Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Chinese
ArXiv:
Libraries:
Datasets
pandas
License:
system HF staff commited on
Commit
f6c86fe
·
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - expert-generated
6
+ languages:
7
+ - zh
8
+ licenses:
9
+ - other-non-commercial-research
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 1K<n<10K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - question-answering
18
+ task_ids:
19
+ - multiple-choice-qa
20
+ ---
21
+ # Dataset Card Creation Guide
22
+
23
+ ## Table of Contents
24
+ - [Dataset Description](#dataset-description)
25
+ - [Dataset Summary](#dataset-summary)
26
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
27
+ - [Languages](#languages)
28
+ - [Dataset Structure](#dataset-structure)
29
+ - [Data Instances](#data-instances)
30
+ - [Data Fields](#data-instances)
31
+ - [Data Splits](#data-instances)
32
+ - [Dataset Creation](#dataset-creation)
33
+ - [Curation Rationale](#curation-rationale)
34
+ - [Source Data](#source-data)
35
+ - [Annotations](#annotations)
36
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
37
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
38
+ - [Social Impact of Dataset](#social-impact-of-dataset)
39
+ - [Discussion of Biases](#discussion-of-biases)
40
+ - [Other Known Limitations](#other-known-limitations)
41
+ - [Additional Information](#additional-information)
42
+ - [Dataset Curators](#dataset-curators)
43
+ - [Licensing Information](#licensing-information)
44
+ - [Citation Information](#citation-information)
45
+
46
+ ## Dataset Description
47
+
48
+ - **Homepage:** []()
49
+ - **Repository:** [link]()
50
+ - **Paper:** []()
51
+ - **Leaderboard:** []()
52
+ - **Point of Contact:** []()
53
+
54
+ ### Dataset Summary
55
+
56
+ Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.
57
+ We present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.
58
+
59
+ ### Supported Tasks and Leaderboards
60
+
61
+ [More Information Needed]
62
+
63
+ ### Languages
64
+
65
+ [More Information Needed]
66
+
67
+ ## Dataset Structure
68
+
69
+ [More Information Needed]
70
+
71
+ ### Data Instances
72
+
73
+ [More Information Needed]
74
+
75
+ ### Data Fields
76
+
77
+ [More Information Needed]
78
+
79
+ ### Data Splits
80
+
81
+ [More Information Needed]
82
+
83
+ ## Dataset Creation
84
+
85
+
86
+ ### Curation Rationale
87
+
88
+ [More Information Needed]
89
+
90
+ ### Source Data
91
+
92
+ [More Information Needed]
93
+
94
+ #### Initial Data Collection and Normalization
95
+
96
+ [More Information Needed]
97
+
98
+ #### Who are the source language producers?
99
+
100
+ [More Information Needed]
101
+
102
+ ### Annotations
103
+
104
+ [More Information Needed]
105
+
106
+ #### Annotation process
107
+
108
+ [More Information Needed]
109
+
110
+ #### Who are the annotators?
111
+
112
+ [More Information Needed]
113
+
114
+ ### Personal and Sensitive Information
115
+
116
+ [More Information Needed]
117
+
118
+ ## Considerations for Using the Data
119
+
120
+ ### Social Impact of Dataset
121
+
122
+ [More Information Needed]
123
+
124
+ ### Discussion of Biases
125
+
126
+ [More Information Needed]
127
+
128
+ ### Other Known Limitations
129
+
130
+ [More Information Needed]
131
+
132
+ ## Additional Information
133
+
134
+ ### Dataset Curators
135
+
136
+ [More Information Needed]
137
+
138
+ ### Licensing Information
139
+
140
+ [More Information Needed]
141
+
142
+ ### Citation Information
143
+
144
+ ```
145
+ @article{sun2019investigating,
146
+ title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},
147
+ author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},
148
+ journal={Transactions of the Association for Computational Linguistics},
149
+ year={2020},
150
+ url={https://arxiv.org/abs/1904.09679v3}
151
+ }
152
+ ```
153
+
c3.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """C3 Parallel Corpora"""
16
+
17
+ from __future__ import absolute_import, division, print_function
18
+
19
+ import json
20
+
21
+ import datasets
22
+
23
+
24
+ _CITATION = """\
25
+ @article{sun2019investigating,
26
+ title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},
27
+ author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},
28
+ journal={Transactions of the Association for Computational Linguistics},
29
+ year={2020},
30
+ url={https://arxiv.org/abs/1904.09679v3}
31
+ }
32
+ """
33
+
34
+ _DESCRIPTION = """\
35
+ Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.
36
+ We present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.
37
+ """
38
+
39
+ _URL = "https://raw.githubusercontent.com/nlpdata/c3/master/data/"
40
+
41
+
42
+ class C3Config(datasets.BuilderConfig):
43
+ """ BuilderConfig for NewDataset"""
44
+
45
+ def __init__(self, type_, **kwargs):
46
+ """
47
+
48
+ Args:
49
+ pair: the language pair to consider
50
+ zip_file: The location of zip file containing original data
51
+ **kwargs: keyword arguments forwarded to super.
52
+ """
53
+ self.type_ = type_
54
+ super().__init__(**kwargs)
55
+
56
+
57
+ class C3(datasets.GeneratorBasedBuilder):
58
+ """C3 is the first free-form multiple-Choice Chinese machine reading Comprehension dataset, containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second language examinations."""
59
+
60
+ VERSION = datasets.Version("1.0.0")
61
+
62
+ # This is an example of a dataset with multiple configurations.
63
+ # If you don't want/need to define several sub-sets in your dataset,
64
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
65
+ BUILDER_CONFIG_CLASS = C3Config
66
+ BUILDER_CONFIGS = [
67
+ C3Config(
68
+ name="mixed",
69
+ description="Mixed genre questions",
70
+ version=datasets.Version("1.0.0"),
71
+ type_="mixed",
72
+ ),
73
+ C3Config(
74
+ name="dialog",
75
+ description="Dialog questions",
76
+ version=datasets.Version("1.0.0"),
77
+ type_="dialog",
78
+ ),
79
+ ]
80
+
81
+ def _info(self):
82
+ return datasets.DatasetInfo(
83
+ # This is the description that will appear on the datasets page.
84
+ description=_DESCRIPTION,
85
+ # datasets.features.FeatureConnectors
86
+ features=datasets.Features(
87
+ {
88
+ "documents": datasets.Sequence(datasets.Value("string")),
89
+ "document_id": datasets.Value("string"),
90
+ "questions": datasets.Sequence(
91
+ {
92
+ "question": datasets.Value("string"),
93
+ "answer": datasets.Value("string"),
94
+ "choice": datasets.Sequence(datasets.Value("string")),
95
+ }
96
+ ),
97
+ }
98
+ ),
99
+ # If there's a common (input, target) tuple from the features,
100
+ # specify them here. They'll be used if as_supervised=True in
101
+ # builder.as_dataset.
102
+ supervised_keys=None,
103
+ # Homepage of the dataset for documentation
104
+ homepage="https://github.com/nlpdata/c3",
105
+ citation=_CITATION,
106
+ )
107
+
108
+ def _split_generators(self, dl_manager):
109
+ # m or d
110
+ T = self.config.type_[0]
111
+ files = [_URL + f"c3-{T}-{split}.json" for split in ["train", "test", "dev"]]
112
+ dl_dir = dl_manager.download_and_extract(files)
113
+
114
+ return [
115
+ datasets.SplitGenerator(
116
+ name=datasets.Split.TRAIN,
117
+ # These kwargs will be passed to _generate_examples
118
+ gen_kwargs={
119
+ "filename": dl_dir[0],
120
+ "split": "train",
121
+ },
122
+ ),
123
+ datasets.SplitGenerator(
124
+ name=datasets.Split.TEST,
125
+ # These kwargs will be passed to _generate_examples
126
+ gen_kwargs={
127
+ "filename": dl_dir[1],
128
+ "split": "test",
129
+ },
130
+ ),
131
+ datasets.SplitGenerator(
132
+ name=datasets.Split.VALIDATION,
133
+ # These kwargs will be passed to _generate_examples
134
+ gen_kwargs={
135
+ "filename": dl_dir[2],
136
+ "split": "dev",
137
+ },
138
+ ),
139
+ ]
140
+
141
+ def _generate_examples(self, filename, split):
142
+ """ Yields examples. """
143
+ with open(filename, "r", encoding="utf-8") as sf:
144
+ data = json.load(sf)
145
+ for id_, (documents, questions, document_id) in enumerate(data):
146
+ yield id_, {
147
+ "documents": documents,
148
+ "questions": questions,
149
+ "document_id": document_id,
150
+ }
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mixed": {"description": "Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.\nWe present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.\n", "citation": "@article{sun2019investigating,\n title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},\n author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},\n journal={Transactions of the Association for Computational Linguistics},\n year={2020},\n url={https://arxiv.org/abs/1904.09679v3}\n}\n", "homepage": "https://github.com/nlpdata/c3", "license": "", "features": {"documents": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "questions": {"feature": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "choice": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "c3", "config_name": "mixed", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2710513, "num_examples": 3138, "dataset_name": "c3"}, "test": {"name": "test", "num_bytes": 891619, "num_examples": 1045, "dataset_name": "c3"}, "validation": {"name": "validation", "num_bytes": 910799, "num_examples": 1046, "dataset_name": "c3"}}, "download_checksums": {"https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-train.json": {"num_bytes": 3292571, "checksum": "4c84a534f1eec2c72e5f60f0c044cc39e2e42a88df01134e677e03217472d6af"}, "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-test.json": {"num_bytes": 1085489, "checksum": "7d8074be56cf574536a3284bc2d6b04d137694d5e5f5b1368143c0cf3e336822"}, "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-dev.json": {"num_bytes": 1103725, "checksum": "357d0d8d2a29bc845cbe50e048c263629f5e527b70f24c3e0838c387c8d3cb54"}}, "download_size": 5481785, "post_processing_size": null, "dataset_size": 4512931, "size_in_bytes": 9994716}, "dialog": {"description": "Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.\nWe present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.\n", "citation": "@article{sun2019investigating,\n title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},\n author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},\n journal={Transactions of the Association for Computational Linguistics},\n year={2020},\n url={https://arxiv.org/abs/1904.09679v3}\n}\n", "homepage": "https://github.com/nlpdata/c3", "license": "", "features": {"documents": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "questions": {"feature": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "choice": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "c3", "config_name": "dialog", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2039819, "num_examples": 4885, "dataset_name": "c3"}, "test": {"name": "test", "num_bytes": 646995, "num_examples": 1627, "dataset_name": "c3"}, "validation": {"name": "validation", "num_bytes": 611146, "num_examples": 1628, "dataset_name": "c3"}}, "download_checksums": {"https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-d-train.json": {"num_bytes": 2683529, "checksum": "baf81f327dee84c6f451c9a4dd662e6193c67473b8791ffb72cce75cdb528f20"}, "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-d-test.json": {"num_bytes": 855404, "checksum": "e9920491b31f9d00ecf31e51727b495dd6b0d05f4a96f273a343e81b6775a8f0"}, "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-d-dev.json": {"num_bytes": 813459, "checksum": "8c7054930a40aeb288ad7c51c42fa93d54aef678ccab29c75d46a7432f4f6278"}}, "download_size": 4352392, "post_processing_size": null, "dataset_size": 3297960, "size_in_bytes": 7650352}}
dummy/dialog/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5dd1dda10cd6727507c44beda9f1658ea31102b2c8a8a38e49ec66782aaf8eb
3
+ size 5405
dummy/mixed/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c46de575ba14a735828477b8db48d30f0a5fd82447d633e5f5af385cda8cd4a
3
+ size 7712