File size: 4,892 Bytes
d180a03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import collections
import copy
import glob
import json
import os
import random
import sys
import json5
import jsonpath_ng.ext
import tqdm
REMOVE_KEYS = [
"$comment",
"description",
"title",
]
KEYWORDS = {
"integer": [
"minimum",
"maximum",
"exclusiveMinimum",
"exclusiveMaximum",
"multipleOf",
],
"object": [
"minProperties",
"maxProperties",
],
"string": [
"minLength",
"maxLength",
"format",
"pattern",
],
"array": [
"minContains",
"maxContains",
"minItems",
"maxItems",
"uniqueItems",
],
}
# Numeric and integer types use the same keywords
KEYWORDS["numeric"] = KEYWORDS["integer"]
def find_type_paths(obj, json_type, path=jsonpath_ng.Root()):
if isinstance(obj, dict):
for k, v in obj.items():
# If we have the type keyword and it's value matches, we found one
if k == "type" and v == json_type:
yield path
# Continue recursively through the object's children
yield from find_type_paths(
v, json_type, jsonpath_ng.Child(path, jsonpath_ng.Fields(k))
)
elif isinstance(obj, list):
# Check each list element
for i, v in enumerate(obj):
yield from find_type_paths(
v, json_type, jsonpath_ng.Child(path, jsonpath_ng.Index(i))
)
def write_obj(schema, obj, path, keyword, is_neg):
# Skip any objects that are too large
if len(json.dumps(obj, indent=4)) <= 1024:
print(
json.dumps(
{
"schema": schema,
"obj": obj,
"path": path,
"keyword": keyword,
"is_neg": is_neg,
}
)
)
def build_obj(path, value):
# Build an object with the same shape it has in the entire document
# For example, a path of $.foo.bar[0] would create an object
# that looks like {"foo": {"bar": [value]}}
if isinstance(path, jsonpath_ng.Root):
return value
if isinstance(path.right, (jsonpath_ng.Index, jsonpath_ng.Slice)):
return build_obj(path.left, [value])
elif isinstance(path.right, jsonpath_ng.Fields):
return build_obj(path.left, {path.right.fields[0]: value})
else:
return value
def clean_obj(obj, keep_keyword):
if isinstance(obj, dict):
return {k: clean_obj(v, None) for k, v in obj.items() if k == keep_keyword}
elif isinstance(obj, list):
return [clean_obj(v, keep_keyword) for v in obj]
else:
return obj
def get_examples(data):
neg_pos = collections.defaultdict(lambda: ([], []))
for keyword_type, keywords in KEYWORDS.items():
# Find all schema elements with the given type
found_paths = find_type_paths(data, keyword_type)
for found_path in found_paths:
for found_obj in found_path.find(data):
# For each keyword, check if it is included
for keyword in keywords:
# Append to the 1st or 2nd list depending on
# whether the keyword is used in this object
has_keyword = keyword in found_obj.value
# Remove the keyword since we can't use it to predict
# obj_without_keyword.pop(keyword, None)
obj_without_keyword = clean_obj(found_obj.value, keyword)
# Remove keys we don't expect to have at inference time
for key in REMOVE_KEYS:
obj_without_keyword.pop(key, None)
path_obj = build_obj(found_path, obj_without_keyword)
neg_pos[keyword][has_keyword].append((path_obj, str(found_path)))
return neg_pos
def write_examples(schema, neg_pos):
for keyword, (neg, pos) in neg_pos.items():
# Only include cases where we have at least
# two positive and negative examples
if len(pos) > 1 and len(neg) > 1:
# Write out the positive and negative examples
for pos_item, path in pos:
write_obj(schema, pos_item, path, keyword, False)
# For negative items, generate at most the number of positives
# for (neg_item, path) in random.sample(neg, min(len(pos), len(neg))):
for neg_item, path in neg:
write_obj(schema, neg_item, path, keyword, True)
def main():
schemas = []
for line in sys.stdin:
obj = json.loads(line)
schemas.append(obj)
for schema in tqdm.tqdm(schemas):
data = json5.loads(schema["content"])
neg_pos = get_examples(data)
write_examples(schema["name"], neg_pos)
if __name__ == "__main__":
main()
|