Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
Chinese
Size:
10K - 100K
ArXiv:
License:
Convert dataset to Parquet
Browse filesConvert dataset to Parquet.
- README.md +27 -18
- dataset_infos.json +172 -1
- dialog/test-00000-of-00001.parquet +3 -0
- dialog/train-00000-of-00001.parquet +3 -0
- dialog/validation-00000-of-00001.parquet +3 -0
README.md
CHANGED
@@ -20,7 +20,7 @@ task_ids:
|
|
20 |
paperswithcode_id: c3
|
21 |
pretty_name: C3
|
22 |
dataset_info:
|
23 |
-
- config_name:
|
24 |
features:
|
25 |
- name: documents
|
26 |
sequence: string
|
@@ -36,17 +36,17 @@ dataset_info:
|
|
36 |
sequence: string
|
37 |
splits:
|
38 |
- name: train
|
39 |
-
num_bytes:
|
40 |
-
num_examples:
|
41 |
- name: test
|
42 |
-
num_bytes:
|
43 |
-
num_examples:
|
44 |
- name: validation
|
45 |
-
num_bytes:
|
46 |
-
num_examples:
|
47 |
-
download_size:
|
48 |
-
dataset_size:
|
49 |
-
- config_name:
|
50 |
features:
|
51 |
- name: documents
|
52 |
sequence: string
|
@@ -62,16 +62,25 @@ dataset_info:
|
|
62 |
sequence: string
|
63 |
splits:
|
64 |
- name: train
|
65 |
-
num_bytes:
|
66 |
-
num_examples:
|
67 |
- name: test
|
68 |
-
num_bytes:
|
69 |
-
num_examples:
|
70 |
- name: validation
|
71 |
-
num_bytes:
|
72 |
-
num_examples:
|
73 |
-
download_size:
|
74 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
---
|
76 |
# Dataset Card for C3
|
77 |
|
|
|
20 |
paperswithcode_id: c3
|
21 |
pretty_name: C3
|
22 |
dataset_info:
|
23 |
+
- config_name: dialog
|
24 |
features:
|
25 |
- name: documents
|
26 |
sequence: string
|
|
|
36 |
sequence: string
|
37 |
splits:
|
38 |
- name: train
|
39 |
+
num_bytes: 2039779
|
40 |
+
num_examples: 4885
|
41 |
- name: test
|
42 |
+
num_bytes: 646955
|
43 |
+
num_examples: 1627
|
44 |
- name: validation
|
45 |
+
num_bytes: 611106
|
46 |
+
num_examples: 1628
|
47 |
+
download_size: 2073256
|
48 |
+
dataset_size: 3297840
|
49 |
+
- config_name: mixed
|
50 |
features:
|
51 |
- name: documents
|
52 |
sequence: string
|
|
|
62 |
sequence: string
|
63 |
splits:
|
64 |
- name: train
|
65 |
+
num_bytes: 2710513
|
66 |
+
num_examples: 3138
|
67 |
- name: test
|
68 |
+
num_bytes: 891619
|
69 |
+
num_examples: 1045
|
70 |
- name: validation
|
71 |
+
num_bytes: 910799
|
72 |
+
num_examples: 1046
|
73 |
+
download_size: 5481785
|
74 |
+
dataset_size: 4512931
|
75 |
+
configs:
|
76 |
+
- config_name: dialog
|
77 |
+
data_files:
|
78 |
+
- split: train
|
79 |
+
path: dialog/train-*
|
80 |
+
- split: test
|
81 |
+
path: dialog/test-*
|
82 |
+
- split: validation
|
83 |
+
path: dialog/validation-*
|
84 |
---
|
85 |
# Dataset Card for C3
|
86 |
|
dataset_infos.json
CHANGED
@@ -1 +1,172 @@
|
|
1 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mixed": {
|
3 |
+
"description": "Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.\nWe present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.\n",
|
4 |
+
"citation": "@article{sun2019investigating,\n title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},\n author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},\n journal={Transactions of the Association for Computational Linguistics},\n year={2020},\n url={https://arxiv.org/abs/1904.09679v3}\n}\n",
|
5 |
+
"homepage": "https://github.com/nlpdata/c3",
|
6 |
+
"license": "",
|
7 |
+
"features": {
|
8 |
+
"documents": {
|
9 |
+
"feature": {
|
10 |
+
"dtype": "string",
|
11 |
+
"id": null,
|
12 |
+
"_type": "Value"
|
13 |
+
},
|
14 |
+
"length": -1,
|
15 |
+
"id": null,
|
16 |
+
"_type": "Sequence"
|
17 |
+
},
|
18 |
+
"document_id": {
|
19 |
+
"dtype": "string",
|
20 |
+
"id": null,
|
21 |
+
"_type": "Value"
|
22 |
+
},
|
23 |
+
"questions": {
|
24 |
+
"feature": {
|
25 |
+
"question": {
|
26 |
+
"dtype": "string",
|
27 |
+
"id": null,
|
28 |
+
"_type": "Value"
|
29 |
+
},
|
30 |
+
"answer": {
|
31 |
+
"dtype": "string",
|
32 |
+
"id": null,
|
33 |
+
"_type": "Value"
|
34 |
+
},
|
35 |
+
"choice": {
|
36 |
+
"feature": {
|
37 |
+
"dtype": "string",
|
38 |
+
"id": null,
|
39 |
+
"_type": "Value"
|
40 |
+
},
|
41 |
+
"length": -1,
|
42 |
+
"id": null,
|
43 |
+
"_type": "Sequence"
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"length": -1,
|
47 |
+
"id": null,
|
48 |
+
"_type": "Sequence"
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"post_processed": null,
|
52 |
+
"supervised_keys": null,
|
53 |
+
"builder_name": "c3",
|
54 |
+
"config_name": "mixed",
|
55 |
+
"version": {
|
56 |
+
"version_str": "1.0.0",
|
57 |
+
"description": null,
|
58 |
+
"major": 1,
|
59 |
+
"minor": 0,
|
60 |
+
"patch": 0
|
61 |
+
},
|
62 |
+
"splits": {
|
63 |
+
"train": {
|
64 |
+
"name": "train",
|
65 |
+
"num_bytes": 2710513,
|
66 |
+
"num_examples": 3138,
|
67 |
+
"dataset_name": "c3"
|
68 |
+
},
|
69 |
+
"test": {
|
70 |
+
"name": "test",
|
71 |
+
"num_bytes": 891619,
|
72 |
+
"num_examples": 1045,
|
73 |
+
"dataset_name": "c3"
|
74 |
+
},
|
75 |
+
"validation": {
|
76 |
+
"name": "validation",
|
77 |
+
"num_bytes": 910799,
|
78 |
+
"num_examples": 1046,
|
79 |
+
"dataset_name": "c3"
|
80 |
+
}
|
81 |
+
},
|
82 |
+
"download_checksums": {
|
83 |
+
"https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-train.json": {
|
84 |
+
"num_bytes": 3292571,
|
85 |
+
"checksum": "4c84a534f1eec2c72e5f60f0c044cc39e2e42a88df01134e677e03217472d6af"
|
86 |
+
},
|
87 |
+
"https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-test.json": {
|
88 |
+
"num_bytes": 1085489,
|
89 |
+
"checksum": "7d8074be56cf574536a3284bc2d6b04d137694d5e5f5b1368143c0cf3e336822"
|
90 |
+
},
|
91 |
+
"https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-dev.json": {
|
92 |
+
"num_bytes": 1103725,
|
93 |
+
"checksum": "357d0d8d2a29bc845cbe50e048c263629f5e527b70f24c3e0838c387c8d3cb54"
|
94 |
+
}
|
95 |
+
},
|
96 |
+
"download_size": 5481785,
|
97 |
+
"post_processing_size": null,
|
98 |
+
"dataset_size": 4512931,
|
99 |
+
"size_in_bytes": 9994716
|
100 |
+
},
|
101 |
+
"dialog": {
|
102 |
+
"description": "Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.\nWe present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.\n",
|
103 |
+
"citation": "@article{sun2019investigating,\n title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},\n author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},\n journal={Transactions of the Association for Computational Linguistics},\n year={2020},\n url={https://arxiv.org/abs/1904.09679v3}\n}\n",
|
104 |
+
"homepage": "https://github.com/nlpdata/c3",
|
105 |
+
"license": "",
|
106 |
+
"features": {
|
107 |
+
"documents": {
|
108 |
+
"feature": {
|
109 |
+
"dtype": "string",
|
110 |
+
"_type": "Value"
|
111 |
+
},
|
112 |
+
"_type": "Sequence"
|
113 |
+
},
|
114 |
+
"document_id": {
|
115 |
+
"dtype": "string",
|
116 |
+
"_type": "Value"
|
117 |
+
},
|
118 |
+
"questions": {
|
119 |
+
"feature": {
|
120 |
+
"question": {
|
121 |
+
"dtype": "string",
|
122 |
+
"_type": "Value"
|
123 |
+
},
|
124 |
+
"answer": {
|
125 |
+
"dtype": "string",
|
126 |
+
"_type": "Value"
|
127 |
+
},
|
128 |
+
"choice": {
|
129 |
+
"feature": {
|
130 |
+
"dtype": "string",
|
131 |
+
"_type": "Value"
|
132 |
+
},
|
133 |
+
"_type": "Sequence"
|
134 |
+
}
|
135 |
+
},
|
136 |
+
"_type": "Sequence"
|
137 |
+
}
|
138 |
+
},
|
139 |
+
"builder_name": "parquet",
|
140 |
+
"dataset_name": "c3",
|
141 |
+
"config_name": "dialog",
|
142 |
+
"version": {
|
143 |
+
"version_str": "1.0.0",
|
144 |
+
"major": 1,
|
145 |
+
"minor": 0,
|
146 |
+
"patch": 0
|
147 |
+
},
|
148 |
+
"splits": {
|
149 |
+
"train": {
|
150 |
+
"name": "train",
|
151 |
+
"num_bytes": 2039779,
|
152 |
+
"num_examples": 4885,
|
153 |
+
"dataset_name": null
|
154 |
+
},
|
155 |
+
"test": {
|
156 |
+
"name": "test",
|
157 |
+
"num_bytes": 646955,
|
158 |
+
"num_examples": 1627,
|
159 |
+
"dataset_name": null
|
160 |
+
},
|
161 |
+
"validation": {
|
162 |
+
"name": "validation",
|
163 |
+
"num_bytes": 611106,
|
164 |
+
"num_examples": 1628,
|
165 |
+
"dataset_name": null
|
166 |
+
}
|
167 |
+
},
|
168 |
+
"download_size": 2073256,
|
169 |
+
"dataset_size": 3297840,
|
170 |
+
"size_in_bytes": 5371096
|
171 |
+
}
|
172 |
+
}
|
dialog/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f967a070707e502bdb8a42d3b49ceb7c2a5aa5c029dc217f5be45320f3858c00
|
3 |
+
size 410376
|
dialog/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abd0860012b5b5ff6246cc4e22326be00c1995b652b72eabfec2824e87735743
|
3 |
+
size 1280573
|
dialog/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a387db4e1337c5855a8d2b05566a7a6334fe58a83eb3db0349e344c65609046
|
3 |
+
size 382307
|