Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
Chinese
Size:
10K - 100K
ArXiv:
License:
Commit
·
f6c86fe
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +153 -0
- c3.py +150 -0
- dataset_infos.json +1 -0
- dummy/dialog/1.0.0/dummy_data.zip +3 -0
- dummy/mixed/1.0.0/dummy_data.zip +3 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language_creators:
|
5 |
+
- expert-generated
|
6 |
+
languages:
|
7 |
+
- zh
|
8 |
+
licenses:
|
9 |
+
- other-non-commercial-research
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 1K<n<10K
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- question-answering
|
18 |
+
task_ids:
|
19 |
+
- multiple-choice-qa
|
20 |
+
---
|
21 |
+
# Dataset Card Creation Guide
|
22 |
+
|
23 |
+
## Table of Contents
|
24 |
+
- [Dataset Description](#dataset-description)
|
25 |
+
- [Dataset Summary](#dataset-summary)
|
26 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
27 |
+
- [Languages](#languages)
|
28 |
+
- [Dataset Structure](#dataset-structure)
|
29 |
+
- [Data Instances](#data-instances)
|
30 |
+
- [Data Fields](#data-instances)
|
31 |
+
- [Data Splits](#data-instances)
|
32 |
+
- [Dataset Creation](#dataset-creation)
|
33 |
+
- [Curation Rationale](#curation-rationale)
|
34 |
+
- [Source Data](#source-data)
|
35 |
+
- [Annotations](#annotations)
|
36 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
37 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
38 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
39 |
+
- [Discussion of Biases](#discussion-of-biases)
|
40 |
+
- [Other Known Limitations](#other-known-limitations)
|
41 |
+
- [Additional Information](#additional-information)
|
42 |
+
- [Dataset Curators](#dataset-curators)
|
43 |
+
- [Licensing Information](#licensing-information)
|
44 |
+
- [Citation Information](#citation-information)
|
45 |
+
|
46 |
+
## Dataset Description
|
47 |
+
|
48 |
+
- **Homepage:** []()
|
49 |
+
- **Repository:** [link]()
|
50 |
+
- **Paper:** []()
|
51 |
+
- **Leaderboard:** []()
|
52 |
+
- **Point of Contact:** []()
|
53 |
+
|
54 |
+
### Dataset Summary
|
55 |
+
|
56 |
+
Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.
|
57 |
+
We present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.
|
58 |
+
|
59 |
+
### Supported Tasks and Leaderboards
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Languages
|
64 |
+
|
65 |
+
[More Information Needed]
|
66 |
+
|
67 |
+
## Dataset Structure
|
68 |
+
|
69 |
+
[More Information Needed]
|
70 |
+
|
71 |
+
### Data Instances
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
### Data Fields
|
76 |
+
|
77 |
+
[More Information Needed]
|
78 |
+
|
79 |
+
### Data Splits
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
## Dataset Creation
|
84 |
+
|
85 |
+
|
86 |
+
### Curation Rationale
|
87 |
+
|
88 |
+
[More Information Needed]
|
89 |
+
|
90 |
+
### Source Data
|
91 |
+
|
92 |
+
[More Information Needed]
|
93 |
+
|
94 |
+
#### Initial Data Collection and Normalization
|
95 |
+
|
96 |
+
[More Information Needed]
|
97 |
+
|
98 |
+
#### Who are the source language producers?
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
### Annotations
|
103 |
+
|
104 |
+
[More Information Needed]
|
105 |
+
|
106 |
+
#### Annotation process
|
107 |
+
|
108 |
+
[More Information Needed]
|
109 |
+
|
110 |
+
#### Who are the annotators?
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
### Personal and Sensitive Information
|
115 |
+
|
116 |
+
[More Information Needed]
|
117 |
+
|
118 |
+
## Considerations for Using the Data
|
119 |
+
|
120 |
+
### Social Impact of Dataset
|
121 |
+
|
122 |
+
[More Information Needed]
|
123 |
+
|
124 |
+
### Discussion of Biases
|
125 |
+
|
126 |
+
[More Information Needed]
|
127 |
+
|
128 |
+
### Other Known Limitations
|
129 |
+
|
130 |
+
[More Information Needed]
|
131 |
+
|
132 |
+
## Additional Information
|
133 |
+
|
134 |
+
### Dataset Curators
|
135 |
+
|
136 |
+
[More Information Needed]
|
137 |
+
|
138 |
+
### Licensing Information
|
139 |
+
|
140 |
+
[More Information Needed]
|
141 |
+
|
142 |
+
### Citation Information
|
143 |
+
|
144 |
+
```
|
145 |
+
@article{sun2019investigating,
|
146 |
+
title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},
|
147 |
+
author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},
|
148 |
+
journal={Transactions of the Association for Computational Linguistics},
|
149 |
+
year={2020},
|
150 |
+
url={https://arxiv.org/abs/1904.09679v3}
|
151 |
+
}
|
152 |
+
```
|
153 |
+
|
c3.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""C3 Parallel Corpora"""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import json
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
|
24 |
+
_CITATION = """\
|
25 |
+
@article{sun2019investigating,
|
26 |
+
title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},
|
27 |
+
author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},
|
28 |
+
journal={Transactions of the Association for Computational Linguistics},
|
29 |
+
year={2020},
|
30 |
+
url={https://arxiv.org/abs/1904.09679v3}
|
31 |
+
}
|
32 |
+
"""
|
33 |
+
|
34 |
+
_DESCRIPTION = """\
|
35 |
+
Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.
|
36 |
+
We present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.
|
37 |
+
"""
|
38 |
+
|
39 |
+
_URL = "https://raw.githubusercontent.com/nlpdata/c3/master/data/"
|
40 |
+
|
41 |
+
|
42 |
+
class C3Config(datasets.BuilderConfig):
|
43 |
+
""" BuilderConfig for NewDataset"""
|
44 |
+
|
45 |
+
def __init__(self, type_, **kwargs):
|
46 |
+
"""
|
47 |
+
|
48 |
+
Args:
|
49 |
+
pair: the language pair to consider
|
50 |
+
zip_file: The location of zip file containing original data
|
51 |
+
**kwargs: keyword arguments forwarded to super.
|
52 |
+
"""
|
53 |
+
self.type_ = type_
|
54 |
+
super().__init__(**kwargs)
|
55 |
+
|
56 |
+
|
57 |
+
class C3(datasets.GeneratorBasedBuilder):
|
58 |
+
"""C3 is the first free-form multiple-Choice Chinese machine reading Comprehension dataset, containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second language examinations."""
|
59 |
+
|
60 |
+
VERSION = datasets.Version("1.0.0")
|
61 |
+
|
62 |
+
# This is an example of a dataset with multiple configurations.
|
63 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
64 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
65 |
+
BUILDER_CONFIG_CLASS = C3Config
|
66 |
+
BUILDER_CONFIGS = [
|
67 |
+
C3Config(
|
68 |
+
name="mixed",
|
69 |
+
description="Mixed genre questions",
|
70 |
+
version=datasets.Version("1.0.0"),
|
71 |
+
type_="mixed",
|
72 |
+
),
|
73 |
+
C3Config(
|
74 |
+
name="dialog",
|
75 |
+
description="Dialog questions",
|
76 |
+
version=datasets.Version("1.0.0"),
|
77 |
+
type_="dialog",
|
78 |
+
),
|
79 |
+
]
|
80 |
+
|
81 |
+
def _info(self):
|
82 |
+
return datasets.DatasetInfo(
|
83 |
+
# This is the description that will appear on the datasets page.
|
84 |
+
description=_DESCRIPTION,
|
85 |
+
# datasets.features.FeatureConnectors
|
86 |
+
features=datasets.Features(
|
87 |
+
{
|
88 |
+
"documents": datasets.Sequence(datasets.Value("string")),
|
89 |
+
"document_id": datasets.Value("string"),
|
90 |
+
"questions": datasets.Sequence(
|
91 |
+
{
|
92 |
+
"question": datasets.Value("string"),
|
93 |
+
"answer": datasets.Value("string"),
|
94 |
+
"choice": datasets.Sequence(datasets.Value("string")),
|
95 |
+
}
|
96 |
+
),
|
97 |
+
}
|
98 |
+
),
|
99 |
+
# If there's a common (input, target) tuple from the features,
|
100 |
+
# specify them here. They'll be used if as_supervised=True in
|
101 |
+
# builder.as_dataset.
|
102 |
+
supervised_keys=None,
|
103 |
+
# Homepage of the dataset for documentation
|
104 |
+
homepage="https://github.com/nlpdata/c3",
|
105 |
+
citation=_CITATION,
|
106 |
+
)
|
107 |
+
|
108 |
+
def _split_generators(self, dl_manager):
|
109 |
+
# m or d
|
110 |
+
T = self.config.type_[0]
|
111 |
+
files = [_URL + f"c3-{T}-{split}.json" for split in ["train", "test", "dev"]]
|
112 |
+
dl_dir = dl_manager.download_and_extract(files)
|
113 |
+
|
114 |
+
return [
|
115 |
+
datasets.SplitGenerator(
|
116 |
+
name=datasets.Split.TRAIN,
|
117 |
+
# These kwargs will be passed to _generate_examples
|
118 |
+
gen_kwargs={
|
119 |
+
"filename": dl_dir[0],
|
120 |
+
"split": "train",
|
121 |
+
},
|
122 |
+
),
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TEST,
|
125 |
+
# These kwargs will be passed to _generate_examples
|
126 |
+
gen_kwargs={
|
127 |
+
"filename": dl_dir[1],
|
128 |
+
"split": "test",
|
129 |
+
},
|
130 |
+
),
|
131 |
+
datasets.SplitGenerator(
|
132 |
+
name=datasets.Split.VALIDATION,
|
133 |
+
# These kwargs will be passed to _generate_examples
|
134 |
+
gen_kwargs={
|
135 |
+
"filename": dl_dir[2],
|
136 |
+
"split": "dev",
|
137 |
+
},
|
138 |
+
),
|
139 |
+
]
|
140 |
+
|
141 |
+
def _generate_examples(self, filename, split):
|
142 |
+
""" Yields examples. """
|
143 |
+
with open(filename, "r", encoding="utf-8") as sf:
|
144 |
+
data = json.load(sf)
|
145 |
+
for id_, (documents, questions, document_id) in enumerate(data):
|
146 |
+
yield id_, {
|
147 |
+
"documents": documents,
|
148 |
+
"questions": questions,
|
149 |
+
"document_id": document_id,
|
150 |
+
}
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mixed": {"description": "Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.\nWe present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.\n", "citation": "@article{sun2019investigating,\n title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},\n author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},\n journal={Transactions of the Association for Computational Linguistics},\n year={2020},\n url={https://arxiv.org/abs/1904.09679v3}\n}\n", "homepage": "https://github.com/nlpdata/c3", "license": "", "features": {"documents": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "questions": {"feature": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "choice": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "c3", "config_name": "mixed", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2710513, "num_examples": 3138, "dataset_name": "c3"}, "test": {"name": "test", "num_bytes": 891619, "num_examples": 1045, "dataset_name": "c3"}, "validation": {"name": "validation", "num_bytes": 910799, "num_examples": 1046, "dataset_name": "c3"}}, "download_checksums": {"https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-train.json": {"num_bytes": 3292571, "checksum": "4c84a534f1eec2c72e5f60f0c044cc39e2e42a88df01134e677e03217472d6af"}, "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-test.json": {"num_bytes": 1085489, "checksum": "7d8074be56cf574536a3284bc2d6b04d137694d5e5f5b1368143c0cf3e336822"}, "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-dev.json": {"num_bytes": 1103725, "checksum": "357d0d8d2a29bc845cbe50e048c263629f5e527b70f24c3e0838c387c8d3cb54"}}, "download_size": 5481785, "post_processing_size": null, "dataset_size": 4512931, "size_in_bytes": 9994716}, "dialog": {"description": "Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.\nWe present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.\n", "citation": "@article{sun2019investigating,\n title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},\n author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},\n journal={Transactions of the Association for Computational Linguistics},\n year={2020},\n url={https://arxiv.org/abs/1904.09679v3}\n}\n", "homepage": "https://github.com/nlpdata/c3", "license": "", "features": {"documents": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "questions": {"feature": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "choice": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "c3", "config_name": "dialog", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2039819, "num_examples": 4885, "dataset_name": "c3"}, "test": {"name": "test", "num_bytes": 646995, "num_examples": 1627, "dataset_name": "c3"}, "validation": {"name": "validation", "num_bytes": 611146, "num_examples": 1628, "dataset_name": "c3"}}, "download_checksums": {"https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-d-train.json": {"num_bytes": 2683529, "checksum": "baf81f327dee84c6f451c9a4dd662e6193c67473b8791ffb72cce75cdb528f20"}, "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-d-test.json": {"num_bytes": 855404, "checksum": "e9920491b31f9d00ecf31e51727b495dd6b0d05f4a96f273a343e81b6775a8f0"}, "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-d-dev.json": {"num_bytes": 813459, "checksum": "8c7054930a40aeb288ad7c51c42fa93d54aef678ccab29c75d46a7432f4f6278"}}, "download_size": 4352392, "post_processing_size": null, "dataset_size": 3297960, "size_in_bytes": 7650352}}
|
dummy/dialog/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5dd1dda10cd6727507c44beda9f1658ea31102b2c8a8a38e49ec66782aaf8eb
|
3 |
+
size 5405
|
dummy/mixed/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c46de575ba14a735828477b8db48d30f0a5fd82447d633e5f5af385cda8cd4a
|
3 |
+
size 7712
|