Datasets:

Modalities:
Text
Formats:
json
Languages:
English
Libraries:
Datasets
pandas
License:
json-schema / get_language.py
michaelmior's picture
Add language and license data
f6dd396 verified
raw
history blame
3.42 kB
import json
import os
from pathlib import Path
import re
import sys
from urllib.request import urlretrieve
import fasttext
import tqdm
LANG_THRESHOLD = 0.1
FASTTEXT_MODEL_URL = (
"https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin"
)
JSON_SCHEMA_KEYWORDS = {
"$anchor",
"$comment",
"$defs",
"$dynamicAnchor",
"$dynamicRef",
"$id",
"$recursiveAnchor",
"$recursiveRef",
"$ref",
"$schema",
"$vocabulary",
"additionalItems",
"additionalProperties",
"allOf",
"anyOf",
"const",
"contains",
"contentEncoding",
"contentMediaType",
"contentSchema",
"definitions",
"dependencies",
"dependentRequired",
"dependentSchemas",
"description",
"disallow",
"divisibleBy",
"else",
"enum",
"exclusiveMaximum",
"exclusiveMinimum",
"extends",
"format",
"id",
"if",
"items",
"maxContains",
"maximum",
"maxItems",
"maxLength",
"maxProperties",
"minContains",
"minimum",
"minItems",
"minLength",
"minProperties",
"multipleOf",
"not",
"oneOf",
"pattern",
"patternProperties",
"prefixItems",
"properties",
"propertyNames",
"required",
"then",
"title",
"type",
"unevaluatedItems",
"unevaluatedProperties",
"uniqueItems",
}
IGNORE_KEYWORDS = {
"$id",
"$schema",
"$vocabulary",
"format",
"pattern",
"type",
}
# Adapted from https://stackoverflow.com/a/37697078/123695
def identifier_split(id_str):
return id_str
return " ".join(
re.sub("([A-Z][a-z]+)", r"_\1", re.sub("([A-Z]+)", r"_\1", id_str)).split("_")
)
def collect_text(schema):
"""Generate a string of text from a schema, ignoring keywords"""
text = ""
if isinstance(schema, dict):
for k, v in schema.items():
# Ignore some keywords completely
if k in IGNORE_KEYWORDS:
continue
# If the key is not a keyword, include it
if k not in JSON_SCHEMA_KEYWORDS:
text += " " + identifier_split(k)
text += collect_text(v)
elif isinstance(schema, list):
text += " ".join(collect_text(v) for v in schema)
elif isinstance(schema, str):
# Include any found string values
text += " " + schema
return text.replace("\n", " ")
def get_languages(text):
return {l.split("_")[-1]: p for (l, p) in zip(*model.predict(text, k=5))}
if __name__ == "__main__":
# Download the language model if needed
if not os.path.isfile("lid.176.bin"):
urlretrieve(FASTTEXT_MODEL_URL, "lid.176.bin")
model = fasttext.load_model("lid.176.bin")
files = list(Path("valid_data").rglob("*.json"))
for f in tqdm.tqdm(files):
if not f.is_file():
continue
schema = json.load(f.open(encoding="utf-8"))
schema_str = collect_text(schema)
langs = get_languages(schema_str)
top_lang, prob = max(langs.items(), key=lambda x: x[1])
if prob < LANG_THRESHOLD:
top_lang = None
obj = {
"repository": "/".join(f.parts[1:3]),
"commit": f.parts[3],
"path": str(Path(*f.parts[4:])),
"language": top_lang,
"languages": langs,
}
json.dump(obj, sys.stdout)
sys.stdout.write("\n")