Datasets:
Tasks:
Question Answering
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10K<n<100K
License:
# coding=utf-8 | |
# Copyright 2020 HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""DREAM: A Challenge Dataset and Models for Dialogue-Based Reading Comprehension""" | |
import json | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@article{sundream2018, | |
title={{DREAM}: A Challenge Dataset and Models for Dialogue-Based Reading Comprehension}, | |
author={Sun, Kai and Yu, Dian and Chen, Jianshu and Yu, Dong and Choi, Yejin and Cardie, Claire}, | |
journal={Transactions of the Association for Computational Linguistics}, | |
year={2019}, | |
url={https://arxiv.org/abs/1902.00164v1} | |
} | |
""" | |
_DESCRIPTION = """\ | |
DREAM is a multiple-choice Dialogue-based REAding comprehension exaMination dataset. \ | |
In contrast to existing reading comprehension datasets, DREAM is the first to focus on \ | |
in-depth multi-turn multi-party dialogue understanding. | |
""" | |
_URL = "https://raw.githubusercontent.com/nlpdata/dream/master/data/" | |
_URLS = { | |
"train": _URL + "train.json", | |
"dev": _URL + "dev.json", | |
"test": _URL + "test.json", | |
} | |
class DreamConfig(datasets.BuilderConfig): | |
"""BuilderConfig for Dream.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for Dream. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(DreamConfig, self).__init__(**kwargs) | |
class Dream(datasets.GeneratorBasedBuilder): | |
"""DREAM: A Challenge Dataset and Models for Dialogue-Based Reading Comprehension""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
DreamConfig( | |
name="plain_text", | |
version=datasets.Version("1.0.0"), | |
description="plain_text", | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("int32"), | |
"dialogue_id": datasets.Value("string"), | |
"dialogue": datasets.Sequence(datasets.Value("string")), | |
"question": datasets.Value("string"), | |
"choice": datasets.features.Sequence(datasets.Value("string")), | |
"answer": datasets.Value("string"), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://dataset.org/dream/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
downloaded_files = dl_manager.download_and_extract(_URLS) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
dialogues = json.load(f) | |
counter = 0 | |
for dialogue in dialogues: | |
dialogue_text = dialogue[0] | |
questions = dialogue[1] | |
dialogue_id = dialogue[2] | |
for que in questions: | |
yield counter, { | |
"id": counter, | |
"dialogue_id": dialogue_id, | |
"dialogue": dialogue_text, | |
"question": que["question"], | |
"choice": que["choice"], | |
"answer": que["answer"], | |
} | |
counter += 1 | |