326  |0.46       |192     |1.0     |
|test_efficientnet.r160_in1k |46.426|53.574  |70.928|29.072  |0.36       |160     |0.875   |
|test_byobnet.r160_in1k      |45.378|54.622  |70.572|29.428  |0.46       |160     |0.875   |
|test_vit.r160_in1k|42.0  |58.0    |68.664|31.336  |0.37       |192     |1.0     |
|test_vit.r160_in1k|40.822|59.178  |67.212|32.788  |0.37       |160     |0.875   |

* Fix vit reg token init, thanks [Promisery](https://github.com/Promisery)
* Other misc fixes

### June 24, 2024
* 3 more MobileNetV4 hyrid weights with different MQA weight init scheme

| model                                                                                            |top1  |top1_err|top5  |top5_err|param_count|img_size|
|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------|
| [mobilenetv4_hybrid_large.ix_e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.ix_e600_r384_in1k) |84.356|15.644  |96.892 |3.108  |37.76      |448     |
| [mobilenetv4_hybrid_large.ix_e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.ix_e600_r384_in1k) |83.990|16.010  |96.702 |3.298  |37.76      |384     |
| [mobilenetv4_hybrid_medium.ix_e550_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r384_in1k)       |83.394|16.606  |96.760|3.240   |11.07      |448     |
| [mobilenetv4_hybrid_medium.ix_e550_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r384_in1k)       |82.968|17.032  |96.474|3.526   |11.07      |384     |
| [mobilenetv4_hybrid_medium.ix_e550_r256_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r256_in1k)       |82.492|17.508  |96.278|3.722   |11.07      |320     |
| [mobilenetv4_hybrid_medium.ix_e550_r256_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r256_in1k)       |81.446|18.554  |95.704|4.296   |11.07      |256     |
* florence2 weight loading in DaViT model

### June 12, 2024
* MobileNetV4 models and initial set of `timm` trained weights added:

| model                                                                                            |top1  |top1_err|top5  |top5_err|param_count|img_size|
|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------|
| [mobilenetv4_hybrid_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.e600_r384_in1k) |84.266|15.734  |96.936 |3.064  |37.76      |448     |
| [mobilenetv4_hybrid_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.e600_r384_in1k) |83.800|16.200  |96.770 |3.230  |37.76      |384     |
| [mobilenetv4_conv_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_large.e600_r384_in1k) |83.392|16.608  |96.622 |3.378  |32.59      |448     |
| [mobilenetv4_conv_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_large.e600_r384_in1k) |82.952|17.048  |96.266 |3.734  |32.59      |384     |
| [mobilenetv4_conv_large.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_large.e500_r256_in1k) |82.674|17.326  |96.31 |3.69    |32.59      |320     |
| [mobilenetv4_conv_large.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_large.e500_r256_in1k)                   |81.862|18.138  |95.69 |4.31    |32.59      |256     |
| [mobilenetv4_hybrid_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e500_r224_in1k)             |81.276|18.724  |95.742|4.258   |11.07      |256     |
| [mobilenetv4_conv_medium.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r256_in1k)                 |80.858|19.142  |95.768|4.232   |9.72       |320     |
| [mobilenetv4_hybrid_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e500_r224_in1k)             |80.442|19.558  |95.38 |4.62    |11.07      |224     |
| [mobilenetv4_conv_blur_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_blur_medium.e500_r224_in1k)       |80.142|19.858  |95.298|4.702   |9.72       |256     |
| [mobilenetv4_conv_medium.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r256_in1k)                 |79.928|20.072  |95.184|4.816   |9.72       |256     |
| [mobilenetv4_conv_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r224_in1k)                 |79.808|20.192  |95.186|4.814   |9.72       |256     |
| [mobilenetv4_conv_blur_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_blur_medium.e500_r224_in1k)       |79.438|20.562  |94.932|5.068   |9.72       |224     |
| [mobilenetv4_conv_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r224_in1k)                 |79.094|20.906  |94.77 |5.23    |9.72       |224     |
| [mobilenetv4_conv_small.e2400_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e2400_r224_in1k)                 |74.616|25.384  |92.072|7.928   |3.77       |256     |
| [mobilenetv4_conv_small.e1200_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e1200_r224_in1k)                 |74.292|25.708  |92.116|7.884   |3.77       |256     |
| [mobilenetv4_conv_small.e2400_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e2400_r224_in1k)                 |73.756|26.244  |91.422|8.578   |3.77       |224     |
| [mobilenetv4_conv_small.e1200_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e1200_r224_in1k)                 |73.454|26.546  |91.34 |8.66    |3.77       |224     |

* Apple MobileCLIP (https://arxiv.org/pdf/2311.17049, FastViT and ViT-B) image tower model support & weights added (part of OpenCLIP support).
* ViTamin (https://arxiv.org/abs/2404.02132) CLIP image tower model & weights added (part of OpenCLIP support).
* OpenAI CLIP Modified ResNet image tower modelling & weight support (via ByobNet). Refactor AttentionPool2d.

### May 14, 2024
* Support loading PaliGemma jax weights into SigLIP ViT models with average pooling.
* Add Hiera models from Meta (https://github.com/facebookresearch/hiera).
* Add `normalize=` flag for transforms, return non-normalized torch.Tensor with original dytpe (for `chug`)
* Version 1.0.3 release

### May 11, 2024
* `Searching for Better ViT Baselines (For the GPU Poor)` weights and vit variants released. Exploring model shapes between Tiny and Base.

| model | top1 | top5 | param_count | img_size |
| -------------------------------------------------- | ------ | ------ | ----------- | -------- |
| [vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k) | 86.202 | 97.874 | 64.11 | 256 |
| [vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k)  | 85.418 | 97.48 | 60.4 | 256 |
| [vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k)  | 84.322 | 96.812 | 63.95 | 256 |
| [vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k)  | 83.906 | 96.684 | 60.23 | 256 |
| [vit_base_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_base_patch16_rope_reg1_gap_256.sbb_in1k)  | 83.866 | 96.67 | 86.43 | 256 |
| [vit_medium_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_rope_reg1_gap_256.sbb_in1k)  | 83.81 | 96.824 | 38.74 | 256 |
| [vit_betwixt_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in1k)  | 83.706 | 96.616 | 60.4 | 256 |
| [vit_betwixt_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg1_gap_256.sbb_in1k)  | 83.628 | 96.544 | 60.4 | 256 |
| [vit_medium_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_reg4_gap_256.sbb_in1k)  | 83.47 | 96.622 | 38.88 | 256 |
| [vit_medium_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_reg1_gap_256.sbb_in1k)  | 83.462 | 96.548 | 38.88 | 256 |
| [vit_little_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_little_patch16_reg4_gap_256.sbb_in1k)  | 82.514 | 96.262 | 22.52 | 256 |
| [vit_wee_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_wee_patch16_reg1_gap_256.sbb_in1k)  | 80.256 | 95.360 | 13.42 | 256 |
| [vit_pwee_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_pwee_patch16_reg1_gap_256.sbb_in1k)  | 80.072 | 95.136 | 15.25 | 256 |
| [vit_mediumd_patch16_reg4_gap_256.sbb_in12k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb_in12k) | N/A | N/A | 64.11 | 256 |
| [vit_betwixt_patch16_reg4_gap_256.sbb_in12k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in12k)  | N/A | N/A | 60.4 | 256 |

* AttentionExtract helper added to extract attention maps from `timm` models. See example in https://github.com/huggingface/pytorch-image-models/discussions/1232#discussioncomment-9320949
* `forward_intermediates()` API refined and added to more models including some ConvNets that have other extraction methods.
* 1017 of 1047 model architectures support `features_only=True` feature extraction. Remaining 34 architectures can be supported but based on priority requests.
* Remove torch.jit.script annotated functions including old JIT activations. Conflict with dynamo and dynamo does a much better job when used.

### April 11, 2024
* Prepping for a long overdue 1.0 release, things have been stable for a while now.
* Significant feature that's been missing for a while, `features_only=True` support for ViT models with flat hidden states or non-std module layouts (so far covering  `'vit_*', 'twins_*', 'deit*', 'beit*', 'mvitv2*', 'eva*', 'samvit_*', 'flexivit*'`)
* Above feature support achieved through a new `forward_intermediates()` API that can be used with a feature wrapping module or directly.
```python
model = timm.create_model('vit_base_patch16_224')
final_feat, intermediates = model.forward_intermediates(input)
output = model.forward_head(final_feat)  # pooling + classifier head

print(final_feat.shape)
torch.Size([2, 197, 768])

for f in intermediates:
    print(f.shape)
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])

print(output.shape)
torch.Size([2, 1000])
```

```python
model = timm.create_model('eva02_base_patch16_clip_224', pretrained=True, img_size=512, features_only=True, out_indices=(-3, -2,))
output = model(torch.randn(2, 3, 512, 512))

for o in output:
    print(o.shape)
torch.Size([2, 768, 32, 32])
torch.Size([2, 768, 32, 32])
```
* TinyCLIP vision tower weights added, thx [Thien Tran](https://github.com/gau-nernst)

### Feb 19, 2024
* Next-ViT models added. Adapted from https://github.com/bytedance/Next-ViT
* HGNet and PP-HGNetV2 models added. Adapted from https://github.com/PaddlePaddle/PaddleClas by [SeeFun](https://github.com/seefun)
* Removed setup.py, moved to pyproject.toml based build supported by PDM
* Add updated model EMA impl using _for_each for less overhead
* Support device args in train script for non GPU devices
* Other misc fixes and small additions
* Min supported Python version increased to 3.8
* Release 0.9.16

### Jan 8, 2024
Datasets & transform refactoring
* HuggingFace streaming (iterable) dataset support (`--dataset hfids:org/dataset`)
* Webdataset wrapper tweaks for improved split info fetching, can auto fetch splits from supported HF hub webdataset
* Tested HF `datasets` and webdataset wrapper streaming from HF hub with recent `timm` ImageNet uploads to https://huggingface.co/timm
* Make input & target column/field keys consistent across datasets and pass via args
* Full monochrome support when using e:g: `--input-size 1 224 224` or `--in-chans 1`, sets PIL image conversion appropriately in dataset
* Improved several alternate crop & resize transforms (ResizeKeepRatio, RandomCropOrPad, etc) for use in PixParse document AI project
* Add SimCLR style color jitter prob along with grayscale and gaussian blur options to augmentations and args
* Allow train without validation set (`--val-split ''`) in train script
* Add `--bce-sum` (sum over class dim) and `--bce-pos-weight` (positive weighting) args for training as they're common BCE loss tweaks I was often hard coding

### Nov 23, 2023
* Added EfficientViT-Large models, thanks [SeeFun](https://github.com/seefun)
* Fix Python 3.7 compat, will be dropping support for it soon
* Other misc fixes
* Release 0.9.12

### Nov 20, 2023
* Added significant flexibility for Hugging Face Hub based timm models via `model_args` config entry. `model_args` will be passed as kwargs through to models on creation.
  * See example at https://huggingface.co/gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k/blob/main/config.json
  * Usage: https://github.com/huggingface/pytorch-image-models/discussions/2035
* Updated imagenet eval and test set csv files with latest models
* `vision_transformer.py` typing and doc cleanup by [Laureηt](https://github.com/Laurent2916)
* 0.9.11 release

### Nov 3, 2023
* [DFN (Data Filtering Networks)](https://huggingface.co/papers/2309.17425) and [MetaCLIP](https://huggingface.co/papers/2309.16671) ViT weights added
* DINOv2 'register' ViT model weights added (https://huggingface.co/papers/2309.16588, https://huggingface.co/papers/2304.07193)
* Add `quickgelu` ViT variants for OpenAI, DFN, MetaCLIP weights that use it (less efficient)
* Improved typing added to ResNet, MobileNet-v3 thanks to [Aryan](https://github.com/a-r-r-o-w)
* ImageNet-12k fine-tuned (from LAION-2B CLIP) `convnext_xxlarge`
* 0.9.9 release

### Oct 20, 2023
* [SigLIP](https://huggingface.co/papers/2303.15343) image tower weights supported in `vision_transformer.py`.
  * Great potential for fine-tune and downstream feature use.
* Experimental 'register' support in vit models as per [Vision Transformers Need Registers](https://huggingface.co/papers/2309.16588)
* Updated RepViT with new weight release. Thanks [wangao](https://github.com/jameslahm)
* Add patch resizing support (on pretrained weight load) to Swin models
* 0.9.8 release pending

### Sep 1, 2023
* TinyViT added by [SeeFun](https://github.com/seefun)
* Fix EfficientViT (MIT) to use torch.autocast so it works back to PT 1.10
* 0.9.7 release

### Aug 28, 2023
* Add dynamic img size support to models in `vision_transformer.py`, `vision_transformer_hybrid.py`, `deit.py`, and `eva.py` w/o breaking backward compat.
  * Add `dynamic_img_size=True` to args at model creation time to allow changing the grid size (interpolate abs and/or ROPE pos embed each forward pass).
  * Add `dynamic_img_pad=True` to allow image sizes that aren't divisible by patch size (pad bottom right to patch size each forward pass).
  * Enabling either dynamic mode will break FX tracing unless PatchEmbed module added as leaf.
  * Existing method of resizing position embedding by passing different `img_size` (interpolate pretrained embed weights once) on creation still works.
  * Existing method of changing `patch_size` (resize pretrained patch_embed weights once) on creation still works.
  * Example validation cmd `python validate.py --data-dir /imagenet --model vit_base_patch16_224 --amp --amp-dtype bfloat16 --img-size 255 --crop-pct 1.0 --model-kwargs dynamic_img_size=True dyamic_img_pad=True`

### Aug 25, 2023
* Many new models since last release
  * FastViT - https://arxiv.org/abs/2303.14189
  * MobileOne - https://arxiv.org/abs/2206.04040
  * InceptionNeXt - https://arxiv.org/abs/2303.16900
  * RepGhostNet - https://arxiv.org/abs/2211.06088 (thanks https://github.com/ChengpengChen)
  * GhostNetV2 - https://arxiv.org/abs/2211.12905 (thanks https://github.com/yehuitang)
  * EfficientViT (MSRA) - https://arxiv.org/abs/2305.07027 (thanks https://github.com/seefun)
  * EfficientViT (MIT) - https://arxiv.org/abs/2205.14756 (thanks https://github.com/seefun)
* Add `--reparam` arg to `benchmark.py`, `onnx_export.py`, and `validate.py` to trigger layer reparameterization / fusion for models with any one of `reparameterize()`, `switch_to_deploy()` or `fuse()`
  * Including FastViT, MobileOne, RepGhostNet, EfficientViT (MSRA), RepViT, RepVGG, and LeViT
* Preparing 0.9.6 'back to school' release

### Aug 11, 2023
* Swin, MaxViT, CoAtNet, and BEiT models support resizing of image/window size on creation with adaptation of pretrained weights
* Example validation cmd to test w/ non-square resize `python validate.py --data-dir /imagenet --model swin_base_patch4_window7_224.ms_in22k_ft_in1k --amp --amp-dtype bfloat16 --input-size 3 256 320 --model-kwargs window_size=8,10 img_size=256,320`

### Aug 3, 2023
* Add GluonCV weights for HRNet w18_small and w18_small_v2. Converted by [SeeFun](https://github.com/seefun)
* Fix `selecsls*` model naming regression
* Patch and position embedding for ViT/EVA works for bfloat16/float16 weights on load (or activations for on-the-fly resize)
* v0.9.5 release prep

### July 27, 2023
* Added timm trained `seresnextaa201d_32x8d.sw_in12k_ft_in1k_384` weights (and `.sw_in12k` pretrain) with 87.3% top-1 on ImageNet-1k, best ImageNet ResNet family model I'm aware of.
* RepViT model and weights (https://arxiv.org/abs/2307.09283) added by [wangao](https://github.com/jameslahm)
* I-JEPA ViT feature weights (no classifier) added by [SeeFun](https://github.com/seefun)
* SAM-ViT (segment anything) feature weights (no classifier) added by [SeeFun](https://github.com/seefun)
* Add support for alternative feat extraction methods and -ve indices to EfficientNet
* Add NAdamW optimizer
* Misc fixes

### May 11, 2023
* `timm` 0.9 released, transition from 0.8.xdev releases

### May 10, 2023
* Hugging Face Hub downloading is now default, 1132 models on https://huggingface.co/timm, 1163 weights in `timm`
* DINOv2 vit feature backbone weights added thanks to [Leng Yue](https://github.com/leng-yue)
* FB MAE vit feature backbone weights added
* OpenCLIP DataComp-XL L/14 feat backbone weights added
* MetaFormer (poolformer-v2, caformer, convformer, updated poolformer (v1)) w/ weights added by [Fredo Guan](https://github.com/fffffgggg54)
* Experimental `get_intermediate_layers` function on vit/deit models for grabbing hidden states (inspired by DINO impl). This is WIP and may change significantly... feedback welcome.
* Model creation throws error if `pretrained=True` and no weights exist (instead of continuing with random initialization)
* Fix regression with inception / nasnet TF sourced weights with 1001 classes in original classifiers
* bitsandbytes (https://github.com/TimDettmers/bitsandbytes) optimizers added to factory, use `bnb` prefix, ie `bnbadam8bit`
* Misc cleanup and fixes
* Final testing before switching to a 0.9 and bringing `timm` out of pre-release state

### April 27, 2023
* 97% of `timm` models uploaded to HF Hub and almost all updated to support multi-weight pretrained configs
* Minor cleanup and refactoring of another batch of models as multi-weight added. More fused_attn (F.sdpa) and features_only support, and torchscript fixes.

### April 21, 2023
* Gradient accumulation support added to train script and tested (`--grad-accum-steps`), thanks [Taeksang Kim](https://github.com/voidbag)
* More weights on HF Hub (cspnet, cait, volo, xcit, tresnet, hardcorenas, densenet, dpn, vovnet, xception_aligned)
* Added `--head-init-scale` and `--head-init-bias` to train.py to scale classiifer head and set fixed bias for fine-tune
* Remove all InplaceABN (`inplace_abn`) use, replaced use in tresnet with standard BatchNorm (modified weights accordingly). 

### April 12, 2023
* Add ONNX export script, validate script, helpers that I've had kicking around for along time. Tweak 'same' padding for better export w/ recent ONNX + pytorch.
* Refactor dropout args for vit and vit-like models, separate drop_rate into `drop_rate` (classifier dropout), `proj_drop_rate` (block mlp / out projections), `pos_drop_rate` (position embedding drop), `attn_drop_rate` (attention dropout). Also add patch dropout (FLIP) to vit and eva models.
* fused F.scaled_dot_product_attention support to more vit models, add env var (TIMM_FUSED_ATTN) to control, and config interface to enable/disable
* Add EVA-CLIP backbones w/ image tower weights, all the way up to 4B param 'enormous' model, and 336x336 OpenAI ViT mode that was missed.

### April 5, 2023
* ALL ResNet models pushed to Hugging Face Hub with multi-weight support
  * All past `timm` trained weights added with recipe based tags to differentiate
  * All ResNet strikes back A1/A2/A3 (seed 0) and R50 example B/C1/C2/D weights available
  * Add torchvision v2 recipe weights to existing torchvision originals
  * See comparison table in https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k_288#model-comparison
* New ImageNet-12k + ImageNet-1k fine-tunes available for a few anti-aliased ResNet models
  * `resnetaa50d.sw_in12k_ft_in1k` - 81.7 @ 224, 82.6 @ 288
  * `resnetaa101d.sw_in12k_ft_in1k` - 83.5 @ 224, 84.1 @ 288
  * `seresnextaa101d_32x8d.sw_in12k_ft_in1k` - 86.0 @ 224, 86.5 @ 288 
  * `seresnextaa101d_32x8d.sw_in12k_ft_in1k_288` - 86.5 @ 288, 86.7 @ 320

### March 31, 2023
* Add first ConvNext-XXLarge CLIP -> IN-1k fine-tune and IN-12k intermediate fine-tunes for convnext-base/large CLIP models.

| model                                                                                                                |top1  |top5  |img_size|param_count|gmacs |macts |
|----------------------------------------------------------------------------------------------------------------------|------|------|--------|-----------|------|------|
| [convnext_xxlarge.clip_laion2b_soup_ft_in1k](https://huggingface.co/timm/convnext_xxlarge.clip_laion2b_soup_ft_in1k) |88.612|98.704|256     |846.47     |198.09|124.45|
| convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384                                                               |88.312|98.578|384     |200.13     |101.11|126.74|
| convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320                                                               |87.968|98.47 |320     |200.13     |70.21 |88.02 |
| convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384                                                                  |87.138|98.212|384     |88.59      |45.21 |84.49 |
| convnext_base.clip_laion2b_augreg_ft_in12k_in1k                                                                      |86.344|97.97 |256     |88.59      |20.09 |37.55 |

* Add EVA-02 MIM pretrained and fine-tuned weights, push to HF hub and update model cards for all EVA models. First model over 90% top-1 (99% top-5)! Check out the original code & weights at https://github.com/baaivision/EVA for more details on their work blending MIM, CLIP w/ many model, dataset, and train recipe tweaks.

| model                                              |top1  |top5  |param_count|img_size|
|----------------------------------------------------|------|------|-----------|--------|
| [eva02_large_patch14_448.mim_m38m_ft_in22k_in1k](https://huggingface.co/timm/eva02_large_patch14_448.mim_m38m_ft_in1k) |90.054|99.042|305.08     |448     |
| eva02_large_patch14_448.mim_in22k_ft_in22k_in1k    |89.946|99.01 |305.08     |448     |
| eva_giant_patch14_560.m30m_ft_in22k_in1k           |89.792|98.992|1014.45    |560     |
| eva02_large_patch14_448.mim_in22k_ft_in1k          |89.626|98.954|305.08     |448     |
| eva02_large_patch14_448.mim_m38m_ft_in1k           |89.57 |98.918|305.08     |448     |
| eva_giant_patch14_336.m30m_ft_in22k_in1k           |89.56 |98.956|1013.01    |336     |
| eva_giant_patch14_336.clip_ft_in1k                 |89.466|98.82 |1013.01    |336     |
| eva_large_patch14_336.in22k_ft_in22k_in1k          |89.214|98.854|304.53     |336     |
| eva_giant_patch14_224.clip_ft_in1k                 |88.882|98.678|1012.56    |224     |
| eva02_base_patch14_448.mim_in22k_ft_in22k_in1k     |88.692|98.722|87.12      |448     |
| eva_large_patch14_336.in22k_ft_in1k                |88.652|98.722|304.53     |336     |
| eva_large_patch14_196.in22k_ft_in22k_in1k          |88.592|98.656|304.14     |196     |
| eva02_base_patch14_448.mim_in22k_ft_in1k           |88.23 |98.564|87.12      |448     |
| eva_large_patch14_196.in22k_ft_in1k                |87.934|98.504|304.14     |196     |
| eva02_small_patch14_336.mim_in22k_ft_in1k          |85.74 |97.614|22.13      |336     |
| eva02_tiny_patch14_336.mim_in22k_ft_in1k           |80.658|95.524|5.76       |336     |

* Multi-weight and HF hub for DeiT and MLP-Mixer based models

### March 22, 2023
* More weights pushed to HF hub along with multi-weight support, including: `regnet.py`, `rexnet.py`, `byobnet.py`, `resnetv2.py`, `swin_transformer.py`, `swin_transformer_v2.py`, `swin_transformer_v2_cr.py`
* Swin Transformer models support feature extraction (NCHW feat maps for `swinv2_cr_*`, and NHWC for all others) and spatial embedding outputs.
* FocalNet (from https://github.com/microsoft/FocalNet) models and weights added with significant refactoring, feature extraction, no fixed resolution / sizing constraint
* RegNet weights increased with HF hub push, SWAG, SEER, and torchvision v2 weights. SEER is pretty poor wrt to performance for model size, but possibly useful.
* More ImageNet-12k pretrained and 1k fine-tuned `timm` weights:
  * `rexnetr_200.sw_in12k_ft_in1k` - 82.6 @ 224, 83.2 @ 288
  * `rexnetr_300.sw_in12k_ft_in1k` - 84.0 @ 224, 84.5 @ 288
  * `regnety_120.sw_in12k_ft_in1k` - 85.0 @ 224, 85.4 @ 288
  * `regnety_160.lion_in12k_ft_in1k` - 85.6 @ 224, 86.0 @ 288
  * `regnety_160.sw_in12k_ft_in1k` - 85.6 @ 224, 86.0 @ 288  (compare to SWAG PT + 1k FT this is same BUT much lower res, blows SEER FT away)
* Model name deprecation + remapping functionality added (a milestone for bringing 0.8.x out of pre-release). Mappings being added...
* Minor bug fixes and improvements.

### Feb 26, 2023
* Add ConvNeXt-XXLarge CLIP pretrained image tower weights for fine-tune & features (fine-tuning TBD) -- see [model card](https://huggingface.co/laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup)
* Update `convnext_xxlarge` default LayerNorm eps to 1e-5 (for CLIP weights, improved stability)
* 0.8.15dev0

### Feb 20, 2023
* Add 320x320 `convnext_large_mlp.clip_laion2b_ft_320` and `convnext_large_mlp.clip_laion2b_ft_soup_320` CLIP image tower weights for features & fine-tune
* 0.8.13dev0 pypi release for latest changes w/ move to huggingface org

### Feb 16, 2023
* `safetensor` checkpoint support added
* Add ideas from 'Scaling Vision Transformers to 22 B. Params' (https://arxiv.org/abs/2302.05442) -- qk norm, RmsNorm, parallel block
* Add F.scaled_dot_product_attention support (PyTorch 2.0 only) to `vit_*`, `vit_relpos*`, `coatnet` / `maxxvit` (to start)
* Lion optimizer (w/ multi-tensor option) added (https://arxiv.org/abs/2302.06675)
* gradient checkpointing works with `features_only=True`

### Feb 7, 2023
* New inference benchmark numbers added in [results](results/) folder.
* Add convnext LAION CLIP trained weights and initial set of in1k fine-tunes
  * `convnext_base.clip_laion2b_augreg_ft_in1k` - 86.2% @ 256x256
  * `convnext_base.clip_laiona_augreg_ft_in1k_384` - 86.5% @ 384x384
  * `convnext_large_mlp.clip_laion2b_augreg_ft_in1k` - 87.3% @ 256x256
  * `convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384` - 87.9% @ 384x384
* Add DaViT models. Supports `features_only=True`. Adapted from https://github.com/dingmyu/davit by [Fredo](https://github.com/fffffgggg54).
* Use a common NormMlpClassifierHead across MaxViT, ConvNeXt, DaViT
* Add EfficientFormer-V2 model, update EfficientFormer, and refactor LeViT (closely related architectures). Weights on HF hub.
  * New EfficientFormer-V2 arch, significant refactor from original at (https://github.com/snap-research/EfficientFormer). Supports `features_only=True`.
  * Minor updates to EfficientFormer.
  * Refactor LeViT models to stages, add `features_only=True` support to new `conv` variants, weight remap required.
* Move ImageNet meta-data (synsets, indices) from `/results` to [`timm/data/_info`](timm/data/_info/).
* Add ImageNetInfo / DatasetInfo classes to provide labelling for various ImageNet classifier layouts in `timm`
  * Update `inference.py` to use, try: `python inference.py --data-dir /folder/to/images --model convnext_small.in12k --label-type detail --topk 5`
* Ready for 0.8.10 pypi pre-release (final testing).

### Jan 20, 2023
* Add two convnext 12k -> 1k fine-tunes at 384x384
  * `convnext_tiny.in12k_ft_in1k_384` - 85.1 @ 384
  * `convnext_small.in12k_ft_in1k_384` - 86.2 @ 384

* Push all MaxxViT weights to HF hub, and add new ImageNet-12k -> 1k fine-tunes for `rw` base MaxViT and CoAtNet 1/2 models

|model                                                                                                                   |top1 |top5 |samples / sec  |Params (M)     |GMAC  |Act (M)|
|------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:|
|[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k)                    |88.53|98.64|          21.76|         475.77|534.14|1413.22|
|[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k)                    |88.32|98.54|          42.53|         475.32|292.78| 668.76|
|[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k)                        |88.20|98.53|          50.87|         119.88|138.02| 703.99|
|[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k)                      |88.04|98.40|          36.42|         212.33|244.75| 942.15|
|[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k)                      |87.98|98.56|          71.75|         212.03|132.55| 445.84|
|[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k)                        |87.92|98.54|         104.71|         119.65| 73.80| 332.90|
|[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k)        |87.81|98.37|         106.55|         116.14| 70.97| 318.95|
|[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k)  |87.47|98.37|         149.49|         116.09| 72.98| 213.74|
|[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k)            |87.39|98.31|         160.80|          73.88| 47.69| 209.43|
|[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k)        |86.89|98.02|         375.86|         116.14| 23.15|  92.64|
|[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k)  |86.64|98.02|         501.03|         116.09| 24.20|  62.77|
|[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k)                                          |86.60|97.92|          50.75|         119.88|138.02| 703.99|
|[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k)                      |86.57|97.89|         631.88|          73.87| 15.09|  49.22|
|[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k)                                        |86.52|97.88|          36.04|         212.33|244.75| 942.15|
|[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k)            |86.49|97.90|         620.58|          73.88| 15.18|  54.78|
|[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k)                                          |86.29|97.80|         101.09|         119.65| 73.80| 332.90|
|[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k)                                        |86.23|97.69|          70.56|         212.03|132.55| 445.84|
|[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k)                                        |86.10|97.76|          88.63|          69.13| 67.26| 383.77|
|[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k)                                          |85.67|97.58|         144.25|          31.05| 33.49| 257.59|
|[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k)                                        |85.54|97.46|         188.35|          69.02| 35.87| 183.65|
|[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k)                                          |85.11|97.38|         293.46|          30.98| 17.53| 123.42|
|[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k)                                        |84.93|96.97|         247.71|         211.79| 43.68| 127.35|
|[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k)          |84.90|96.96|        1025.45|          41.72|  8.11|  40.13|
|[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k)                                          |84.85|96.99|         358.25|         119.47| 24.04|  95.01|
|[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k)                      |84.63|97.06|         575.53|          66.01| 14.67|  58.38|
|[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k)                              |84.61|96.74|         625.81|          73.88| 15.18|  54.78|
|[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k)                        |84.49|96.76|         693.82|          64.90| 10.75|  49.30|
|[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k)                                        |84.43|96.83|         647.96|          68.93| 11.66|  53.17|
|[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k)                          |84.23|96.78|         807.21|          29.15|  6.77|  46.92|
|[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k)                                        |83.62|96.38|         989.59|          41.72|  8.04|  34.60|
|[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k)                                    |83.50|96.50|        1100.53|          29.06|  5.11|  33.11|
|[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k)                                          |83.41|96.59|        1004.94|          30.92|  5.60|  35.78|
|[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k)                              |83.36|96.45|        1093.03|          41.69|  7.85|  35.47|
|[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k)                              |83.11|96.33|        1276.88|          23.70|  6.26|  23.05|
|[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k)                        |83.03|96.34|        1341.24|          16.78|  4.37|  26.05|
|[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k)                          |82.96|96.26|        1283.24|          15.50|  4.47|  31.92|
|[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k)                                    |82.93|96.23|        1218.17|          15.45|  4.46|  30.28|
|[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k)                                  |82.39|96.19|        1600.14|          27.44|  4.67|  22.04|
|[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k)                                        |82.39|95.84|        1831.21|          27.44|  4.43|  18.73|
|[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k)                        |82.05|95.87|        2109.09|          15.15|  2.62|  20.34|
|[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k)                                |81.95|95.92|        2525.52|          14.70|  2.47|  12.80|
|[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k)                                  |81.70|95.64|        2344.52|          15.14|  2.41|  15.41|
|[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k)                          |80.53|95.21|        1594.71|           7.52|  1.85|  24.86|

### Jan 11, 2023
* Update ConvNeXt ImageNet-12k pretrain series w/ two new fine-tuned weights (and pre FT `.in12k` tags)
  * `convnext_nano.in12k_ft_in1k` - 82.3 @ 224, 82.9 @ 288  (previously released)
  * `convnext_tiny.in12k_ft_in1k` - 84.2 @ 224, 84.5 @ 288
  * `convnext_small.in12k_ft_in1k` - 85.2 @ 224, 85.3 @ 288

### Jan 6, 2023
* Finally got around to adding `--model-kwargs` and `--opt-kwargs` to scripts to pass through rare args directly to model classes from cmd line
  * `train.py --data-dir /imagenet --model resnet50 --amp --model-kwargs output_stride=16 act_layer=silu`
  * `train.py --data-dir /imagenet --model vit_base_patch16_clip_224 --img-size 240 --amp --model-kwargs img_size=240 patch_size=12`
* Cleanup some popular models to better support arg passthrough / merge with model configs, more to go.

### Jan 5, 2023
* ConvNeXt-V2 models and weights added to existing `convnext.py`
  * Paper: [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](http://arxiv.org/abs/2301.00808)
  * Reference impl: https://github.com/facebookresearch/ConvNeXt-V2 (NOTE: weights currently CC-BY-NC)
@dataclass
### Dec 23, 2022 🎄☃
* Add FlexiViT models and weights from https://github.com/google-research/big_vision (check out paper at https://arxiv.org/abs/2212.08013)
  * NOTE currently resizing is static on model creation, on-the-fly dynamic / train patch size sampling is a WIP
* Many more models updated to multi-weight and downloadable via HF hub now (convnext, efficientnet, mobilenet, vision_transformer*, beit)
* More model pretrained tag and adjustments, some model names changed (working on deprecation translations, consider main branch DEV branch right now, use 0.6.x for stable use)
* More ImageNet-12k (subset of 22k) pretrain models popping up:
  * `efficientnet_b5.in12k_ft_in1k` - 85.9 @ 448x448
  * `vit_medium_patch16_gap_384.in12k_ft_in1k` - 85.5 @ 384x384
  * `vit_medium_patch16_gap_256.in12k_ft_in1k` - 84.5 @ 256x256
  * `convnext_nano.in12k_ft_in1k` - 82.9 @ 288x288

### Dec 8, 2022
* Add 'EVA l' to `vision_transformer.py`, MAE style ViT-L/14 MIM pretrain w/ EVA-CLIP targets, FT on ImageNet-1k (w/ ImageNet-22k intermediate for some)
  * original source: https://github.com/baaivision/EVA

| model                                     | top1 | param_count |  gmac | macts | hub                                     |
|:------------------------------------------|-----:|------------:|------:|------:|:----------------------------------------|
| eva_large_patch14_336.in22k_ft_in22k_in1k | 89.2 |       304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_336.in22k_ft_in1k       | 88.7 |       304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_196.in22k_ft_in22k_in1k | 88.6 |       304.1 |  61.6 |  63.5 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_196.in22k_ft_in1k       | 87.9 |       304.1 |  61.6 |  63.5 | [link](https://huggingface.co/BAAI/EVA) |

### Dec 6, 2022
* Add 'EVA g', BEiT style ViT-g/14 model weights w/ both MIM pretrain and CLIP pretrain to `beit.py`.
  * original source: https://github.com/baaivision/EVA
  * paper: https://arxiv.org/abs/2211.07636

| model                                    |   top1 |   param_count |   gmac |   macts | hub                                     |
|:-----------------------------------------|-------:|--------------:|-------:|--------:|:----------------------------------------|
| eva_giant_patch14_560.m30m_ft_in22k_in1k |   89.8 |        1014.4 | 1906.8 |  2577.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_336.m30m_ft_in22k_in1k |   89.6 |        1013   |  620.6 |   550.7 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_336.clip_ft_in1k       |   89.4 |        1013   |  620.6 |   550.7 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_224.clip_ft_in1k       |   89.1 |        1012.6 |  267.2 |   192.6 | [link](https://huggingface.co/BAAI/EVA) |

### Dec 5, 2022

* Pre-release (`0.8.0dev0`) of multi-weight support (`model_arch.pretrained_tag`). Install with `pip install --pre timm`
  * vision_transformer, maxvit, convnext are the first three model impl w/ support
  * model names are changing with this (previous _21k, etc. fn will merge), still sorting out deprecation handling
  * bugs are likely, but I need feedback so please try it out
  * if stability is needed, please use 0.6.x pypi releases or clone from [0.6.x branch](https://github.com/rwightman/pytorch-image-models/tree/0.6.x)
* Support for PyTorch 2.0 compile is added in train/validate/inference/benchmark, use `--torchcompile` argument
* Inference script allows more control over output, select k for top-class index + prob json, csv or parquet output
* Add a full set of fine-tuned CLIP image tower weights from both LAION-2B and original OpenAI CLIP models

| model                                            |   top1 |   param_count |   gmac |   macts | hub                                                                                  |
|:-------------------------------------------------|-------:|--------------:|-------:|--------:|:-------------------------------------------------------------------------------------|
| vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k  |   88.6 |         632.5 |  391   |   407.5 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k)  |
| vit_large_patch14_clip_336.openai_ft_in12k_in1k  |   88.3 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.openai_ft_in12k_in1k)  |
| vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k  |   88.2 |         632   |  167.4 |   139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k)  |
| vit_large_patch14_clip_336.laion2b_ft_in12k_in1k |   88.2 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k) |
| vit_large_patch14_clip_224.openai_ft_in12k_in1k  |   88.2 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k)  |
| vit_large_patch14_clip_224.laion2b_ft_in12k_in1k |   87.9 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in12k_in1k) |
| vit_large_patch14_clip_224.openai_ft_in1k        |   87.9 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in1k)        |
| vit_large_patch14_clip_336.laion2b_ft_in1k       |   87.9 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in1k)       |
| vit_huge_patch14_clip_224.laion2b_ft_in1k        |   87.6 |         632   |  167.4 |   139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in1k)        |
| vit_large_patch14_clip_224.laion2b_ft_in1k       |   87.3 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in1k)       |
| vit_base_patch16_clip_384.laion2b_ft_in12k_in1k  |   87.2 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_384.openai_ft_in12k_in1k   |   87   |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in12k_in1k)   |
| vit_base_patch16_clip_384.laion2b_ft_in1k        |   86.6 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in1k)        |
| vit_base_patch16_clip_384.openai_ft_in1k         |   86.2 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in1k)         |
| vit_base_patch16_clip_224.laion2b_ft_in12k_in1k  |   86.2 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.openai_ft_in12k_in1k   |   85.9 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in12k_in1k)   |
| vit_base_patch32_clip_448.laion2b_ft_in12k_in1k  |   85.8 |          88.3 |   17.9 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch32_clip_448.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.laion2b_ft_in1k        |   85.5 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in1k)        |
| vit_base_patch32_clip_384.laion2b_ft_in12k_in1k  |   85.4 |          88.3 |   13.1 |    16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.openai_ft_in1k         |   85.3 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in1k)         |
| vit_base_patch32_clip_384.openai_ft_in12k_in1k   |   85.2 |          88.3 |   13.1 |    16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.openai_ft_in12k_in1k)   |
| vit_base_patch32_clip_224.laion2b_ft_in12k_in1k  |   83.3 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k)  |
| vit_base_patch32_clip_224.laion2b_ft_in1k        |   82.6 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in1k)        |
| vit_base_patch32_clip_224.openai_ft_in1k         |   81.9 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.openai_ft_in1k)         |

* Port of MaxViT Tensorflow Weights from official impl at https://github.com/google-research/maxvit
  * There was larger than expected drops for the upscaled 384/512 in21k fine-tune weights, possible detail missing, but the 21k FT did seem sensitive to small preprocessing

| model                              |   top1 |   param_count |   gmac |   macts | hub                                                                    |
|:-----------------------------------|-------:|--------------:|-------:|--------:|:-----------------------------------------------------------------------|
| maxvit_xlarge_tf_512.in21k_ft_in1k |   88.5 |         475.8 |  534.1 |  1413.2 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |
| maxvit_xlarge_tf_384.in21k_ft_in1k |   88.3 |         475.3 |  292.8 |   668.8 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |
| maxvit_base_tf_512.in21k_ft_in1k   |   88.2 |         119.9 |  138   |   704   | [link](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k)   |
| maxvit_large_tf_512.in21k_ft_in1k  |   88   |         212.3 |  244.8 |   942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k)  |
| maxvit_large_tf_384.in21k_ft_in1k  |   88   |         212   |  132.6 |   445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k)  |
| maxvit_base_tf_384.in21k_ft_in1k   |   87.9 |         119.6 |   73.8 |   332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k)   |
| maxvit_base_tf_512.in1k            |   86.6 |         119.9 |  138   |   704   | [link](https://huggingface.co/timm/maxvit_base_tf_512.in1k)            |
| maxvit_large_tf_512.in1k           |   86.5 |         212.3 |  244.8 |   942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in1k)           |
| maxvit_base_tf_384.in1k            |   86.3 |         119.6 |   73.8 |   332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in1k)            |
| maxvit_large_tf_384.in1k           |   86.2 |         212   |  132.6 |   445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in1k)           |
| maxvit_small_tf_512.in1k           |   86.1 |          69.1 |   67.3 |   383.8 | [link](https://huggingface.co/timm/maxvit_small_tf_512.in1k)           |
| maxvit_tiny_tf_512.in1k            |   85.7 |          31   |   33.5 |   257.6 | [link](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k)            |
| maxvit_small_tf_384.in1k           |   85.5 |          69   |   35.9 |   183.6 | [link](https://huggingface.co/timm/maxvit_small_tf_384.in1k)           |
| maxvit_tiny_tf_384.in1k            |   85.1 |          31   |   17.5 |   123.4 | [link](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k)            |
| maxvit_large_tf_224.in1k           |   84.9 |         211.8 |   43.7 |   127.4 | [link](https://huggingface.co/timm/maxvit_large_tf_224.in1k)           |
| maxvit_base_tf_224.in1k            |   84.9 |         119.5 |   24   |    95   | [link](https://huggingface.co/timm/maxvit_base_tf_224.in1k)            |
| maxvit_small_tf_224.in1k           |   84.4 |          68.9 |   11.7 |    53.2 | [link](https://huggingface.co/timm/maxvit_small_tf_224.in1k)           |
| maxvit_tiny_tf_224.in1k            |   83.4 |          30.9 |    5.6 |    35.8 | [link](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k)            |

### Oct 15, 2022
* Train and validation script enhancements
* Non-GPU (ie CPU) device support
* SLURM compatibility for train script
* HF datasets support (via ReaderHfds)
* TFDS/WDS dataloading improvements (sample padding/wrap for distributed use fixed wrt sample count estimate)
* in_chans !=3 support for scripts / loader
* Adan optimizer
* Can enable per-step LR scheduling via args
* Dataset 'parsers' renamed to 'readers', more descriptive of purpose
* AMP args changed, APEX via `--amp-impl apex`, bfloat16 supportedf via `--amp-dtype bfloat16`
* main branch switched to 0.7.x version, 0.6x forked for stable release of weight only adds
* master -> main branch rename

### Oct 10, 2022
* More weights in `maxxvit` series, incl first ConvNeXt block based `coatnext` and `maxxvit` experiments:
  * `coatnext_nano_rw_224` - 82.0 @ 224 (G) -- (uses ConvNeXt conv block, no BatchNorm)
  * `maxxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.7 @ 320  (G) (uses ConvNeXt conv block, no BN)
  * `maxvit_rmlp_small_rw_224` - 84.5 @ 224, 85.1 @ 320 (G)
  * `maxxvit_rmlp_small_rw_256` - 84.6 @ 256, 84.9 @ 288 (G) -- could be trained better, hparams need tuning (uses ConvNeXt block, no BN)
  * `coatnet_rmlp_2_rw_224` - 84.6 @ 224, 85 @ 320  (T)
  * NOTE: official MaxVit weights (in1k) have been released at https://github.com/google-research/maxvit -- some extra work is needed to port and adapt since my impl was created independently of theirs and has a few small differences + the whole TF same padding fun.

### Sept 23, 2022
* LAION-2B CLIP image towers supported as pretrained backbones for fine-tune or features (no classifier)
  * vit_base_patch32_224_clip_laion2b
  * vit_large_patch14_224_clip_laion2b
  * vit_huge_patch14_224_clip_laion2b
  * vit_giant_patch14_224_clip_laion2b

### Sept 7, 2022
* Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) home now exists, look for more here in the future
* Add BEiT-v2 weights for base and large 224x224 models from https://github.com/microsoft/unilm/tree/master/beit2
* Add more weights in `maxxvit` series incl a `pico` (7.5M params, 1.9 GMACs), two `tiny` variants:
  * `maxvit_rmlp_pico_rw_256` - 80.5 @ 256, 81.3 @ 320  (T)
  * `maxvit_tiny_rw_224` - 83.5 @ 224 (G)
  * `maxvit_rmlp_tiny_rw_256` - 84.2 @ 256, 84.8 @ 320 (T)

### Aug 29, 2022
* MaxVit window size scales with img_size by default. Add new RelPosMlp MaxViT weight that leverages this:
  * `maxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.6 @ 320  (T)

### Aug 26, 2022
* CoAtNet (https://arxiv.org/abs/2106.04803) and MaxVit (https://arxiv.org/abs/2204.01697) `timm` original models
  * both found in [`maxxvit.py`](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/maxxvit.py) model def, contains numerous experiments outside scope of original papers
  * an unfinished Tensorflow version from MaxVit authors can be found https://github.com/google-research/maxvit
* Initial CoAtNet and MaxVit timm pretrained weights (working on more):
  * `coatnet_nano_rw_224` - 81.7 @ 224  (T)
  * `coatnet_rmlp_nano_rw_224` - 82.0 @ 224, 82.8 @ 320 (T)
  * `coatnet_0_rw_224` - 82.4  (T)  -- NOTE timm '0' coatnets have 2 more 3rd stage blocks
  * `coatnet_bn_0_rw_224` - 82.4  (T)
  * `maxvit_nano_rw_256` - 82.9 @ 256  (T)
  * `coatnet_rmlp_1_rw_224` - 83.4 @ 224, 84 @ 320  (T)
  * `coatnet_1_rw_224` - 83.6 @ 224 (G)
  * (T) = TPU trained with `bits_and_tpu` branch training code, (G) = GPU trained
* GCVit (weights adapted from https://github.com/NVlabs/GCVit, code 100% `timm` re-write for license purposes)
* MViT-V2 (multi-scale vit, adapted from https://github.com/facebookresearch/mvit)
* EfficientFormer (adapted from https://github.com/snap-research/EfficientFormer)
* PyramidVisionTransformer-V2 (adapted from https://github.com/whai362/PVT)
* 'Fast Norm' support for LayerNorm and GroupNorm that avoids float32 upcast w/ AMP (uses APEX LN if available for further boost)

### Aug 15, 2022
* ConvNeXt atto weights added
  * `convnext_atto` - 75.7 @ 224, 77.0 @ 288
  * `convnext_atto_ols` - 75.9  @ 224, 77.2 @ 288

### Aug 5, 2022
* More custom ConvNeXt smaller model defs with weights
  * `convnext_femto` - 77.5 @ 224, 78.7 @ 288
  * `convnext_femto_ols` - 77.9  @ 224, 78.9 @ 288
  * `convnext_pico` - 79.5 @ 224, 80.4 @ 288
  * `convnext_pico_ols` - 79.5 @ 224, 80.5 @ 288
  * `convnext_nano_ols` - 80.9 @ 224, 81.6 @ 288
* Updated EdgeNeXt to improve ONNX export, add new base variant and weights from original (https://github.com/mmaaz60/EdgeNeXt)

### July 28, 2022
* Add freshly minted DeiT-III Medium (width=512, depth=12, num_heads=8) model weights. Thanks [Hugo Touvron](https://github.com/TouvronHugo)!

### July 27, 2022
* All runtime benchmark and validation result csv files are finally up-to-date!
* A few more weights & model defs added:
  * `darknetaa53` -  79.8 @ 256, 80.5 @ 288
  * `convnext_nano` - 80.8 @ 224, 81.5 @ 288
  * `cs3sedarknet_l` - 81.2 @ 256, 81.8 @ 288
  * `cs3darknet_x` - 81.8 @ 256, 82.2 @ 288
  * `cs3sedarknet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3edgenet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3se_edgenet_x` - 82.8 @ 256, 83.5 @ 320
* `cs3*` weights above all trained on TPU w/ `bits_and_tpu` branch. Thanks to TRC program!
* Add output_stride=8 and 16 support to ConvNeXt (dilation)
* deit3 models not being able to resize pos_emb fixed
* Version 0.6.7 PyPi release (/w above bug fixes and new weighs since 0.6.5)

### July 8, 2022
More models, more fixes
* Official research models (w/ weights) added:
  * EdgeNeXt from (https://github.com/mmaaz60/EdgeNeXt)
  * MobileViT-V2 from (https://github.com/apple/ml-cvnets)
  * DeiT III (Revenge of the ViT) from (https://github.com/facebookresearch/deit)
* My own models:
  * Small `ResNet` defs added by request with 1 block repeats for both basic and bottleneck (resnet10 and resnet14)
  * `CspNet` refactored with dataclass config, simplified CrossStage3 (`cs3`) option. These are closer to YOLO-v5+ backbone defs.
  * More relative position vit fiddling. Two `srelpos` (shared relative position) models trained, and a medium w/ class token.
  * Add an alternate downsample mode to EdgeNeXt and train a `small` model. Better than original small, but not their new USI trained weights.
* My own model weight results (all ImageNet-1k training)
  * `resnet10t` - 66.5 @ 176, 68.3 @ 224
  * `resnet14t` - 71.3 @ 176, 72.3 @ 224
  * `resnetaa50` - 80.6 @ 224 , 81.6 @ 288
  * `darknet53` -  80.0 @ 256, 80.5 @ 288
  * `cs3darknet_m` - 77.0 @ 256, 77.6 @ 288
  * `cs3darknet_focus_m` - 76.7 @ 256, 77.3 @ 288
  * `cs3darknet_l` - 80.4 @ 256, 80.9 @ 288
  * `cs3darknet_focus_l` - 80.3 @ 256, 80.9 @ 288
  * `vit_srelpos_small_patch16_224` - 81.1 @ 224, 82.1 @ 320
  * `vit_srelpos_medium_patch16_224` - 82.3 @ 224, 83.1 @ 320
  * `vit_relpos_small_patch16_cls_224` - 82.6 @ 224, 83.6 @ 320
  * `edgnext_small_rw` - 79.6 @ 224, 80.4 @ 320
* `cs3`, `darknet`, and `vit_*relpos` weights above all trained on TPU thanks to TRC program! Rest trained on overheating GPUs.
* Hugging Face Hub support fixes verified, demo notebook TBA
* Pretrained weights / configs can be loaded externally (ie from local disk) w/ support for head adaptation.
* Add support to change image extensions scanned by `timm` datasets/readers. See (https://github.com/rwightman/pytorch-image-models/pull/1274#issuecomment-1178303103)
* Default ConvNeXt LayerNorm impl to use `F.layer_norm(x.permute(0, 2, 3, 1), ...).permute(0, 3, 1, 2)` via `LayerNorm2d` in all cases.
  * a bit slower than previous custom impl on some hardware (ie Ampere w/ CL), but overall fewer regressions across wider HW / PyTorch version ranges.
  * previous impl exists as `LayerNormExp2d` in `models/layers/norm.py`
* Numerous bug fixes
* Currently testing for imminent PyPi 0.6.x release
* LeViT pretraining of larger models still a WIP, they don't train well / easily without distillation. Time to add distill support (finally)?
* ImageNet-22k weight training + finetune ongoing, work on multi-weight support (slowly) chugging along (there are a LOT of weights, sigh) ...

### May 13, 2022
* Official Swin-V2 models and weights added from (https://github.com/microsoft/Swin-Transformer). Cleaned up to support torchscript.
* Some refactoring for existing `timm` Swin-V2-CR impl, will likely do a bit more to bring parts closer to official and decide whether to merge some aspects.
* More Vision Transformer relative position / residual post-norm experiments (all trained on TPU thanks to TRC program)
  * `vit_relpos_small_patch16_224` - 81.5 @ 224, 82.5 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_medium_patch16_rpn_224` - 82.3 @ 224, 83.1 @ 320 -- rel pos + res-post-norm, no class token, avg pool
  * `vit_relpos_medium_patch16_224` - 82.5 @ 224, 83.3 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_base_patch16_gapcls_224` - 82.8 @ 224, 83.9 @ 320 -- rel pos, layer scale, class token, avg pool (by mistake)
* Bring 512 dim, 8-head 'medium' ViT model variant back to life (after using in a pre DeiT 'small' model for first ViT impl back in 2020)
* Add ViT relative position support for switching btw existing impl and some additions in official Swin-V2 impl for future trials
* Sequencer2D impl (https://arxiv.org/abs/2205.01972), added via PR from author (https://github.com/okojoalg)

### May 2, 2022
* Vision Transformer experiments adding Relative Position (Swin-V2 log-coord) (`vision_transformer_relpos.py`) and Residual Post-Norm branches (from Swin-V2) (`vision_transformer*.py`)
  * `vit_relpos_base_patch32_plus_rpn_256` - 79.5 @ 256, 80.6 @ 320 -- rel pos + extended width + res-post-norm, no class token, avg pool
  * `vit_relpos_base_patch16_224` - 82.5 @ 224, 83.6 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_base_patch16_rpn_224` - 82.3 @ 224 -- rel pos + res-post-norm, no class token, avg pool
* Vision Transformer refactor to remove representation layer that was only used in initial vit and rarely used since with newer pretrain (ie `How to Train Your ViT`)
* `vit_*` models support removal of class token, use of global average pool, use of fc_norm (ala beit, mae).

### April 22, 2022
* `timm` models are now officially supported in [fast.ai](https://www.fast.ai/)! Just in time for the new Practical Deep Learning course. `timmdocs` documentation link updated to [timm.fast.ai](http://timm.fast.ai/).
* Two more model weights added in the TPU trained [series](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights). Some In22k pretrain still in progress.
  * `seresnext101d_32x8d` - 83.69 @ 224, 84.35 @ 288
  * `seresnextaa101d_32x8d` (anti-aliased w/ AvgPool2d) - 83.85 @ 224, 84.57 @ 288

### March 23, 2022
* Add `ParallelBlock` and `LayerScale` option to base vit models to support model configs in [Three things everyone should know about ViT](https://arxiv.org/abs/2203.09795)
* `convnext_tiny_hnf` (head norm first) weights trained with (close to) A2 recipe, 82.2% top-1, could do better with more epochs.

### March 21, 2022
* Merge `norm_norm_norm`. **IMPORTANT** this update for a coming 0.6.x release will likely de-stabilize the master branch for a while. Branch [`0.5.x`](https://github.com/rwightman/pytorch-image-models/tree/0.5.x) or a previous 0.5.x release can be used if stability is required.
* Significant weights update (all TPU trained) as described in this [release](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights)
  * `regnety_040` - 82.3 @ 224, 82.96 @ 288
  * `regnety_064` - 83.0 @ 224, 83.65 @ 288
  * `regnety_080` - 83.17 @ 224, 83.86 @ 288
  * `regnetv_040` - 82.44 @ 224, 83.18 @ 288   (timm pre-act)
  * `regnetv_064` - 83.1 @ 224, 83.71 @ 288   (timm pre-act)
  * `regnetz_040` - 83.67 @ 256, 84.25 @ 320
  * `regnetz_040h` - 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head)
  * `resnetv2_50d_gn` - 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm)
  * `resnetv2_50d_evos` 80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS)
  * `regnetz_c16_evos`  - 81.9 @ 256, 82.64 @ 320 (EvoNormS)
  * `regnetz_d8_evos`  - 83.42 @ 256, 84.04 @ 320 (EvoNormS)
  * `xception41p` - 82 @ 299   (timm pre-act)
  * `xception65` -  83.17 @ 299
  * `xception65p` -  83.14 @ 299   (timm pre-act)
  * `resnext101_64x4d` - 82.46 @ 224, 83.16 @ 288
  * `seresnext101_32x8d` - 83.57 @ 224, 84.270 @ 288
  * `resnetrs200` - 83.85 @ 256, 84.44 @ 320
* HuggingFace hub support fixed w/ initial groundwork for allowing alternative 'config sources' for pretrained model definitions and weights (generic local file / remote url support soon)
* SwinTransformer-V2 implementation added. Submitted by [Christoph Reich](https://github.com/ChristophReich1996). Training experiments and model changes by myself are ongoing so expect compat breaks.
* Swin-S3 (AutoFormerV2) models / weights added from https://github.com/microsoft/Cream/tree/main/AutoFormerV2
* MobileViT models w/ weights adapted from https://github.com/apple/ml-cvnets
* PoolFormer models w/ weights adapted from https://github.com/sail-sg/poolformer
* VOLO models w/ weights adapted from https://github.com/sail-sg/volo
* Significant work experimenting with non-BatchNorm norm layers such as EvoNorm, FilterResponseNorm, GroupNorm, etc
* Enhance support for alternate norm + act ('NormAct') layers added to a number of models, esp EfficientNet/MobileNetV3, RegNet, and aligned Xception
* Grouped conv support added to EfficientNet family
* Add 'group matching' API to all models to allow grouping model parameters for application of 'layer-wise' LR decay, lr scale added to LR scheduler
* Gradient checkpointing support added to many models
* `forward_head(x, pre_logits=False)` fn added to all models to allow separate calls of `forward_features` + `forward_head`
* All vision transformer and vision MLP models update to return non-pooled / non-token selected features from `forward_features`, for consistency with CNN models, token selection or pooling now applied in `forward_head`

### Feb 2, 2022
* [Chris Hughes](https://github.com/Chris-hughes10) posted an exhaustive run through of `timm` on his blog yesterday. Well worth a read. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055)
* I'm currently prepping to merge the `norm_norm_norm` branch back to master (ver 0.6.x) in next week or so.
  * The changes are more extensive than usual and may destabilize and break some model API use (aiming for full backwards compat). So, beware `pip install git+https://github.com/rwightman/pytorch-image-models` installs!
  * `0.5.x` releases and a `0.5.x` branch will remain stable with a cherry pick or two until dust clears. Recommend sticking to pypi install for a bit if you want stable.

### Jan 14, 2022
* Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon....
* Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features
* Tried training a few small (~1.8-3M param) / mobile optimized models, a few are good so far, more on the way...
  * `mnasnet_small` - 65.6 top-1
  * `mobilenetv2_050` - 65.9
  * `lcnet_100/075/050` - 72.1 / 68.8 / 63.1
  * `semnasnet_075` - 73
  * `fbnetv3_b/d/g` - 79.1 / 79.7 / 82.0
* TinyNet models added by [rsomani95](https://github.com/rsomani95)
* LCNet added via MobileNetV3 architecture

### Jan 5, 2023
* ConvNeXt-V2 models and weights added to existing `convnext.py`
  * Paper: [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](http://arxiv.org/abs/2301.00808)
  * Reference impl: https://github.com/facebookresearch/ConvNeXt-V2 (NOTE: weights currently CC-BY-NC)

### Dec 23, 2022 🎄☃
* Add FlexiViT models and weights from https://github.com/google-research/big_vision (check out paper at https://arxiv.org/abs/2212.08013)
  * NOTE currently resizing is static on model creation, on-the-fly dynamic / train patch size sampling is a WIP
* Many more models updated to multi-weight and downloadable via HF hub now (convnext, efficientnet, mobilenet, vision_transformer*, beit)
* More model pretrained tag and adjustments, some model names changed (working on deprecation translations, consider main branch DEV branch right now, use 0.6.x for stable use)
* More ImageNet-12k (subset of 22k) pretrain models popping up:
  * `efficientnet_b5.in12k_ft_in1k` - 85.9 @ 448x448
  * `vit_medium_patch16_gap_384.in12k_ft_in1k` - 85.5 @ 384x384
  * `vit_medium_patch16_gap_256.in12k_ft_in1k` - 84.5 @ 256x256
  * `convnext_nano.in12k_ft_in1k` - 82.9 @ 288x288

### Dec 8, 2022
* Add 'EVA l' to `vision_transformer.py`, MAE style ViT-L/14 MIM pretrain w/ EVA-CLIP targets, FT on ImageNet-1k (w/ ImageNet-22k intermediate for some)
  * original source: https://github.com/baaivision/EVA

| model                                     | top1 | param_count |  gmac | macts | hub                                     |
|:------------------------------------------|-----:|------------:|------:|------:|:----------------------------------------|
| eva_large_patch14_336.in22k_ft_in22k_in1k | 89.2 |       304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_336.in22k_ft_in1k       | 88.7 |       304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_196.in22k_ft_in22k_in1k | 88.6 |       304.1 |  61.6 |  63.5 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_196.in22k_ft_in1k       | 87.9 |       304.1 |  61.6 |  63.5 | [link](https://huggingface.co/BAAI/EVA) |

### Dec 6, 2022
* Add 'EVA g', BEiT style ViT-g/14 model weights w/ both MIM pretrain and CLIP pretrain to `beit.py`. 
  * original source: https://github.com/baaivision/EVA
  * paper: https://arxiv.org/abs/2211.07636

| model                                    |   top1 |   param_count |   gmac |   macts | hub                                     |
|:-----------------------------------------|-------:|--------------:|-------:|--------:|:----------------------------------------|
| eva_giant_patch14_560.m30m_ft_in22k_in1k |   89.8 |        1014.4 | 1906.8 |  2577.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_336.m30m_ft_in22k_in1k |   89.6 |        1013   |  620.6 |   550.7 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_336.clip_ft_in1k       |   89.4 |        1013   |  620.6 |   550.7 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_224.clip_ft_in1k       |   89.1 |        1012.6 |  267.2 |   192.6 | [link](https://huggingface.co/BAAI/EVA) |

### Dec 5, 2022

* Pre-release (`0.8.0dev0`) of multi-weight support (`model_arch.pretrained_tag`). Install with `pip install --pre timm`
  * vision_transformer, maxvit, convnext are the first three model impl w/ support
  * model names are changing with this (previous _21k, etc. fn will merge), still sorting out deprecation handling
  * bugs are likely, but I need feedback so please try it out
  * if stability is needed, please use 0.6.x pypi releases or clone from [0.6.x branch](https://github.com/rwightman/pytorch-image-models/tree/0.6.x)
* Support for PyTorch 2.0 compile is added in train/validate/inference/benchmark, use `--torchcompile` argument
* Inference script allows more control over output, select k for top-class index + prob json, csv or parquet output
* Add a full set of fine-tuned CLIP image tower weights from both LAION-2B and original OpenAI CLIP models

| model                                            |   top1 |   param_count |   gmac |   macts | hub                                                                                  |
|:-------------------------------------------------|-------:|--------------:|-------:|--------:|:-------------------------------------------------------------------------------------|
| vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k  |   88.6 |         632.5 |  391   |   407.5 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k)  |
| vit_large_patch14_clip_336.openai_ft_in12k_in1k  |   88.3 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.openai_ft_in12k_in1k)  |
| vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k  |   88.2 |         632   |  167.4 |   139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k)  |
| vit_large_patch14_clip_336.laion2b_ft_in12k_in1k |   88.2 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k) |
| vit_large_patch14_clip_224.openai_ft_in12k_in1k  |   88.2 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k)  |
| vit_large_patch14_clip_224.laion2b_ft_in12k_in1k |   87.9 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in12k_in1k) |
| vit_large_patch14_clip_224.openai_ft_in1k        |   87.9 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in1k)        |
| vit_large_patch14_clip_336.laion2b_ft_in1k       |   87.9 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in1k)       |
| vit_huge_patch14_clip_224.laion2b_ft_in1k        |   87.6 |         632   |  167.4 |   139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in1k)        |
| vit_large_patch14_clip_224.laion2b_ft_in1k       |   87.3 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in1k)       |
| vit_base_patch16_clip_384.laion2b_ft_in12k_in1k  |   87.2 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_384.openai_ft_in12k_in1k   |   87   |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in12k_in1k)   |
| vit_base_patch16_clip_384.laion2b_ft_in1k        |   86.6 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in1k)        |
| vit_base_patch16_clip_384.openai_ft_in1k         |   86.2 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in1k)         |
| vit_base_patch16_clip_224.laion2b_ft_in12k_in1k  |   86.2 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.openai_ft_in12k_in1k   |   85.9 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in12k_in1k)   |
| vit_base_patch32_clip_448.laion2b_ft_in12k_in1k  |   85.8 |          88.3 |   17.9 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch32_clip_448.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.laion2b_ft_in1k        |   85.5 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in1k)        |
| vit_base_patch32_clip_384.laion2b_ft_in12k_in1k  |   85.4 |          88.3 |   13.1 |    16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.openai_ft_in1k         |   85.3 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in1k)         |
| vit_base_patch32_clip_384.openai_ft_in12k_in1k   |   85.2 |          88.3 |   13.1 |    16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.openai_ft_in12k_in1k)   |
| vit_base_patch32_clip_224.laion2b_ft_in12k_in1k  |   83.3 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k)  |
| vit_base_patch32_clip_224.laion2b_ft_in1k        |   82.6 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in1k)        |
| vit_base_patch32_clip_224.openai_ft_in1k         |   81.9 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.openai_ft_in1k)         |

* Port of MaxViT Tensorflow Weights from official impl at https://github.com/google-research/maxvit
  * There was larger than expected drops for the upscaled 384/512 in21k fine-tune weights, possible detail missing, but the 21k FT did seem sensitive to small preprocessing

| model                              |   top1 |   param_count |   gmac |   macts | hub                                                                    |
|:-----------------------------------|-------:|--------------:|-------:|--------:|:-----------------------------------------------------------------------|
| maxvit_xlarge_tf_512.in21k_ft_in1k |   88.5 |         475.8 |  534.1 |  1413.2 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |
| maxvit_xlarge_tf_384.in21k_ft_in1k |   88.3 |         475.3 |  292.8 |   668.8 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |
| maxvit_base_tf_512.in21k_ft_in1k   |   88.2 |         119.9 |  138   |   704   | [link](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k)   |
| maxvit_large_tf_512.in21k_ft_in1k  |   88   |         212.3 |  244.8 |   942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k)  |
| maxvit_large_tf_384.in21k_ft_in1k  |   88   |         212   |  132.6 |   445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k)  |
| maxvit_base_tf_384.in21k_ft_in1k   |   87.9 |         119.6 |   73.8 |   332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k)   |
| maxvit_base_tf_512.in1k            |   86.6 |         119.9 |  138   |   704   | [link](https://huggingface.co/timm/maxvit_base_tf_512.in1k)            |
| maxvit_large_tf_512.in1k           |   86.5 |         212.3 |  244.8 |   942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in1k)           |
| maxvit_base_tf_384.in1k            |   86.3 |         119.6 |   73.8 |   332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in1k)            |
| maxvit_large_tf_384.in1k           |   86.2 |         212   |  132.6 |   445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in1k)           |
| maxvit_small_tf_512.in1k           |   86.1 |          69.1 |   67.3 |   383.8 | [link](https://huggingface.co/timm/maxvit_small_tf_512.in1k)           |
| maxvit_tiny_tf_512.in1k            |   85.7 |          31   |   33.5 |   257.6 | [link](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k)            |
| maxvit_small_tf_384.in1k           |   85.5 |          69   |   35.9 |   183.6 | [link](https://huggingface.co/timm/maxvit_small_tf_384.in1k)           |
| maxvit_tiny_tf_384.in1k            |   85.1 |          31   |   17.5 |   123.4 | [link](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k)            |
| maxvit_large_tf_224.in1k           |   84.9 |         211.8 |   43.7 |   127.4 | [link](https://huggingface.co/timm/maxvit_large_tf_224.in1k)           |
| maxvit_base_tf_224.in1k            |   84.9 |         119.5 |   24   |    95   | [link](https://huggingface.co/timm/maxvit_base_tf_224.in1k)            |
| maxvit_small_tf_224.in1k           |   84.4 |          68.9 |   11.7 |    53.2 | [link](https://huggingface.co/timm/maxvit_small_tf_224.in1k)           |
| maxvit_tiny_tf_224.in1k            |   83.4 |          30.9 |    5.6 |    35.8 | [link](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k)            |

### Oct 15, 2022
* Train and validation script enhancements
* Non-GPU (ie CPU) device support
* SLURM compatibility for train script
* HF datasets support (via ReaderHfds)
* TFDS/WDS dataloading improvements (sample padding/wrap for distributed use fixed wrt sample count estimate)
* in_chans !=3 support for scripts / loader
* Adan optimizer
* Can enable per-step LR scheduling via args
* Dataset 'parsers' renamed to 'readers', more descriptive of purpose
* AMP args changed, APEX via `--amp-impl apex`, bfloat16 supportedf via `--amp-dtype bfloat16`
* main branch switched to 0.7.x version, 0.6x forked for stable release of weight only adds
* master -> main branch rename

### Oct 10, 2022
* More weights in `maxxvit` series, incl first ConvNeXt block based `coatnext` and `maxxvit` experiments:
  * `coatnext_nano_rw_224` - 82.0 @ 224 (G) -- (uses ConvNeXt conv block, no BatchNorm)
  * `maxxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.7 @ 320  (G) (uses ConvNeXt conv block, no BN)
  * `maxvit_rmlp_small_rw_224` - 84.5 @ 224, 85.1 @ 320 (G)
  * `maxxvit_rmlp_small_rw_256` - 84.6 @ 256, 84.9 @ 288 (G) -- could be trained better, hparams need tuning (uses ConvNeXt block, no BN)
  * `coatnet_rmlp_2_rw_224` - 84.6 @ 224, 85 @ 320  (T)
  * NOTE: official MaxVit weights (in1k) have been released at https://github.com/google-research/maxvit -- some extra work is needed to port and adapt since my impl was created independently of theirs and has a few small differences + the whole TF same padding fun.
  
### Sept 23, 2022
* LAION-2B CLIP image towers supported as pretrained backbones for fine-tune or features (no classifier)
  * vit_base_patch32_224_clip_laion2b
  * vit_large_patch14_224_clip_laion2b
  * vit_huge_patch14_224_clip_laion2b
  * vit_giant_patch14_224_clip_laion2b

### Sept 7, 2022
* Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) home now exists, look for more here in the future
* Add BEiT-v2 weights for base and large 224x224 models from https://github.com/microsoft/unilm/tree/master/beit2
* Add more weights in `maxxvit` series incl a `pico` (7.5M params, 1.9 GMACs), two `tiny` variants:
  * `maxvit_rmlp_pico_rw_256` - 80.5 @ 256, 81.3 @ 320  (T)
  * `maxvit_tiny_rw_224` - 83.5 @ 224 (G)
  * `maxvit_rmlp_tiny_rw_256` - 84.2 @ 256, 84.8 @ 320 (T)

### Aug 29, 2022
* MaxVit window size scales with img_size by default. Add new RelPosMlp MaxViT weight that leverages this:
  * `maxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.6 @ 320  (T)

### Aug 26, 2022
* CoAtNet (https://arxiv.org/abs/2106.04803) and MaxVit (https://arxiv.org/abs/2204.01697) `timm` original models
  * both found in [`maxxvit.py`](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/maxxvit.py) model def, contains numerous experiments outside scope of original papers
  * an unfinished Tensorflow version from MaxVit authors can be found https://github.com/google-research/maxvit
* Initial CoAtNet and MaxVit timm pretrained weights (working on more):
  * `coatnet_nano_rw_224` - 81.7 @ 224  (T)
  * `coatnet_rmlp_nano_rw_224` - 82.0 @ 224, 82.8 @ 320 (T)
  * `coatnet_0_rw_224` - 82.4  (T)  -- NOTE timm '0' coatnets have 2 more 3rd stage blocks
  * `coatnet_bn_0_rw_224` - 82.4  (T)
  * `maxvit_nano_rw_256` - 82.9 @ 256  (T)
  * `coatnet_rmlp_1_rw_224` - 83.4 @ 224, 84 @ 320  (T)
  * `coatnet_1_rw_224` - 83.6 @ 224 (G) 
  * (T) = TPU trained with `bits_and_tpu` branch training code, (G) = GPU trained
* GCVit (weights adapted from https://github.com/NVlabs/GCVit, code 100% `timm` re-write for license purposes)
* MViT-V2 (multi-scale vit, adapted from https://github.com/facebookresearch/mvit)
* EfficientFormer (adapted from https://github.com/snap-research/EfficientFormer)
* PyramidVisionTransformer-V2 (adapted from https://github.com/whai362/PVT)
* 'Fast Norm' support for LayerNorm and GroupNorm that avoids float32 upcast w/ AMP (uses APEX LN if available for further boost)


### Aug 15, 2022
* ConvNeXt atto weights added
  * `convnext_atto` - 75.7 @ 224, 77.0 @ 288
  * `convnext_atto_ols` - 75.9  @ 224, 77.2 @ 288

### Aug 5, 2022
* More custom ConvNeXt smaller model defs with weights 
  * `convnext_femto` - 77.5 @ 224, 78.7 @ 288
  * `convnext_femto_ols` - 77.9  @ 224, 78.9 @ 288
  * `convnext_pico` - 79.5 @ 224, 80.4 @ 288
  * `convnext_pico_ols` - 79.5 @ 224, 80.5 @ 288
  * `convnext_nano_ols` - 80.9 @ 224, 81.6 @ 288
* Updated EdgeNeXt to improve ONNX export, add new base variant and weights from original (https://github.com/mmaaz60/EdgeNeXt)

### July 28, 2022
* Add freshly minted DeiT-III Medium (width=512, depth=12, num_heads=8) model weights. Thanks [Hugo Touvron](https://github.com/TouvronHugo)!

### July 27, 2022
* All runtime benchmark and validation result csv files are up-to-date!
* A few more weights & model defs added:
  * `darknetaa53` -  79.8 @ 256, 80.5 @ 288
  * `convnext_nano` - 80.8 @ 224, 81.5 @ 288
  * `cs3sedarknet_l` - 81.2 @ 256, 81.8 @ 288
  * `cs3darknet_x` - 81.8 @ 256, 82.2 @ 288
  * `cs3sedarknet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3edgenet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3se_edgenet_x` - 82.8 @ 256, 83.5 @ 320
* `cs3*` weights above all trained on TPU w/ `bits_and_tpu` branch. Thanks to TRC program!
* Add output_stride=8 and 16 support to ConvNeXt (dilation)
* deit3 models not being able to resize pos_emb fixed
* Version 0.6.7 PyPi release (/w above bug fixes and new weighs since 0.6.5)

### July 8, 2022
More models, more fixes
* Official research models (w/ weights) added:
  * EdgeNeXt from (https://github.com/mmaaz60/EdgeNeXt)
  * MobileViT-V2 from (https://github.com/apple/ml-cvnets)
  * DeiT III (Revenge of the ViT) from (https://github.com/facebookresearch/deit)
* My own models:
  * Small `ResNet` defs added by request with 1 block repeats for both basic and bottleneck (resnet10 and resnet14)
  * `CspNet` refactored with dataclass config, simplified CrossStage3 (`cs3`) option. These are closer to YOLO-v5+ backbone defs.
  * More relative position vit fiddling. Two `srelpos` (shared relative position) models trained, and a medium w/ class token.
  * Add an alternate downsample mode to EdgeNeXt and train a `small` model. Better than original small, but not their new USI trained weights.
* My own model weight results (all ImageNet-1k training)
  * `resnet10t` - 66.5 @ 176, 68.3 @ 224
  * `resnet14t` - 71.3 @ 176, 72.3 @ 224
  * `resnetaa50` - 80.6 @ 224 , 81.6 @ 288
  * `darknet53` -  80.0 @ 256, 80.5 @ 288
  * `cs3darknet_m` - 77.0 @ 256, 77.6 @ 288
  * `cs3darknet_focus_m` - 76.7 @ 256, 77.3 @ 288
  * `cs3darknet_l` - 80.4 @ 256, 80.9 @ 288
  * `cs3darknet_focus_l` - 80.3 @ 256, 80.9 @ 288
  * `vit_srelpos_small_patch16_224` - 81.1 @ 224, 82.1 @ 320
  * `vit_srelpos_medium_patch16_224` - 82.3 @ 224, 83.1 @ 320
  * `vit_relpos_small_patch16_cls_224` - 82.6 @ 224, 83.6 @ 320
  * `edgnext_small_rw` - 79.6 @ 224, 80.4 @ 320
* `cs3`, `darknet`, and `vit_*relpos` weights above all trained on TPU thanks to TRC program! Rest trained on overheating GPUs.
* Hugging Face Hub support fixes verified, demo notebook TBA
* Pretrained weights / configs can be loaded externally (ie from local disk) w/ support for head adaptation.
* Add support to change image extensions scanned by `timm` datasets/parsers. See (https://github.com/rwightman/pytorch-image-models/pull/1274#issuecomment-1178303103)
* Default ConvNeXt LayerNorm impl to use `F.layer_norm(x.permute(0, 2, 3, 1), ...).permute(0, 3, 1, 2)` via `LayerNorm2d` in all cases. 
  * a bit slower than previous custom impl on some hardware (ie Ampere w/ CL), but overall fewer regressions across wider HW / PyTorch version ranges. 
  * previous impl exists as `LayerNormExp2d` in `models/layers/norm.py`
* Numerous bug fixes
* Currently testing for imminent PyPi 0.6.x release
* LeViT pretraining of larger models still a WIP, they don't train well / easily without distillation. Time to add distill support (finally)?
* ImageNet-22k weight training + finetune ongoing, work on multi-weight support (slowly) chugging along (there are a LOT of weights, sigh) ...

### May 13, 2022
* Official Swin-V2 models and weights added from (https://github.com/microsoft/Swin-Transformer). Cleaned up to support torchscript.
* Some refactoring for existing `timm` Swin-V2-CR impl, will likely do a bit more to bring parts closer to official and decide whether to merge some aspects.
* More Vision Transformer relative position / residual post-norm experiments (all trained on TPU thanks to TRC program)
  * `vit_relpos_small_patch16_224` - 81.5 @ 224, 82.5 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_medium_patch16_rpn_224` - 82.3 @ 224, 83.1 @ 320 -- rel pos + res-post-norm, no class token, avg pool
  * `vit_relpos_medium_patch16_224` - 82.5 @ 224, 83.3 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_base_patch16_gapcls_224` - 82.8 @ 224, 83.9 @ 320 -- rel pos, layer scale, class token, avg pool (by mistake)
* Bring 512 dim, 8-head 'medium' ViT model variant back to life (after using in a pre DeiT 'small' model for first ViT impl back in 2020)
* Add ViT relative position support for switching btw existing impl and some additions in official Swin-V2 impl for future trials
* Sequencer2D impl (https://arxiv.org/abs/2205.01972), added via PR from author (https://github.com/okojoalg)

### May 2, 2022
* Vision Transformer experiments adding Relative Position (Swin-V2 log-coord) (`vision_transformer_relpos.py`) and Residual Post-Norm branches (from Swin-V2) (`vision_transformer*.py`)
  * `vit_relpos_base_patch32_plus_rpn_256` - 79.5 @ 256, 80.6 @ 320 -- rel pos + extended width + res-post-norm, no class token, avg pool
  * `vit_relpos_base_patch16_224` - 82.5 @ 224, 83.6 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_base_patch16_rpn_224` - 82.3 @ 224 -- rel pos + res-post-norm, no class token, avg pool
* Vision Transformer refactor to remove representation layer that was only used in initial vit and rarely used since with newer pretrain (ie `How to Train Your ViT`)
* `vit_*` models support removal of class token, use of global average pool, use of fc_norm (ala beit, mae).

### April 22, 2022
* `timm` models are now officially supported in [fast.ai](https://www.fast.ai/)! Just in time for the new Practical Deep Learning course. `timmdocs` documentation link updated to [timm.fast.ai](http://timm.fast.ai/).
* Two more model weights added in the TPU trained [series](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights). Some In22k pretrain still in progress.
  * `seresnext101d_32x8d` - 83.69 @ 224, 84.35 @ 288
  * `seresnextaa101d_32x8d` (anti-aliased w/ AvgPool2d) - 83.85 @ 224, 84.57 @ 288

### March 23, 2022
* Add `ParallelBlock` and `LayerScale` option to base vit models to support model configs in [Three things everyone should know about ViT](https://arxiv.org/abs/2203.09795)
* `convnext_tiny_hnf` (head norm first) weights trained with (close to) A2 recipe, 82.2% top-1, could do better with more epochs.

### March 21, 2022
* Merge `norm_norm_norm`. **IMPORTANT** this update for a coming 0.6.x release will likely de-stabilize the master branch for a while. Branch [`0.5.x`](https://github.com/rwightman/pytorch-image-models/tree/0.5.x) or a previous 0.5.x release can be used if stability is required.
* Significant weights update (all TPU trained) as described in this [release](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights)
  * `regnety_040` - 82.3 @ 224, 82.96 @ 288
  * `regnety_064` - 83.0 @ 224, 83.65 @ 288
  * `regnety_080` - 83.17 @ 224, 83.86 @ 288
  * `regnetv_040` - 82.44 @ 224, 83.18 @ 288   (timm pre-act)
  * `regnetv_064` - 83.1 @ 224, 83.71 @ 288   (timm pre-act)
  * `regnetz_040` - 83.67 @ 256, 84.25 @ 320
  * `regnetz_040h` - 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head)
  * `resnetv2_50d_gn` - 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm)
  * `resnetv2_50d_evos` 80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS)
  * `regnetz_c16_evos`  - 81.9 @ 256, 82.64 @ 320 (EvoNormS)
  * `regnetz_d8_evos`  - 83.42 @ 256, 84.04 @ 320 (EvoNormS)
  * `xception41p` - 82 @ 299   (timm pre-act)
  * `xception65` -  83.17 @ 299
  * `xception65p` -  83.14 @ 299   (timm pre-act)
  * `resnext101_64x4d` - 82.46 @ 224, 83.16 @ 288
  * `seresnext101_32x8d` - 83.57 @ 224, 84.270 @ 288
  * `resnetrs200` - 83.85 @ 256, 84.44 @ 320
* HuggingFace hub support fixed w/ initial groundwork for allowing alternative 'config sources' for pretrained model definitions and weights (generic local file / remote url support soon)
* SwinTransformer-V2 implementation added. Submitted by [Christoph Reich](https://github.com/ChristophReich1996). Training experiments and model changes by myself are ongoing so expect compat breaks.
* Swin-S3 (AutoFormerV2) models / weights added from https://github.com/microsoft/Cream/tree/main/AutoFormerV2
* MobileViT models w/ weights adapted from https://github.com/apple/ml-cvnets
* PoolFormer models w/ weights adapted from https://github.com/sail-sg/poolformer
* VOLO models w/ weights adapted from https://github.com/sail-sg/volo
* Significant work experimenting with non-BatchNorm norm layers such as EvoNorm, FilterResponseNorm, GroupNorm, etc
* Enhance support for alternate norm + act ('NormAct') layers added to a number of models, esp EfficientNet/MobileNetV3, RegNet, and aligned Xception
* Grouped conv support added to EfficientNet family
* Add 'group matching' API to all models to allow grouping model parameters for application of 'layer-wise' LR decay, lr scale added to LR scheduler
* Gradient checkpointing support added to many models
* `forward_head(x, pre_logits=False)` fn added to all models to allow separate calls of `forward_features` + `forward_head`
* All vision transformer and vision MLP models update to return non-pooled / non-token selected features from `forward_features`, for consistency with CNN models, token selection or pooling now applied in `forward_head`

### Feb 2, 2022
* [Chris Hughes](https://github.com/Chris-hughes10) posted an exhaustive run through of `timm` on his blog yesterday. Well worth a read. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055)
* I'm currently prepping to merge the `norm_norm_norm` branch back to master (ver 0.6.x) in next week or so.
  * The changes are more extensive than usual and may destabilize and break some model API use (aiming for full backwards compat). So, beware `pip install git+https://github.com/rwightman/pytorch-image-models` installs!
  * `0.5.x` releases and a `0.5.x` branch will remain stable with a cherry pick or two until dust clears. Recommend sticking to pypi install for a bit if you want stable.

### Jan 14, 2022
* Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon....
* Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features
* Tried training a few small (~1.8-3M param) / mobile optimized models, a few are good so far, more on the way...
  * `mnasnet_small` - 65.6 top-1
  * `mobilenetv2_050` - 65.9
  * `lcnet_100/075/050` - 72.1 / 68.8 / 63.1
  * `semnasnet_075` - 73
  * `fbnetv3_b/d/g` - 79.1 / 79.7 / 82.0
* TinyNet models added by [rsomani95](https://github.com/rsomani95)
* LCNet added via MobileNetV3 architecture