File size: 2,577 Bytes
98426c9
 
36789f1
 
 
 
 
 
 
 
 
98426c9
36789f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
task_categories:
- text-generation
language:
- en
tags:
- data-juicer
- pretraining
size_categories:
- 1M<n<10M
---

# The Pile -- PubMed Central (refined by Data-Juicer)

A refined version of PubMed Central dataset in The Pile by [Data-Juicer](https://github.com/alibaba/data-juicer). Removing some "bad" samples from the original dataset to make it higher-quality.

This dataset is usually used to pretrain a Large Language Model.

**Notice**: Here is a small subset for previewing. The whole dataset is available [here](https://dail-wlcb.oss-cn-wulanchabu.aliyuncs.com/LLM_data/our_refined_datasets/pretraining/the-pile-pubmed-central-refine-result.jsonl) (About 83G).

## Dataset Information

- Number of samples: 2,694,860 (Keep ~86.96% from the original dataset)

## Refining Recipe
```yaml
# global parameters
project_name: 'Data-Juicer-recipes-pubmed-central'
dataset_path: '/path/to/your/dataset'  # path to your dataset directory or file
export_path: '/path/to/your/dataset.jsonl'

np: 50  # number of subprocess to process your dataset
open_tracer: true

# process schedule
# a list of several process operators with their arguments
process:
  - clean_email_mapper:
  - clean_links_mapper:
  - fix_unicode_mapper:
  - punctuation_normalization_mapper:
  - whitespace_normalization_mapper:

  - alphanumeric_filter:  # 89217
      tokenization: false
      min_ratio: 0.2787  # 3sigma
  - average_line_length_filter:  # for code
      max_len: 1200  # < 3sigma (1478) -- 7410
  - character_repetition_filter:
      rep_len: 10
      max_ratio: 0.3741  # 3sigma -- 65849
  - flagged_words_filter:
      lang: en
      tokenization: true
      max_ratio: 0.00195  # 3sigma -- 8305
  - language_id_score_filter:  # remove language filter
      min_score: 0.5  # 272359
  - maximum_line_length_filter:  # for code
      max_len: 7328  # remove 23808 samples
  - perplexity_filter:
      lang: en
      max_ppl: 8000  # remove 173883 samples
  - special_characters_filter:
      max_ratio: 0.842  # remove 87661 samples
  - text_length_filter:
      max_len: 136028  # 3sigma -- 15118
  - words_num_filter:
      lang: en
      tokenization: true
      min_num: 20  # remove 176537 samples
      max_num: 23305  # remove 15016 samples
  - word_repetition_filter:
      lang: en
      tokenization: true
      rep_len: 10
      max_ratio: 0.5981  # 3sigma -- 93843

  - document_simhash_deduplicator:
      tokenization: space
      window_size: 6
      lowercase: true
      ignore_pattern: '\p{P}'
      num_blocks: 6
      hamming_distance: 4
```