Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Chinese
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
d10d2fe
·
verified ·
1 Parent(s): 92d5052

Convert dataset to Parquet

Browse files

Convert dataset to Parquet.

README.md CHANGED
@@ -20,7 +20,7 @@ task_ids:
20
  paperswithcode_id: c3
21
  pretty_name: C3
22
  dataset_info:
23
- - config_name: mixed
24
  features:
25
  - name: documents
26
  sequence: string
@@ -36,17 +36,17 @@ dataset_info:
36
  sequence: string
37
  splits:
38
  - name: train
39
- num_bytes: 2710513
40
- num_examples: 3138
41
  - name: test
42
- num_bytes: 891619
43
- num_examples: 1045
44
  - name: validation
45
- num_bytes: 910799
46
- num_examples: 1046
47
- download_size: 5481785
48
- dataset_size: 4512931
49
- - config_name: dialog
50
  features:
51
  - name: documents
52
  sequence: string
@@ -62,16 +62,25 @@ dataset_info:
62
  sequence: string
63
  splits:
64
  - name: train
65
- num_bytes: 2039819
66
- num_examples: 4885
67
  - name: test
68
- num_bytes: 646995
69
- num_examples: 1627
70
  - name: validation
71
- num_bytes: 611146
72
- num_examples: 1628
73
- download_size: 4352392
74
- dataset_size: 3297960
 
 
 
 
 
 
 
 
 
75
  ---
76
  # Dataset Card for C3
77
 
 
20
  paperswithcode_id: c3
21
  pretty_name: C3
22
  dataset_info:
23
+ - config_name: dialog
24
  features:
25
  - name: documents
26
  sequence: string
 
36
  sequence: string
37
  splits:
38
  - name: train
39
+ num_bytes: 2039779
40
+ num_examples: 4885
41
  - name: test
42
+ num_bytes: 646955
43
+ num_examples: 1627
44
  - name: validation
45
+ num_bytes: 611106
46
+ num_examples: 1628
47
+ download_size: 2073256
48
+ dataset_size: 3297840
49
+ - config_name: mixed
50
  features:
51
  - name: documents
52
  sequence: string
 
62
  sequence: string
63
  splits:
64
  - name: train
65
+ num_bytes: 2710513
66
+ num_examples: 3138
67
  - name: test
68
+ num_bytes: 891619
69
+ num_examples: 1045
70
  - name: validation
71
+ num_bytes: 910799
72
+ num_examples: 1046
73
+ download_size: 5481785
74
+ dataset_size: 4512931
75
+ configs:
76
+ - config_name: dialog
77
+ data_files:
78
+ - split: train
79
+ path: dialog/train-*
80
+ - split: test
81
+ path: dialog/test-*
82
+ - split: validation
83
+ path: dialog/validation-*
84
  ---
85
  # Dataset Card for C3
86
 
dataset_infos.json CHANGED
@@ -1 +1,172 @@
1
- {"mixed": {"description": "Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.\nWe present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.\n", "citation": "@article{sun2019investigating,\n title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},\n author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},\n journal={Transactions of the Association for Computational Linguistics},\n year={2020},\n url={https://arxiv.org/abs/1904.09679v3}\n}\n", "homepage": "https://github.com/nlpdata/c3", "license": "", "features": {"documents": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "questions": {"feature": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "choice": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "c3", "config_name": "mixed", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2710513, "num_examples": 3138, "dataset_name": "c3"}, "test": {"name": "test", "num_bytes": 891619, "num_examples": 1045, "dataset_name": "c3"}, "validation": {"name": "validation", "num_bytes": 910799, "num_examples": 1046, "dataset_name": "c3"}}, "download_checksums": {"https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-train.json": {"num_bytes": 3292571, "checksum": "4c84a534f1eec2c72e5f60f0c044cc39e2e42a88df01134e677e03217472d6af"}, "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-test.json": {"num_bytes": 1085489, "checksum": "7d8074be56cf574536a3284bc2d6b04d137694d5e5f5b1368143c0cf3e336822"}, "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-dev.json": {"num_bytes": 1103725, "checksum": "357d0d8d2a29bc845cbe50e048c263629f5e527b70f24c3e0838c387c8d3cb54"}}, "download_size": 5481785, "post_processing_size": null, "dataset_size": 4512931, "size_in_bytes": 9994716}, "dialog": {"description": "Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.\nWe present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.\n", "citation": "@article{sun2019investigating,\n title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},\n author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},\n journal={Transactions of the Association for Computational Linguistics},\n year={2020},\n url={https://arxiv.org/abs/1904.09679v3}\n}\n", "homepage": "https://github.com/nlpdata/c3", "license": "", "features": {"documents": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "questions": {"feature": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "choice": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "c3", "config_name": "dialog", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2039819, "num_examples": 4885, "dataset_name": "c3"}, "test": {"name": "test", "num_bytes": 646995, "num_examples": 1627, "dataset_name": "c3"}, "validation": {"name": "validation", "num_bytes": 611146, "num_examples": 1628, "dataset_name": "c3"}}, "download_checksums": {"https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-d-train.json": {"num_bytes": 2683529, "checksum": "baf81f327dee84c6f451c9a4dd662e6193c67473b8791ffb72cce75cdb528f20"}, "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-d-test.json": {"num_bytes": 855404, "checksum": "e9920491b31f9d00ecf31e51727b495dd6b0d05f4a96f273a343e81b6775a8f0"}, "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-d-dev.json": {"num_bytes": 813459, "checksum": "8c7054930a40aeb288ad7c51c42fa93d54aef678ccab29c75d46a7432f4f6278"}}, "download_size": 4352392, "post_processing_size": null, "dataset_size": 3297960, "size_in_bytes": 7650352}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "mixed": {
3
+ "description": "Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.\nWe present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.\n",
4
+ "citation": "@article{sun2019investigating,\n title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},\n author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},\n journal={Transactions of the Association for Computational Linguistics},\n year={2020},\n url={https://arxiv.org/abs/1904.09679v3}\n}\n",
5
+ "homepage": "https://github.com/nlpdata/c3",
6
+ "license": "",
7
+ "features": {
8
+ "documents": {
9
+ "feature": {
10
+ "dtype": "string",
11
+ "id": null,
12
+ "_type": "Value"
13
+ },
14
+ "length": -1,
15
+ "id": null,
16
+ "_type": "Sequence"
17
+ },
18
+ "document_id": {
19
+ "dtype": "string",
20
+ "id": null,
21
+ "_type": "Value"
22
+ },
23
+ "questions": {
24
+ "feature": {
25
+ "question": {
26
+ "dtype": "string",
27
+ "id": null,
28
+ "_type": "Value"
29
+ },
30
+ "answer": {
31
+ "dtype": "string",
32
+ "id": null,
33
+ "_type": "Value"
34
+ },
35
+ "choice": {
36
+ "feature": {
37
+ "dtype": "string",
38
+ "id": null,
39
+ "_type": "Value"
40
+ },
41
+ "length": -1,
42
+ "id": null,
43
+ "_type": "Sequence"
44
+ }
45
+ },
46
+ "length": -1,
47
+ "id": null,
48
+ "_type": "Sequence"
49
+ }
50
+ },
51
+ "post_processed": null,
52
+ "supervised_keys": null,
53
+ "builder_name": "c3",
54
+ "config_name": "mixed",
55
+ "version": {
56
+ "version_str": "1.0.0",
57
+ "description": null,
58
+ "major": 1,
59
+ "minor": 0,
60
+ "patch": 0
61
+ },
62
+ "splits": {
63
+ "train": {
64
+ "name": "train",
65
+ "num_bytes": 2710513,
66
+ "num_examples": 3138,
67
+ "dataset_name": "c3"
68
+ },
69
+ "test": {
70
+ "name": "test",
71
+ "num_bytes": 891619,
72
+ "num_examples": 1045,
73
+ "dataset_name": "c3"
74
+ },
75
+ "validation": {
76
+ "name": "validation",
77
+ "num_bytes": 910799,
78
+ "num_examples": 1046,
79
+ "dataset_name": "c3"
80
+ }
81
+ },
82
+ "download_checksums": {
83
+ "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-train.json": {
84
+ "num_bytes": 3292571,
85
+ "checksum": "4c84a534f1eec2c72e5f60f0c044cc39e2e42a88df01134e677e03217472d6af"
86
+ },
87
+ "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-test.json": {
88
+ "num_bytes": 1085489,
89
+ "checksum": "7d8074be56cf574536a3284bc2d6b04d137694d5e5f5b1368143c0cf3e336822"
90
+ },
91
+ "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-dev.json": {
92
+ "num_bytes": 1103725,
93
+ "checksum": "357d0d8d2a29bc845cbe50e048c263629f5e527b70f24c3e0838c387c8d3cb54"
94
+ }
95
+ },
96
+ "download_size": 5481785,
97
+ "post_processing_size": null,
98
+ "dataset_size": 4512931,
99
+ "size_in_bytes": 9994716
100
+ },
101
+ "dialog": {
102
+ "description": "Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.\nWe present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.\n",
103
+ "citation": "@article{sun2019investigating,\n title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},\n author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},\n journal={Transactions of the Association for Computational Linguistics},\n year={2020},\n url={https://arxiv.org/abs/1904.09679v3}\n}\n",
104
+ "homepage": "https://github.com/nlpdata/c3",
105
+ "license": "",
106
+ "features": {
107
+ "documents": {
108
+ "feature": {
109
+ "dtype": "string",
110
+ "_type": "Value"
111
+ },
112
+ "_type": "Sequence"
113
+ },
114
+ "document_id": {
115
+ "dtype": "string",
116
+ "_type": "Value"
117
+ },
118
+ "questions": {
119
+ "feature": {
120
+ "question": {
121
+ "dtype": "string",
122
+ "_type": "Value"
123
+ },
124
+ "answer": {
125
+ "dtype": "string",
126
+ "_type": "Value"
127
+ },
128
+ "choice": {
129
+ "feature": {
130
+ "dtype": "string",
131
+ "_type": "Value"
132
+ },
133
+ "_type": "Sequence"
134
+ }
135
+ },
136
+ "_type": "Sequence"
137
+ }
138
+ },
139
+ "builder_name": "parquet",
140
+ "dataset_name": "c3",
141
+ "config_name": "dialog",
142
+ "version": {
143
+ "version_str": "1.0.0",
144
+ "major": 1,
145
+ "minor": 0,
146
+ "patch": 0
147
+ },
148
+ "splits": {
149
+ "train": {
150
+ "name": "train",
151
+ "num_bytes": 2039779,
152
+ "num_examples": 4885,
153
+ "dataset_name": null
154
+ },
155
+ "test": {
156
+ "name": "test",
157
+ "num_bytes": 646955,
158
+ "num_examples": 1627,
159
+ "dataset_name": null
160
+ },
161
+ "validation": {
162
+ "name": "validation",
163
+ "num_bytes": 611106,
164
+ "num_examples": 1628,
165
+ "dataset_name": null
166
+ }
167
+ },
168
+ "download_size": 2073256,
169
+ "dataset_size": 3297840,
170
+ "size_in_bytes": 5371096
171
+ }
172
+ }
dialog/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f967a070707e502bdb8a42d3b49ceb7c2a5aa5c029dc217f5be45320f3858c00
3
+ size 410376
dialog/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abd0860012b5b5ff6246cc4e22326be00c1995b652b72eabfec2824e87735743
3
+ size 1280573
dialog/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a387db4e1337c5855a8d2b05566a7a6334fe58a83eb3db0349e344c65609046
3
+ size 382307