datnguyentien204
commited on
Commit
•
3894c45
1
Parent(s):
48f6835
Upload 38 files
Browse files- LICENSE +201 -0
- README.md +156 -0
- a.txt +21 -0
- data/__init__.py +85 -0
- data/__pycache__/__init__.cpython-37.pyc +0 -0
- data/__pycache__/base_dataset.cpython-37.pyc +0 -0
- data/base_dataset.py +148 -0
- data/day2timelapse_dataset.py +173 -0
- data/daytime_model_lut.csv +550 -0
- imgs_test/zurich_000116_000019_leftImg8bit_1.png +3 -0
- infer.ipynb +390 -0
- logs/pretrained/tensorboard/default/version_0/checkpoints/iter_000000.pth +3 -0
- logs/pretrained/tensorboard/default/version_0/hparams.yaml +105 -0
- networks/__init__.py +52 -0
- networks/__pycache__/__init__.cpython-37.pyc +0 -0
- networks/__pycache__/base_model.cpython-37.pyc +0 -0
- networks/__pycache__/comomunit_model.cpython-37.pyc +0 -0
- networks/backbones/__init__.py +1 -0
- networks/backbones/__pycache__/__init__.cpython-37.pyc +0 -0
- networks/backbones/__pycache__/comomunit.cpython-37.pyc +0 -0
- networks/backbones/__pycache__/functions.cpython-37.pyc +0 -0
- networks/backbones/comomunit.py +706 -0
- networks/backbones/functions.py +87 -0
- networks/base_model.py +113 -0
- networks/comomunit_model.py +396 -0
- options/__init__.py +39 -0
- options/log_options.py +10 -0
- options/train_options.py +21 -0
- requirements.txt +5 -0
- requirements.yml +172 -0
- res/vgg_imagenet.pth +3 -0
- scripts/dump_waymo.py +63 -0
- scripts/sunny_sequences.txt +850 -0
- scripts/translate.py +108 -0
- train.py +59 -0
- util/__init__.py +11 -0
- util/callbacks.py +41 -0
- zurich_000116_000019_leftImg8bit_1.png +3 -0
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright 2021 Vislab/Ambarella
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CoMoGAN: Continuous Model-guided Image-to-Image Translation
|
2 |
+
Official repository.
|
3 |
+
|
4 |
+
## Paper
|
5 |
+
|
6 |
+
<img src="teaser.png" alt="CoMoGAN" width="500" />
|
7 |
+
<img src="sample_result.gif" alt="CoMoGAN" width="500" />
|
8 |
+
|
9 |
+
CoMoGAN: continuous model-guided image-to-image translation \[[arXiv](http://arxiv.org/abs/2103.06879)\] | \[[supp](http://team.inria.fr/rits/files/2021/05/2021-comogan_supp.pdf)\] | \[[teaser](https://www.youtube.com/watch?v=x9fpJNPZgws)\] \
|
10 |
+
[Fabio Pizzati](https://fabvio.github.io/), [Pietro Cerri](https://scholar.google.fr/citations?user=MEidJHwAAAAJ), [Raoul de Charette](https://team.inria.fr/rits/membres/raoul-de-charette/)
|
11 |
+
Inria, Vislab Ambarella. CVPR'21 (**oral**)
|
12 |
+
|
13 |
+
If you find our work useful, please cite:
|
14 |
+
```
|
15 |
+
@inproceedings{pizzati2021comogan,
|
16 |
+
title={{CoMoGAN}: continuous model-guided image-to-image translation},
|
17 |
+
author={Pizzati, Fabio and Cerri, Pietro and de Charette, Raoul},
|
18 |
+
booktitle={CVPR},
|
19 |
+
year={2021}
|
20 |
+
}
|
21 |
+
```
|
22 |
+
|
23 |
+
## Prerequisites
|
24 |
+
Tested with:
|
25 |
+
* Python 3.7
|
26 |
+
* Pytorch 1.7.1
|
27 |
+
* CUDA 11.0
|
28 |
+
* Pytorch Lightning 1.1.8
|
29 |
+
* waymo_open_dataset 1.3.0
|
30 |
+
|
31 |
+
|
32 |
+
## Preparation
|
33 |
+
The repository contains training and inference code for CoMo-MUNIT training on waymo open dataset. In the paper, we refer to this experiment as Day2Timelapse. All the models have been trained on a 32GB Tesla V100 GPU. We also provide a mixed precision training which should fit smaller GPUs as well (a usual training takes ~9GB).
|
34 |
+
|
35 |
+
|
36 |
+
### Environment setup
|
37 |
+
We advise the creation of a new conda environment including all necessary packages. The repository includes a requirements file. Please create and activate the new environment with
|
38 |
+
```
|
39 |
+
conda env create -f requirements.yml
|
40 |
+
conda activate comogan
|
41 |
+
```
|
42 |
+
|
43 |
+
### Dataset preparation
|
44 |
+
First, download the Waymo Open Dataset from [the official website](https://waymo.com/open/). The dataset is organized in `.tfrecord` files, which we preprocess and split depending on metadata annotations on time of day.
|
45 |
+
Once you downloaded the dataset, you should run the `dump_waymo.py` script. It will read and unpack the `.tfrecord` files, also resizing the images for training. Please run
|
46 |
+
|
47 |
+
```
|
48 |
+
python scripts/dump_waymo.py --load_path path/of/waymo/open/training --save_path /path/of/extracted/training/images
|
49 |
+
python scripts/dump_waymo.py --load_path path/of/waymo/open/validation --save_path /path/of/extracted/validation/images
|
50 |
+
```
|
51 |
+
|
52 |
+
Running those commands should result in a similar directory structure:
|
53 |
+
|
54 |
+
```
|
55 |
+
root
|
56 |
+
training
|
57 |
+
Day
|
58 |
+
seq_code_0_im_code_0.png
|
59 |
+
seq_code_0_im_code_1.png
|
60 |
+
...
|
61 |
+
seq_code_1_im_code_0.png
|
62 |
+
...
|
63 |
+
Dawn/Dusk
|
64 |
+
...
|
65 |
+
Night
|
66 |
+
...
|
67 |
+
validation
|
68 |
+
Day
|
69 |
+
...
|
70 |
+
Dawn/Dusk
|
71 |
+
...
|
72 |
+
Night
|
73 |
+
...
|
74 |
+
```
|
75 |
+
|
76 |
+
## Pretrained weights
|
77 |
+
We release a pretrained set of weights to allow reproducibility of our results. The weights are downloadable from [here](https://www.rocq.inria.fr/rits_files/computer-vision/comogan/logs_pretrained.tar.gz). Once downloaded, unpack the file in the root of the project and test them with the inference notebook.
|
78 |
+
|
79 |
+
# Training
|
80 |
+
The training routine of CoMoGAN is mainly based on the CycleGAN codebase, available with details in the official repository.
|
81 |
+
|
82 |
+
To launch a default training, run
|
83 |
+
```
|
84 |
+
python train.py --path_data path/to/waymo/training/dir --gpus 0
|
85 |
+
```
|
86 |
+
You can choose on which GPUs to train with the `--gpus` flag. Multi-GPU is not deeply tested but it should be managed internally by Pytorch Lightning. Typically, a full training requires 13GB+ of GPU memory unless mixed precision is set. If you have a smaller GPU, please run
|
87 |
+
|
88 |
+
```
|
89 |
+
python train.py --path_data path/to/waymo/training/dir --gpus 0 --mixed_precision
|
90 |
+
```
|
91 |
+
Please note that performances on mixed precision trainings are evaluated only qualitatively.
|
92 |
+
|
93 |
+
### Experiment organization
|
94 |
+
In the training routine, an unique ID will be assigned to every training. All experiments will be saved in the `logs` folder, which is structured in this way:
|
95 |
+
```
|
96 |
+
logs/
|
97 |
+
train_ID_0
|
98 |
+
tensorboard/default/version_0
|
99 |
+
checkpoints
|
100 |
+
model_35000.pth
|
101 |
+
...
|
102 |
+
hparams.yaml
|
103 |
+
tb_log_file
|
104 |
+
train_ID_1
|
105 |
+
...
|
106 |
+
```
|
107 |
+
In the checkpoints folder, all the intermediate checkpoints will be stored. `hparams.yaml` contains all the hyperparameters for a given run. You can launch a `tensorboard --logdir train_ID` instance on training directories to visualize intermediate outputs and loss functions.
|
108 |
+
|
109 |
+
To resume a previously stopped training, running
|
110 |
+
```
|
111 |
+
python train.py --id train_ID --path_data path/to/waymo/training/dir --gpus 0
|
112 |
+
```
|
113 |
+
will load the latest checkpoint from a given train ID checkpoints directory.
|
114 |
+
|
115 |
+
### Extending the code
|
116 |
+
#### Command line arguments
|
117 |
+
We expose command line arguments to encourage code reusability and adaptability to other datasets or models. Right now, the available options thought for extensions are:
|
118 |
+
|
119 |
+
* `--debug`: Disables logging and experiment saving. Useful for testing code modifications.
|
120 |
+
* `--model`: Loads a CoMoGAN model. By default, it loads CoMo-MUNIT (code is in `networks` folder)
|
121 |
+
* `--data_importer`: Loads data from a dataset. By default, it loads waymo for the day2timelapse experiment (code is in `data` folder).
|
122 |
+
* `--learning_rate`: Modifies learning rate, default value for CoMo-MUNIT is `1e-4`.
|
123 |
+
* `--scheduler_policy`: You can choose among `linear` os `step` policy, taken respectively from CycleGAN and MUNIT training routines. Default is `step`.
|
124 |
+
* `--decay_iters_step`: For `step` policy, how many iterations before reducing learning rate
|
125 |
+
* `--decay_step_gamma`: Regulates how much to reduce the learning rate
|
126 |
+
* `--seed`: Random seed initialization
|
127 |
+
|
128 |
+
The codebase have been rewritten almost from scratch after CVPR acceptance and optimized for reproducibility, hence the seed provided could give slightly different results from the ones reported in the paper.
|
129 |
+
|
130 |
+
Changing model and dataset requires extending the `networks/base_model.py` and `data/base_dataset.py` class, respectively. Please look into CycleGAN repository for further instructions.
|
131 |
+
|
132 |
+
#### Model, dataset and other options
|
133 |
+
Specific hyperparameters for different models, datasets or options not changing with high frequency are embedded in `munch` dictionaries in the relative classes. For instance, in `networks/comomunit_model.py` you can find all customizable options for CoMo-MUNIT. The same is valid for `data/day2timelapse_dataset.py`. The `options` folder includes additional options on checkpoint saving intervals and logging.
|
134 |
+
|
135 |
+
## Inference
|
136 |
+
Once you trained a model, you can use the `infer.ipynb` notebook to visualize translation results. After having launched a notebook instance, you will be required to select the `train_id` of the experiment. The notebook is documented and it provides widgets for sequence, checkpoint and translation selection.
|
137 |
+
|
138 |
+
You can also use the `translate.py` script to translate all the images inside a directory or a sequence of images to another target directory.
|
139 |
+
```
|
140 |
+
python scripts/translate.py --load_path path/to/waymo/validation/day/dir --save_path path/to/saving/dir --phi 3.14
|
141 |
+
```
|
142 |
+
Will load image from the indicated path before translating it to a night style image due to the phi set to 3.14.
|
143 |
+
* `--phi`: (𝜙) is the angle of the sun with a value between [0,2𝜋], which maps to a sun elevation ∈ [+30◦,−40◦]
|
144 |
+
* `--sequence`: if you want to use only certain images, you can specify a name or a keyword contained in the image's name like `--sequence segment-10203656353524179475`
|
145 |
+
* `--checkpoint`: if your folder logs contains more than one train_ID or if you want to select an older checkpoint, you should indicate the path to the checkpoint contained in the folder with the train_ID that you want like `--checkpoint logs/train_ID_0/tensorboard/default/version_0/checkpoints/model_35000.pth`
|
146 |
+
|
147 |
+
## Docker
|
148 |
+
You will find a Dockerfile based on the nvidia/cuda:11.0.3-base-ubuntu18.04 image with all the dependencies that you need to run and test the code.
|
149 |
+
To build it and to run it :
|
150 |
+
```
|
151 |
+
docker build -t notebook/comogan:1.0 .
|
152 |
+
docker run -it -v /path/to/your/local/datasets/:/datasets -p 8888:8888 --gpus '"device=0"' notebook/comogan:1.0
|
153 |
+
```
|
154 |
+
* `--gpus`: gives you the possibility to only parse the GPU that you want to use, by default, all the available GPUs are parsed.
|
155 |
+
* `-v`: mount the local directory that contained your dataset
|
156 |
+
* `-p`: this option is only used for the `infer.ipynb` notebook. If you run the notebook on a remote server, you should also use this command to tunnel the output to your computer `ssh [email protected] -NL 8888:127.0.0.1:8888`
|
a.txt
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Folder PATH listing for volume Data2
|
2 |
+
Volume serial number is 6AB0-11CA
|
3 |
+
E:.
|
4 |
+
+---.idea
|
5 |
+
� +---inspectionProfiles
|
6 |
+
+---data
|
7 |
+
� +---__pycache__
|
8 |
+
+---imgs_test
|
9 |
+
+---logs
|
10 |
+
� +---pretrained
|
11 |
+
� +---tensorboard
|
12 |
+
� +---default
|
13 |
+
� +---version_0
|
14 |
+
� +---checkpoints
|
15 |
+
+---networks
|
16 |
+
� +---backbones
|
17 |
+
� +---__pycache__
|
18 |
+
+---options
|
19 |
+
+---res
|
20 |
+
+---scripts
|
21 |
+
+---util
|
data/__init__.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
__init__.py
|
3 |
+
Enables dynamic loading of datasets, depending on an argument.
|
4 |
+
"""
|
5 |
+
import importlib
|
6 |
+
import torch.utils.data
|
7 |
+
from data.base_dataset import BaseDataset
|
8 |
+
|
9 |
+
|
10 |
+
def find_dataset_using_name(dataset_name):
|
11 |
+
"""Import the module "data/[dataset_name]_dataset.py".
|
12 |
+
|
13 |
+
In the file, the class called DatasetNameDataset() will
|
14 |
+
be instantiated. It has to be a subclass of BaseDataset,
|
15 |
+
and it is case-insensitive.
|
16 |
+
"""
|
17 |
+
dataset_filename = "data." + dataset_name + "_dataset"
|
18 |
+
datasetlib = importlib.import_module(dataset_filename)
|
19 |
+
|
20 |
+
dataset = None
|
21 |
+
target_dataset_name = dataset_name.replace('_', '') + 'dataset'
|
22 |
+
for name, cls in datasetlib.__dict__.items():
|
23 |
+
if name.lower() == target_dataset_name.lower() \
|
24 |
+
and issubclass(cls, BaseDataset):
|
25 |
+
dataset = cls
|
26 |
+
|
27 |
+
if dataset is None:
|
28 |
+
raise NotImplementedError("In %s.py, there should be a subclass of BaseDataset with class name that matches %s in lowercase." % (dataset_filename, target_dataset_name))
|
29 |
+
|
30 |
+
return dataset
|
31 |
+
|
32 |
+
|
33 |
+
def create_dataset(opt):
|
34 |
+
"""Create a dataset given the option.
|
35 |
+
|
36 |
+
This function wraps the class CustomDatasetDataLoader.
|
37 |
+
This is the main interface between this package and 'train.py'/'test.py'
|
38 |
+
|
39 |
+
Example:
|
40 |
+
>>> from data import create_dataset
|
41 |
+
>>> dataset = create_dataset(opt)
|
42 |
+
"""
|
43 |
+
data_loader = CustomDatasetDataLoader(opt)
|
44 |
+
dataset = data_loader.load_data()
|
45 |
+
return dataset
|
46 |
+
|
47 |
+
def get_dataset_options(dataset_name):
|
48 |
+
dataset_filename = "data." + dataset_name + "_dataset"
|
49 |
+
datalib = importlib.import_module(dataset_filename)
|
50 |
+
for name, cls in datalib.__dict__.items():
|
51 |
+
if name.lower() == 'datasetoptions':
|
52 |
+
return cls
|
53 |
+
return None
|
54 |
+
|
55 |
+
class CustomDatasetDataLoader():
|
56 |
+
"""Wrapper class of Dataset class that performs multi-threaded data loading"""
|
57 |
+
|
58 |
+
def __init__(self, opt):
|
59 |
+
"""Initialize this class
|
60 |
+
|
61 |
+
Step 1: create a dataset instance given the name [dataset_mode]
|
62 |
+
Step 2: create a multi-threaded data loader.
|
63 |
+
"""
|
64 |
+
self.opt = opt
|
65 |
+
dataset_class = find_dataset_using_name(opt.dataset_mode)
|
66 |
+
self.dataset = dataset_class(opt)
|
67 |
+
self.dataloader = torch.utils.data.DataLoader(
|
68 |
+
self.dataset,
|
69 |
+
batch_size=opt.batch_size,
|
70 |
+
shuffle=not opt.serial_batches,
|
71 |
+
num_workers=int(opt.num_threads))
|
72 |
+
|
73 |
+
def load_data(self):
|
74 |
+
return self
|
75 |
+
|
76 |
+
def __len__(self):
|
77 |
+
"""Return the number of data in the dataset"""
|
78 |
+
return min(len(self.dataset), self.opt.max_dataset_size)
|
79 |
+
|
80 |
+
def __iter__(self):
|
81 |
+
"""Return a batch of data"""
|
82 |
+
for i, data in enumerate(self.dataloader):
|
83 |
+
if i * self.opt.batch_size >= self.opt.max_dataset_size:
|
84 |
+
break
|
85 |
+
yield data
|
data/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (3.16 kB). View file
|
|
data/__pycache__/base_dataset.cpython-37.pyc
ADDED
Binary file (5.18 kB). View file
|
|
data/base_dataset.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
base_dataset.py:
|
3 |
+
All datasets are a subclass of BaseDataset and implement abstract methods.
|
4 |
+
Includes augmentation strategies which can be used at sampling time.
|
5 |
+
"""
|
6 |
+
import random
|
7 |
+
import numpy as np
|
8 |
+
import torch.utils.data as data
|
9 |
+
from PIL import Image
|
10 |
+
import torchvision.transforms as transforms
|
11 |
+
from abc import ABC, abstractmethod
|
12 |
+
import logging
|
13 |
+
|
14 |
+
logging.basicConfig(level=logging.WARNING)
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
class BaseDataset(data.Dataset, ABC):
|
18 |
+
"""This class is an abstract base class (ABC) for datasets.
|
19 |
+
|
20 |
+
To create a subclass, you need to implement the following four functions:
|
21 |
+
-- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt).
|
22 |
+
-- <__len__>: return the size of dataset.
|
23 |
+
-- <__getitem__>: get a data point.
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, opt):
|
27 |
+
"""Initialize the class; save the options in the class
|
28 |
+
|
29 |
+
Parameters:
|
30 |
+
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
|
31 |
+
"""
|
32 |
+
self.opt = opt
|
33 |
+
self.root = opt.dataroot
|
34 |
+
|
35 |
+
@abstractmethod
|
36 |
+
def __len__(self):
|
37 |
+
"""Return the total number of images in the dataset."""
|
38 |
+
return 0
|
39 |
+
|
40 |
+
@abstractmethod
|
41 |
+
def __getitem__(self, index):
|
42 |
+
"""Return a data point and its metadata information.
|
43 |
+
|
44 |
+
Parameters:
|
45 |
+
index - - a random integer for data indexing
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
a dictionary of data with their names. It ususally contains the data itself and its metadata information.
|
49 |
+
"""
|
50 |
+
pass
|
51 |
+
|
52 |
+
|
53 |
+
def get_params(opt, size):
|
54 |
+
w, h = size
|
55 |
+
new_h = h
|
56 |
+
new_w = w
|
57 |
+
if opt.preprocess == 'resize_and_crop':
|
58 |
+
new_h = new_w = opt.load_size
|
59 |
+
elif opt.preprocess == 'scale_width_and_crop':
|
60 |
+
new_w = opt.load_size
|
61 |
+
new_h = opt.load_size * h // w
|
62 |
+
|
63 |
+
x = random.randint(0, np.maximum(0, new_w - opt.crop_size))
|
64 |
+
y = random.randint(0, np.maximum(0, new_h - opt.crop_size))
|
65 |
+
flip = random.random() > 0.5
|
66 |
+
|
67 |
+
return {'crop_pos': (x, y), 'flip': flip}
|
68 |
+
|
69 |
+
|
70 |
+
def get_transform(opt, params=None, grayscale=False, method=Image.BICUBIC, convert=True):
|
71 |
+
transform_list = []
|
72 |
+
if grayscale:
|
73 |
+
transform_list.append(transforms.Grayscale(1))
|
74 |
+
if 'resize' in opt.preprocess:
|
75 |
+
osize = [opt.load_size, opt.load_size]
|
76 |
+
transform_list.append(transforms.Resize(osize, method))
|
77 |
+
elif 'scale_width' in opt.preprocess:
|
78 |
+
transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, opt.crop_size, method)))
|
79 |
+
|
80 |
+
if 'crop' in opt.preprocess:
|
81 |
+
if params is None:
|
82 |
+
transform_list.append(transforms.RandomCrop(opt.crop_size))
|
83 |
+
else:
|
84 |
+
transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.crop_size)))
|
85 |
+
|
86 |
+
if opt.preprocess == 'none':
|
87 |
+
transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base=1, method=method)))
|
88 |
+
|
89 |
+
if not opt.no_flip:
|
90 |
+
if params is None:
|
91 |
+
transform_list.append(transforms.RandomHorizontalFlip())
|
92 |
+
elif params['flip']:
|
93 |
+
transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip'])))
|
94 |
+
|
95 |
+
if convert:
|
96 |
+
transform_list += [transforms.ToTensor()]
|
97 |
+
if grayscale:
|
98 |
+
transform_list += [transforms.Normalize((0.5,), (0.5,))]
|
99 |
+
else:
|
100 |
+
transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
|
101 |
+
return transforms.Compose(transform_list)
|
102 |
+
|
103 |
+
|
104 |
+
def __make_power_2(img, base, method=Image.BICUBIC):
|
105 |
+
ow, oh = img.size
|
106 |
+
h = int(round(oh / base) * base)
|
107 |
+
w = int(round(ow / base) * base)
|
108 |
+
if h == oh and w == ow:
|
109 |
+
return img
|
110 |
+
|
111 |
+
__print_size_warning(ow, oh, w, h)
|
112 |
+
return img.resize((w, h), method)
|
113 |
+
|
114 |
+
|
115 |
+
def __scale_width(img, target_size, crop_size, method=Image.BICUBIC):
|
116 |
+
ow, oh = img.size
|
117 |
+
if ow == target_size and oh >= crop_size:
|
118 |
+
return img
|
119 |
+
w = target_size
|
120 |
+
h = int(max(target_size * oh / ow, crop_size))
|
121 |
+
return img.resize((w, h), method)
|
122 |
+
|
123 |
+
|
124 |
+
def __crop(img, pos, size):
|
125 |
+
ow, oh = img.size
|
126 |
+
x1, y1 = pos
|
127 |
+
tw = th = size
|
128 |
+
if (ow > tw or oh > th):
|
129 |
+
return img.crop((x1, y1, x1 + tw, y1 + th))
|
130 |
+
return img
|
131 |
+
|
132 |
+
|
133 |
+
def __flip(img, flip):
|
134 |
+
if flip:
|
135 |
+
return img.transpose(Image.FLIP_LEFT_RIGHT)
|
136 |
+
return img
|
137 |
+
|
138 |
+
|
139 |
+
def __print_size_warning(ow, oh, w, h):
|
140 |
+
"""Print warning information about image size (only print once)"""
|
141 |
+
if not hasattr(__print_size_warning, 'has_printed'):
|
142 |
+
logger.warning(
|
143 |
+
f"The image size needs to be a multiple of 4. "
|
144 |
+
f"The loaded image size was ({ow}, {oh}), so it was adjusted to "
|
145 |
+
f"({w}, {h}). This adjustment will be done to all images "
|
146 |
+
f"whose sizes are not multiples of 4"
|
147 |
+
)
|
148 |
+
__print_size_warning.has_printed = True
|
data/day2timelapse_dataset.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
day2timelapse_dataset.py:
|
3 |
+
Dataset loader for day2timelapse. It loads images belonging to Waymo
|
4 |
+
Day/Dusk/Dawn/Night splits and it applies a tone mapping operator to
|
5 |
+
the "Day" ones in order to drive learning with CoMoGAN.
|
6 |
+
It has support for custom options in DatasetOptions.
|
7 |
+
"""
|
8 |
+
|
9 |
+
import os.path
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import math
|
13 |
+
from data.base_dataset import BaseDataset, get_transform
|
14 |
+
from PIL import Image
|
15 |
+
import random
|
16 |
+
from torchvision.transforms import ToTensor
|
17 |
+
import torch
|
18 |
+
import munch
|
19 |
+
|
20 |
+
|
21 |
+
def DatasetOptions():
|
22 |
+
do = munch.Munch()
|
23 |
+
do.num_threads = 4
|
24 |
+
do.batch_size = 1
|
25 |
+
do.preprocess = 'none'
|
26 |
+
do.max_dataset_size = float('inf')
|
27 |
+
do.no_flip = False
|
28 |
+
do.serial_batches = False
|
29 |
+
return do
|
30 |
+
|
31 |
+
|
32 |
+
class Day2TimelapseDataset(BaseDataset):
|
33 |
+
"""
|
34 |
+
This dataset class can load unaligned/unpaired datasets.
|
35 |
+
|
36 |
+
It requires two directories to host training images from domain A '/path/to/data/trainA'
|
37 |
+
and from domain B '/path/to/data/trainB' respectively.
|
38 |
+
You can train the model with the dataset flag '--dataroot /path/to/data'.
|
39 |
+
Similarly, you need to prepare two directories:
|
40 |
+
'/path/to/data/testA' and '/path/to/data/testB' during test time.
|
41 |
+
"""
|
42 |
+
|
43 |
+
def __init__(self, opt):
|
44 |
+
"""Initialize this dataset class.
|
45 |
+
|
46 |
+
Parameters:
|
47 |
+
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
|
48 |
+
"""
|
49 |
+
BaseDataset.__init__(self, opt)
|
50 |
+
self.dir_day = os.path.join(opt.dataroot, 'sunny', 'Day')
|
51 |
+
self.dir_dusk = os.path.join(opt.dataroot, 'sunny', 'Dawn', 'Dusk')
|
52 |
+
self.dir_night = os.path.join(opt.dataroot, 'sunny', 'Night')
|
53 |
+
self.A_paths = [os.path.join(self.dir_day, x) for x in os.listdir(self.dir_day)] # load images from '/path/to/data/trainA'
|
54 |
+
self.B_paths = [os.path.join(self.dir_dusk, x) for x in os.listdir(self.dir_dusk)] # load images from '/path/to/data/trainB'
|
55 |
+
self.B_paths += [os.path.join(self.dir_night, x) for x in os.listdir(self.dir_night)] # load images from '/path/to/data/trainB'
|
56 |
+
|
57 |
+
self.A_size = len(self.A_paths) # get the size of dataset A
|
58 |
+
self.B_size = len(self.B_paths) # get the size of dataset B
|
59 |
+
self.A_paths.sort()
|
60 |
+
self.B_paths.sort()
|
61 |
+
self.transform_A = get_transform(self.opt, grayscale=(opt.input_nc == 1), convert=False)
|
62 |
+
self.transform_B = get_transform(self.opt, grayscale=(opt.output_nc == 1), convert=False)
|
63 |
+
|
64 |
+
self.__tonemapping = torch.tensor(np.loadtxt('./data/daytime_model_lut.csv', delimiter=','),
|
65 |
+
dtype=torch.float32)
|
66 |
+
|
67 |
+
self.__xyz_matrix = torch.tensor([[0.5149, 0.3244, 0.1607],
|
68 |
+
[0.2654, 0.6704, 0.0642],
|
69 |
+
[0.0248, 0.1248, 0.8504]])
|
70 |
+
|
71 |
+
def __getitem__(self, index):
|
72 |
+
"""Return a data point and its metadata information.
|
73 |
+
|
74 |
+
Parameters:
|
75 |
+
index (int) -- a random integer for data indexing
|
76 |
+
|
77 |
+
Returns a dictionary that contains A, B, A_paths and B_paths
|
78 |
+
A (tensor) -- an image in the input domain
|
79 |
+
B (tensor) -- its corresponding image in the target domain
|
80 |
+
A_paths (str) -- image paths
|
81 |
+
B_paths (str) -- image paths
|
82 |
+
"""
|
83 |
+
A_path = self.A_paths[index % self.A_size] # make sure index is within then range
|
84 |
+
index_B = random.randint(0, self.B_size - 1)
|
85 |
+
B_path = self.B_paths[index_B]
|
86 |
+
|
87 |
+
A_img = Image.open(A_path).convert('RGB')
|
88 |
+
B_img = Image.open(B_path).convert('RGB')
|
89 |
+
|
90 |
+
# apply image transformation
|
91 |
+
A = self.transform_A(A_img)
|
92 |
+
B = self.transform_B(B_img)
|
93 |
+
|
94 |
+
# Define continuity normalization
|
95 |
+
A = ToTensor()(A)
|
96 |
+
B = ToTensor()(B)
|
97 |
+
|
98 |
+
phi = random.random() * 2 * math.pi
|
99 |
+
continuity_sin = math.sin(phi)
|
100 |
+
cos_phi = math.cos(phi)
|
101 |
+
|
102 |
+
A_cont = self.__apply_colormap(A, cos_phi, continuity_sin)
|
103 |
+
|
104 |
+
phi_prime = random.random() * 2 * math.pi
|
105 |
+
sin_phi_prime = math.sin(phi_prime)
|
106 |
+
cos_phi_prime = math.cos(phi_prime)
|
107 |
+
|
108 |
+
A_cont_compare = self.__apply_colormap(A, cos_phi_prime, sin_phi_prime)
|
109 |
+
|
110 |
+
# Normalization between -1 and 1
|
111 |
+
A = (A * 2) - 1
|
112 |
+
B = (B * 2) - 1
|
113 |
+
A_cont = (A_cont * 2) - 1
|
114 |
+
A_cont_compare = (A_cont_compare * 2) - 1
|
115 |
+
|
116 |
+
|
117 |
+
return {'A': A, 'B': B, 'A_cont': A_cont, 'A_paths': A_path, 'B_paths': B_path, 'cos_phi': float(cos_phi),
|
118 |
+
'sin_phi': float(continuity_sin), 'sin_phi_prime': float(sin_phi_prime),
|
119 |
+
'cos_phi_prime': float(cos_phi_prime), 'A_cont_compare': A_cont_compare, 'phi': phi,
|
120 |
+
'phi_prime': phi_prime,}
|
121 |
+
|
122 |
+
def __len__(self):
|
123 |
+
"""Return the total number of images in the dataset.
|
124 |
+
|
125 |
+
As we have two datasets with potentially different number of images,
|
126 |
+
we take a maximum of
|
127 |
+
"""
|
128 |
+
return max(self.A_size, self.B_size)
|
129 |
+
|
130 |
+
def __apply_colormap(self, im, cos_phi, sin_phi, eps = 1e-8):
|
131 |
+
size_0, size_1, size_2 = im.size()
|
132 |
+
cos_phi_norm = 1 - (cos_phi + 1) / 2 # 0 in 0, 1 in pi
|
133 |
+
im_buf = im.permute(1, 2, 0).view(-1, 3)
|
134 |
+
im_buf = torch.matmul(im_buf, self.__xyz_matrix)
|
135 |
+
|
136 |
+
X = im_buf[:, 0] + eps
|
137 |
+
Y = im_buf[:, 1]
|
138 |
+
Z = im_buf[:, 2]
|
139 |
+
|
140 |
+
V = Y * (1.33 * (1 + (Y + Z) / X) - 1.68)
|
141 |
+
|
142 |
+
tmp_index_lower = int(cos_phi_norm * self.__tonemapping.size(0))
|
143 |
+
|
144 |
+
if tmp_index_lower < self.__tonemapping.size(0) - 1:
|
145 |
+
tmp_index_higher = tmp_index_lower + 1
|
146 |
+
else:
|
147 |
+
tmp_index_higher = tmp_index_lower
|
148 |
+
interp_index = cos_phi_norm * self.__tonemapping.size(0) - tmp_index_lower
|
149 |
+
try:
|
150 |
+
color_lower = self.__tonemapping[tmp_index_lower, :3]
|
151 |
+
except IndexError:
|
152 |
+
color_lower = self.__tonemapping[-2, :3]
|
153 |
+
try:
|
154 |
+
color_higher = self.__tonemapping[tmp_index_higher, :3]
|
155 |
+
except IndexError:
|
156 |
+
color_higher = self.__tonemapping[-2, :3]
|
157 |
+
color = color_lower * (1 - interp_index) + color_higher * interp_index
|
158 |
+
|
159 |
+
|
160 |
+
if sin_phi >= 0:
|
161 |
+
# red shift
|
162 |
+
corr = torch.tensor([0.1, 0, 0.1]) * sin_phi # old one was 0.03
|
163 |
+
if sin_phi < 0:
|
164 |
+
# purple shift
|
165 |
+
corr = torch.tensor([0.1, 0, 0]) * (- sin_phi)
|
166 |
+
|
167 |
+
color += corr
|
168 |
+
im_degree = V.unsqueeze(1) * torch.matmul(color, self.__xyz_matrix)
|
169 |
+
im_degree = torch.matmul(im_degree, self.__xyz_matrix.inverse()).view(size_1, size_2, size_0).permute(2, 0, 1)
|
170 |
+
im_final = im_degree * cos_phi_norm + im * (1 - cos_phi_norm) + corr.unsqueeze(-1).unsqueeze(-1).repeat(1, im_degree.size(1), im_degree.size(2))
|
171 |
+
|
172 |
+
im_final = im_final.clamp(0, 1)
|
173 |
+
return im_final
|
data/daytime_model_lut.csv
ADDED
@@ -0,0 +1,550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
0.459730327129364,0.5753538012504578,0.7307513356208801
|
2 |
+
0.4594928026199341,0.5749730467796326,0.7301026582717896
|
3 |
+
0.4592478573322296,0.5745759606361389,0.7294389009475708
|
4 |
+
0.458999365568161,0.5741816163063049,0.7287785410881042
|
5 |
+
0.458759605884552,0.573775589466095,0.7281114459037781
|
6 |
+
0.45850908756256104,0.5733696222305298,0.7274336218833923
|
7 |
+
0.4582521319389343,0.5729745030403137,0.7267529964447021
|
8 |
+
0.4580022394657135,0.5725727081298828,0.7260730862617493
|
9 |
+
0.4577447474002838,0.5721668601036072,0.7253925204277039
|
10 |
+
0.4574819803237915,0.5717566609382629,0.7247171998023987
|
11 |
+
0.4572221636772156,0.5713460445404053,0.7240318655967712
|
12 |
+
0.4569593071937561,0.5709385275840759,0.723334014415741
|
13 |
+
0.4566876292228699,0.5705302357673645,0.7226318717002869
|
14 |
+
0.456419438123703,0.5701059699058533,0.7219248414039612
|
15 |
+
0.45614975690841675,0.5696818232536316,0.7212276458740234
|
16 |
+
0.45587342977523804,0.5692545175552368,0.7205167412757874
|
17 |
+
0.4555920660495758,0.5688228011131287,0.7198204398155212
|
18 |
+
0.45531001687049866,0.5684027075767517,0.7190941572189331
|
19 |
+
0.45502665638923645,0.5679745674133301,0.7183746695518494
|
20 |
+
0.4547405242919922,0.5675432682037354,0.7176563739776611
|
21 |
+
0.4544476568698883,0.5671043395996094,0.7169240713119507
|
22 |
+
0.4541616141796112,0.5666742324829102,0.7161986231803894
|
23 |
+
0.45386913418769836,0.5662345290184021,0.7154660820960999
|
24 |
+
0.45357248187065125,0.565789520740509,0.7147201895713806
|
25 |
+
0.45327311754226685,0.565341591835022,0.713971734046936
|
26 |
+
0.452972412109375,0.5648908019065857,0.7132329344749451
|
27 |
+
0.45267778635025024,0.5644432902336121,0.7124903202056885
|
28 |
+
0.45237043499946594,0.5639790892601013,0.7117367386817932
|
29 |
+
0.45206570625305176,0.5635237693786621,0.7109693288803101
|
30 |
+
0.45175883173942566,0.563062310218811,0.7101975083351135
|
31 |
+
0.4514491856098175,0.5626062750816345,0.7094336152076721
|
32 |
+
0.45112910866737366,0.5621491074562073,0.7086634635925293
|
33 |
+
0.45080673694610596,0.5616856813430786,0.7078953981399536
|
34 |
+
0.45049235224723816,0.5612045526504517,0.707120418548584
|
35 |
+
0.45016390085220337,0.5607321262359619,0.7063286900520325
|
36 |
+
0.44983530044555664,0.5602567791938782,0.7055374979972839
|
37 |
+
0.4495112895965576,0.5597798228263855,0.7047412991523743
|
38 |
+
0.4491833746433258,0.5593019723892212,0.7039420008659363
|
39 |
+
0.44884371757507324,0.5588300824165344,0.7031435966491699
|
40 |
+
0.4485161304473877,0.5583317279815674,0.7023458480834961
|
41 |
+
0.4481812119483948,0.5578548312187195,0.7015211582183838
|
42 |
+
0.44783902168273926,0.5573652386665344,0.7006900906562805
|
43 |
+
0.44750285148620605,0.5568601489067078,0.6998854875564575
|
44 |
+
0.44716599583625793,0.5563632845878601,0.6990556120872498
|
45 |
+
0.4468209147453308,0.5558644533157349,0.6982278227806091
|
46 |
+
0.4464694857597351,0.5553638935089111,0.6973857879638672
|
47 |
+
0.44611290097236633,0.554855227470398,0.6965429782867432
|
48 |
+
0.44575873017311096,0.5543461441993713,0.6956973671913147
|
49 |
+
0.44539836049079895,0.5538337826728821,0.6948440670967102
|
50 |
+
0.44503751397132874,0.5533230900764465,0.6939923763275146
|
51 |
+
0.4446791708469391,0.5528026223182678,0.6931226849555969
|
52 |
+
0.4443178176879883,0.5522757768630981,0.6922490000724792
|
53 |
+
0.44394853711128235,0.5517544746398926,0.6913824081420898
|
54 |
+
0.44358089566230774,0.551224946975708,0.6905091404914856
|
55 |
+
0.44321173429489136,0.5507016181945801,0.6896212100982666
|
56 |
+
0.44284260272979736,0.5501687526702881,0.6887242197990417
|
57 |
+
0.4424705505371094,0.5496318340301514,0.687828540802002
|
58 |
+
0.4420968294143677,0.5491050481796265,0.6869293451309204
|
59 |
+
0.4417157471179962,0.5485673546791077,0.6860166192054749
|
60 |
+
0.44132229685783386,0.5480145215988159,0.6851045489311218
|
61 |
+
0.4409382939338684,0.5474622249603271,0.684185802936554
|
62 |
+
0.4405543804168701,0.5469011664390564,0.6832549571990967
|
63 |
+
0.44016018509864807,0.5463506579399109,0.6823207139968872
|
64 |
+
0.43976613879203796,0.5457964539527893,0.6813837289810181
|
65 |
+
0.439370721578598,0.5452314615249634,0.6804408431053162
|
66 |
+
0.4389679431915283,0.5446683168411255,0.679487407207489
|
67 |
+
0.43856877088546753,0.5441105961799622,0.6785308122634888
|
68 |
+
0.43817123770713806,0.5435311794281006,0.6775607466697693
|
69 |
+
0.43776628375053406,0.5429514646530151,0.6765934228897095
|
70 |
+
0.4373634457588196,0.5423672795295715,0.6756237149238586
|
71 |
+
0.4369603097438812,0.5417906641960144,0.6746310591697693
|
72 |
+
0.43654337525367737,0.5412123203277588,0.6736356019973755
|
73 |
+
0.43612799048423767,0.5406161546707153,0.6726331114768982
|
74 |
+
0.43570569157600403,0.5400263667106628,0.6716299057006836
|
75 |
+
0.43528664112091064,0.5394323468208313,0.670623779296875
|
76 |
+
0.4348626732826233,0.5388368368148804,0.6695924401283264
|
77 |
+
0.4344364404678345,0.5382305383682251,0.6685694456100464
|
78 |
+
0.43401214480400085,0.5376153588294983,0.6675337553024292
|
79 |
+
0.433585524559021,0.537000298500061,0.6664865016937256
|
80 |
+
0.433156281709671,0.5363917350769043,0.6654470562934875
|
81 |
+
0.43273061513900757,0.5357779860496521,0.6643723249435425
|
82 |
+
0.4322899281978607,0.5351535081863403,0.6633078455924988
|
83 |
+
0.431845486164093,0.5345269441604614,0.6622382998466492
|
84 |
+
0.4313971996307373,0.5338884592056274,0.6611512899398804
|
85 |
+
0.43095406889915466,0.5332503914833069,0.660057783126831
|
86 |
+
0.43050533533096313,0.5326089262962341,0.6589553952217102
|
87 |
+
0.4300559163093567,0.5319759845733643,0.6578448414802551
|
88 |
+
0.42960599064826965,0.5313165187835693,0.6567374467849731
|
89 |
+
0.42915093898773193,0.5306854844093323,0.655599057674408
|
90 |
+
0.42869460582733154,0.5300273299217224,0.6544656157493591
|
91 |
+
0.42823490500450134,0.5293539762496948,0.6533178687095642
|
92 |
+
0.42778128385543823,0.5286882519721985,0.6521674394607544
|
93 |
+
0.4273095428943634,0.5280155539512634,0.6510041952133179
|
94 |
+
0.42683160305023193,0.5273396372795105,0.6498340368270874
|
95 |
+
0.42636018991470337,0.5266631841659546,0.6486470699310303
|
96 |
+
0.42588356137275696,0.5259905457496643,0.6474630832672119
|
97 |
+
0.42541661858558655,0.5252941846847534,0.6462488770484924
|
98 |
+
0.42492032051086426,0.5246042013168335,0.6450435519218445
|
99 |
+
0.4244424104690552,0.5239027738571167,0.6438180804252625
|
100 |
+
0.42396286129951477,0.5231947302818298,0.6425884366035461
|
101 |
+
0.4234755039215088,0.5224864482879639,0.6413478255271912
|
102 |
+
0.4229883551597595,0.5217775106430054,0.6400837302207947
|
103 |
+
0.42249560356140137,0.5210569500923157,0.638817548751831
|
104 |
+
0.4219900071620941,0.5203303694725037,0.6375637054443359
|
105 |
+
0.4214840233325958,0.5195984840393066,0.6362555623054504
|
106 |
+
0.420978307723999,0.518863320350647,0.6349571347236633
|
107 |
+
0.42047688364982605,0.5181199908256531,0.6336472630500793
|
108 |
+
0.4199632704257965,0.5173732042312622,0.6323349475860596
|
109 |
+
0.4194590151309967,0.5166250467300415,0.6309912800788879
|
110 |
+
0.4189481735229492,0.5158714056015015,0.6296461224555969
|
111 |
+
0.41842934489250183,0.5150937438011169,0.6282913684844971
|
112 |
+
0.41790279746055603,0.5143157243728638,0.6269145607948303
|
113 |
+
0.41737210750579834,0.5135502219200134,0.6255266666412354
|
114 |
+
0.41685158014297485,0.5127615928649902,0.624131977558136
|
115 |
+
0.41631534695625305,0.5119665861129761,0.6227325201034546
|
116 |
+
0.4157761037349701,0.5111815333366394,0.6212867498397827
|
117 |
+
0.41524171829223633,0.5103685259819031,0.6198469400405884
|
118 |
+
0.41469940543174744,0.5095604062080383,0.6184101700782776
|
119 |
+
0.4141487181186676,0.5087331533432007,0.6169341802597046
|
120 |
+
0.41360774636268616,0.5079103112220764,0.6154453158378601
|
121 |
+
0.41305631399154663,0.5070822238922119,0.6139618754386902
|
122 |
+
0.41250190138816833,0.5062423944473267,0.6124515533447266
|
123 |
+
0.4119435250759125,0.5053935050964355,0.6109218001365662
|
124 |
+
0.4113782048225403,0.5045426487922668,0.6093810796737671
|
125 |
+
0.4108012318611145,0.5036604404449463,0.6078344583511353
|
126 |
+
0.41021865606307983,0.5027989149093628,0.6062476634979248
|
127 |
+
0.40964311361312866,0.5019211769104004,0.6046628355979919
|
128 |
+
0.4090559482574463,0.5010314583778381,0.6030641794204712
|
129 |
+
0.40848174691200256,0.5001277923583984,0.6014267206192017
|
130 |
+
0.4078844487667084,0.4992227256298065,0.5997909903526306
|
131 |
+
0.40730759501457214,0.49830612540245056,0.598132848739624
|
132 |
+
0.40671131014823914,0.49738460779190063,0.5964401364326477
|
133 |
+
0.40611180663108826,0.4964587688446045,0.5947580337524414
|
134 |
+
0.40548941493034363,0.4955010712146759,0.5930367708206177
|
135 |
+
0.40487435460090637,0.49454042315483093,0.5913069844245911
|
136 |
+
0.40426012873649597,0.49358218908309937,0.5895541310310364
|
137 |
+
0.40364205837249756,0.4926128387451172,0.5877792239189148
|
138 |
+
0.403017520904541,0.49162688851356506,0.5859869718551636
|
139 |
+
0.40238481760025024,0.4906262755393982,0.5841830968856812
|
140 |
+
0.4017612040042877,0.4896088242530823,0.5823368430137634
|
141 |
+
0.40111586451530457,0.4885888397693634,0.5804885625839233
|
142 |
+
0.40046021342277527,0.48756441473960876,0.5786120891571045
|
143 |
+
0.3997982442378998,0.4865255057811737,0.5767055153846741
|
144 |
+
0.3991381525993347,0.48545724153518677,0.5747894644737244
|
145 |
+
0.39847657084465027,0.4843839108943939,0.5728437900543213
|
146 |
+
0.39780861139297485,0.483305960893631,0.5708560943603516
|
147 |
+
0.3971324861049652,0.48220762610435486,0.5688844323158264
|
148 |
+
0.39645910263061523,0.481110543012619,0.5668579339981079
|
149 |
+
0.39577189087867737,0.47997036576271057,0.5648245215415955
|
150 |
+
0.3950742483139038,0.4788309633731842,0.5627452731132507
|
151 |
+
0.3943650722503662,0.47768348455429077,0.5606535077095032
|
152 |
+
0.39365389943122864,0.47651612758636475,0.5585283637046814
|
153 |
+
0.3929373323917389,0.4753277897834778,0.5563767552375793
|
154 |
+
0.39221417903900146,0.47412094473838806,0.5542060732841492
|
155 |
+
0.3914814591407776,0.4729042649269104,0.5519970059394836
|
156 |
+
0.39075806736946106,0.4716648459434509,0.5497605204582214
|
157 |
+
0.3900115489959717,0.47042933106422424,0.5475006103515625
|
158 |
+
0.3892611861228943,0.46914219856262207,0.5451998710632324
|
159 |
+
0.38850077986717224,0.4678474962711334,0.5428621768951416
|
160 |
+
0.3877239525318146,0.46654823422431946,0.5405064821243286
|
161 |
+
0.3869464695453644,0.46522289514541626,0.538112461566925
|
162 |
+
0.3861497938632965,0.4638678729534149,0.5356920957565308
|
163 |
+
0.3853657841682434,0.4624985158443451,0.5332329273223877
|
164 |
+
0.38455796241760254,0.46110445261001587,0.5307305455207825
|
165 |
+
0.3837466537952423,0.4596961438655853,0.5282090902328491
|
166 |
+
0.38293153047561646,0.45825865864753723,0.5256560444831848
|
167 |
+
0.3821004629135132,0.4567857086658478,0.5230585932731628
|
168 |
+
0.38125377893447876,0.4553035795688629,0.5204059481620789
|
169 |
+
0.38039880990982056,0.45381414890289307,0.5177400708198547
|
170 |
+
0.37953537702560425,0.4522625207901001,0.51502925157547
|
171 |
+
0.3786587119102478,0.45070064067840576,0.5122591257095337
|
172 |
+
0.37777724862098694,0.4491199254989624,0.5094778537750244
|
173 |
+
0.3768831491470337,0.4475046694278717,0.5066356658935547
|
174 |
+
0.3759765923023224,0.44584921002388,0.5037559270858765
|
175 |
+
0.3750581443309784,0.44417664408683777,0.5008141398429871
|
176 |
+
0.3741254210472107,0.4424605667591095,0.49784529209136963
|
177 |
+
0.3731728792190552,0.4407256543636322,0.49482280015945435
|
178 |
+
0.3722169101238251,0.43895307183265686,0.49173426628112793
|
179 |
+
0.3712415397167206,0.437146931886673,0.4886254668235779
|
180 |
+
0.3702535331249237,0.4353068768978119,0.48544999957084656
|
181 |
+
0.3692600429058075,0.4334242045879364,0.48222681879997253
|
182 |
+
0.36825886368751526,0.43151819705963135,0.4789440333843231
|
183 |
+
0.3672138452529907,0.4295523762702942,0.4756050109863281
|
184 |
+
0.3661661744117737,0.42755672335624695,0.47219815850257874
|
185 |
+
0.36509427428245544,0.4255349636077881,0.4687524437904358
|
186 |
+
0.3640132248401642,0.42343634366989136,0.46522557735443115
|
187 |
+
0.36291468143463135,0.4213179647922516,0.46163472533226013
|
188 |
+
0.361807644367218,0.4191555678844452,0.4579890966415405
|
189 |
+
0.3606717586517334,0.416931688785553,0.45428794622421265
|
190 |
+
0.3595023453235626,0.41466543078422546,0.4504820704460144
|
191 |
+
0.35832664370536804,0.41234973073005676,0.4466261863708496
|
192 |
+
0.35711705684661865,0.4099692702293396,0.4426766335964203
|
193 |
+
0.35588809847831726,0.4075412154197693,0.4386715292930603
|
194 |
+
0.35465407371520996,0.40505969524383545,0.43457621335983276
|
195 |
+
0.3533867597579956,0.4025226831436157,0.4303874671459198
|
196 |
+
0.35206907987594604,0.39990124106407166,0.4261210262775421
|
197 |
+
0.3507366180419922,0.39723485708236694,0.4217650294303894
|
198 |
+
0.3493753671646118,0.3945018947124481,0.41731685400009155
|
199 |
+
0.34797582030296326,0.39169758558273315,0.412770539522171
|
200 |
+
0.3465687334537506,0.38880959153175354,0.4081324338912964
|
201 |
+
0.3450928330421448,0.38585978746414185,0.4033951163291931
|
202 |
+
0.3435814380645752,0.3828301429748535,0.3985316753387451
|
203 |
+
0.34203478693962097,0.3797179162502289,0.3935818076133728
|
204 |
+
0.34045159816741943,0.3765098750591278,0.38850077986717224
|
205 |
+
0.3388141989707947,0.3732281029224396,0.3833079934120178
|
206 |
+
0.33710336685180664,0.3698435425758362,0.37798795104026794
|
207 |
+
0.3353625237941742,0.36637309193611145,0.37254491448402405
|
208 |
+
0.3335549533367157,0.36279526352882385,0.3669710159301758
|
209 |
+
0.3316671550273895,0.35910558700561523,0.3612686097621918
|
210 |
+
0.3297062814235687,0.35532188415527344,0.355435848236084
|
211 |
+
0.32766276597976685,0.3513968288898468,0.3494633734226227
|
212 |
+
0.3255484998226166,0.34735408425331116,0.3433668315410614
|
213 |
+
0.3232938051223755,0.34319281578063965,0.33710920810699463
|
214 |
+
0.3209540843963623,0.33887505531311035,0.33072924613952637
|
215 |
+
0.3184846043586731,0.33441248536109924,0.32422009110450745
|
216 |
+
0.3158607482910156,0.3297947347164154,0.31760966777801514
|
217 |
+
0.3130861818790436,0.32502415776252747,0.3108745515346527
|
218 |
+
0.31010496616363525,0.32008421421051025,0.30407488346099854
|
219 |
+
0.30692198872566223,0.31495949625968933,0.2972620725631714
|
220 |
+
0.30347248911857605,0.3096488118171692,0.29043811559677124
|
221 |
+
0.29973623156547546,0.30414119362831116,0.2837555706501007
|
222 |
+
0.2956545352935791,0.2984755039215088,0.2773210108280182
|
223 |
+
0.2911142408847809,0.2926393747329712,0.27137941122055054
|
224 |
+
0.2860235571861267,0.28671175241470337,0.26624587178230286
|
225 |
+
0.2802514433860779,0.2808597981929779,0.26253658533096313
|
226 |
+
0.2736779451370239,0.27554765343666077,0.2614668607711792
|
227 |
+
0.2717041075229645,0.2730359733104706,0.2575526833534241
|
228 |
+
0.26287510991096497,0.2601219117641449,0.23883278667926788
|
229 |
+
0.24991470575332642,0.24898554384708405,0.23122084140777588
|
230 |
+
0.2362339198589325,0.23734308779239655,0.2233717292547226
|
231 |
+
0.22170411050319672,0.22508057951927185,0.2152479737997055
|
232 |
+
0.20608031749725342,0.2121061235666275,0.20679286122322083
|
233 |
+
0.18908119201660156,0.19821850955486298,0.1979656219482422
|
234 |
+
0.17017780244350433,0.18320739269256592,0.18870970606803894
|
235 |
+
0.14857418835163116,0.1667228788137436,0.17891544103622437
|
236 |
+
0.1224466860294342,0.14806653559207916,0.16848649084568024
|
237 |
+
0.1157052144408226,0.1434480845928192,0.16584351658821106
|
238 |
+
0.11541308462619781,0.1431066393852234,0.16541849076747894
|
239 |
+
0.11511941254138947,0.14277100563049316,0.16503721475601196
|
240 |
+
0.11482298374176025,0.14245407283306122,0.16464921832084656
|
241 |
+
0.11456697434186935,0.14208628237247467,0.16424468159675598
|
242 |
+
0.1142779067158699,0.14172402024269104,0.16386310756206512
|
243 |
+
0.11400596797466278,0.14137032628059387,0.1634616255760193
|
244 |
+
0.11372455209493637,0.14102306962013245,0.16305187344551086
|
245 |
+
0.1134345605969429,0.14065253734588623,0.16262774169445038
|
246 |
+
0.11316171288490295,0.14030128717422485,0.16221247613430023
|
247 |
+
0.11287751793861389,0.13994424045085907,0.16180670261383057
|
248 |
+
0.11260131001472473,0.1395883858203888,0.16140402853488922
|
249 |
+
0.11232449859380722,0.13923928141593933,0.1610090136528015
|
250 |
+
0.11203785985708237,0.13889294862747192,0.16057752072811127
|
251 |
+
0.1117628738284111,0.1385435312986374,0.16015218198299408
|
252 |
+
0.11146491020917892,0.13817943632602692,0.15973569452762604
|
253 |
+
0.11116664856672287,0.1378205418586731,0.15932902693748474
|
254 |
+
0.11088062077760696,0.13746285438537598,0.15890979766845703
|
255 |
+
0.11058665812015533,0.13711130619049072,0.15851260721683502
|
256 |
+
0.11027919501066208,0.1367616057395935,0.1581237018108368
|
257 |
+
0.10998125374317169,0.13638892769813538,0.15768671035766602
|
258 |
+
0.10970167070627213,0.13604319095611572,0.15725676715373993
|
259 |
+
0.10939911752939224,0.13565398752689362,0.15681979060173035
|
260 |
+
0.10909074544906616,0.1352950930595398,0.1564066857099533
|
261 |
+
0.10879003256559372,0.13489913940429688,0.1559758335351944
|
262 |
+
0.10849147289991379,0.1345341056585312,0.15554526448249817
|
263 |
+
0.10821433365345001,0.13415195047855377,0.15510676801204681
|
264 |
+
0.1079074963927269,0.13379794359207153,0.15468142926692963
|
265 |
+
0.10759484022855759,0.13342680037021637,0.15426495671272278
|
266 |
+
0.10731127858161926,0.13305748999118805,0.15383288264274597
|
267 |
+
0.10699524730443954,0.13268664479255676,0.15340934693813324
|
268 |
+
0.10669667273759842,0.13230416178703308,0.1529696136713028
|
269 |
+
0.1064268946647644,0.13193699717521667,0.15254120528697968
|
270 |
+
0.10611913353204727,0.13156461715698242,0.1521192193031311
|
271 |
+
0.1058175191283226,0.13117694854736328,0.1516743004322052
|
272 |
+
0.10551097989082336,0.1308014988899231,0.15122537314891815
|
273 |
+
0.10521639138460159,0.1304609775543213,0.15079358220100403
|
274 |
+
0.10489363223314285,0.13008800148963928,0.15031340718269348
|
275 |
+
0.10458341985940933,0.12965714931488037,0.1498822569847107
|
276 |
+
0.10426678508520126,0.12927864491939545,0.14943453669548035
|
277 |
+
0.1039581149816513,0.12887810170650482,0.1490085870027542
|
278 |
+
0.10364361852407455,0.12848612666130066,0.14856210350990295
|
279 |
+
0.10331320762634277,0.12810029089450836,0.1481168419122696
|
280 |
+
0.10299043357372284,0.12771719694137573,0.14766763150691986
|
281 |
+
0.10267441719770432,0.1273200362920761,0.14721347391605377
|
282 |
+
0.1023675799369812,0.12692315876483917,0.14676974713802338
|
283 |
+
0.10203593969345093,0.12652996182441711,0.14631898701190948
|
284 |
+
0.10171746462583542,0.12615300714969635,0.14586883783340454
|
285 |
+
0.10139041393995285,0.12573960423469543,0.14537948369979858
|
286 |
+
0.10108970105648041,0.12536202371120453,0.14490973949432373
|
287 |
+
0.10079051554203033,0.12496238201856613,0.14444120228290558
|
288 |
+
0.1004457101225853,0.12456829100847244,0.14399471879005432
|
289 |
+
0.10012386739253998,0.12417691946029663,0.14353936910629272
|
290 |
+
0.09980478882789612,0.12376443296670914,0.14306899905204773
|
291 |
+
0.09949151426553726,0.12334918975830078,0.14258088171482086
|
292 |
+
0.09916509687900543,0.12293273210525513,0.14212672412395477
|
293 |
+
0.09884171187877655,0.12251226603984833,0.1416735053062439
|
294 |
+
0.09852078557014465,0.12210836261510849,0.1411985605955124
|
295 |
+
0.09817750006914139,0.12170232087373734,0.1407385915517807
|
296 |
+
0.09784004837274551,0.12129472941160202,0.14023515582084656
|
297 |
+
0.09749983251094818,0.12088468670845032,0.13974520564079285
|
298 |
+
0.09715135395526886,0.1204562708735466,0.1392613649368286
|
299 |
+
0.09680776298046112,0.12002327293157578,0.13878118991851807
|
300 |
+
0.09647521376609802,0.11962549388408661,0.1383046954870224
|
301 |
+
0.09612242877483368,0.11921942979097366,0.1378043293952942
|
302 |
+
0.09578743577003479,0.11879591643810272,0.13732844591140747
|
303 |
+
0.09543250501155853,0.1183813065290451,0.13683202862739563
|
304 |
+
0.09508984535932541,0.11794216930866241,0.13635770976543427
|
305 |
+
0.09476371854543686,0.11751621216535568,0.1358637511730194
|
306 |
+
0.09443452209234238,0.1170816719532013,0.13537929952144623
|
307 |
+
0.09406889230012894,0.11664438247680664,0.1348535120487213
|
308 |
+
0.09372377395629883,0.11621322482824326,0.134351909160614
|
309 |
+
0.09337314963340759,0.11576368659734726,0.13386225700378418
|
310 |
+
0.09304028749465942,0.1153288409113884,0.133339524269104
|
311 |
+
0.09269976615905762,0.11487900465726852,0.13282445073127747
|
312 |
+
0.0923454537987709,0.11445211619138718,0.13231703639030457
|
313 |
+
0.09199421107769012,0.11400656402111053,0.1318105310201645
|
314 |
+
0.09161267429590225,0.11357906460762024,0.13130740821361542
|
315 |
+
0.09124826639890671,0.11312799900770187,0.13080213963985443
|
316 |
+
0.09087098389863968,0.11269347369670868,0.1302950233221054
|
317 |
+
0.0905022844672203,0.11225984990596771,0.12975728511810303
|
318 |
+
0.09014523774385452,0.11179438978433609,0.12923914194107056
|
319 |
+
0.08976306766271591,0.11132708936929703,0.12870876491069794
|
320 |
+
0.08938886225223541,0.11086255311965942,0.12817132472991943
|
321 |
+
0.08902323246002197,0.11039526015520096,0.12762410938739777
|
322 |
+
0.08864809572696686,0.10992548614740372,0.12708179652690887
|
323 |
+
0.08828185498714447,0.10947319865226746,0.12655629217624664
|
324 |
+
0.0879003033041954,0.10898998379707336,0.12603938579559326
|
325 |
+
0.08754109591245651,0.10854779183864594,0.12550778687000275
|
326 |
+
0.08715925365686417,0.10806671530008316,0.12495075911283493
|
327 |
+
0.08681657910346985,0.10758838802576065,0.12442434579133987
|
328 |
+
0.08642704784870148,0.10712629556655884,0.12387222796678543
|
329 |
+
0.08604917675256729,0.10667002946138382,0.12330418825149536
|
330 |
+
0.0856575071811676,0.10619384795427322,0.12273460626602173
|
331 |
+
0.08524961024522781,0.10569407045841217,0.12216013669967651
|
332 |
+
0.08483836054801941,0.1052025780081749,0.12161166965961456
|
333 |
+
0.08444516360759735,0.10469333827495575,0.12104639410972595
|
334 |
+
0.08404585719108582,0.10420826822519302,0.12048505991697311
|
335 |
+
0.08364071696996689,0.10371893644332886,0.11991548538208008
|
336 |
+
0.08322608470916748,0.10320570319890976,0.11934958398342133
|
337 |
+
0.0828365683555603,0.10271328687667847,0.11880083382129669
|
338 |
+
0.08243387192487717,0.10221292823553085,0.11820460110902786
|
339 |
+
0.08202169835567474,0.10170641541481018,0.11760316789150238
|
340 |
+
0.08161503076553345,0.10121677070856094,0.11699624359607697
|
341 |
+
0.08121601492166519,0.10073293745517731,0.11640949547290802
|
342 |
+
0.0808185338973999,0.10021143406629562,0.11582309007644653
|
343 |
+
0.08041829615831375,0.09968657046556473,0.11523452401161194
|
344 |
+
0.07999968528747559,0.09916139394044876,0.1146303340792656
|
345 |
+
0.07957036048173904,0.09863561391830444,0.11403869092464447
|
346 |
+
0.07915082573890686,0.09810125827789307,0.11345718801021576
|
347 |
+
0.07870067656040192,0.09754912555217743,0.11282391101121902
|
348 |
+
0.07826031744480133,0.09702548384666443,0.11217807978391647
|
349 |
+
0.07782057672739029,0.09648560732603073,0.11155429482460022
|
350 |
+
0.0773756355047226,0.09595002233982086,0.11092717200517654
|
351 |
+
0.07693282514810562,0.0954236164689064,0.1103067398071289
|
352 |
+
0.07648970931768417,0.0948687344789505,0.10966303944587708
|
353 |
+
0.07605241984128952,0.09435121715068817,0.10905120521783829
|
354 |
+
0.07559767365455627,0.09377827495336533,0.10842254757881165
|
355 |
+
0.07517079263925552,0.09321480989456177,0.10779201239347458
|
356 |
+
0.07470226287841797,0.09263850748538971,0.10710086673498154
|
357 |
+
0.07428242266178131,0.09207534790039062,0.10644432157278061
|
358 |
+
0.07383013516664505,0.09148313105106354,0.10578931123018265
|
359 |
+
0.07337813079357147,0.09090618789196014,0.10509509593248367
|
360 |
+
0.07289184629917145,0.0903424397110939,0.10442569106817245
|
361 |
+
0.07240494340658188,0.08976029604673386,0.10379272699356079
|
362 |
+
0.07192478328943253,0.08917172253131866,0.1031138226389885
|
363 |
+
0.07142409682273865,0.08859387785196304,0.10243583470582962
|
364 |
+
0.07093475013971329,0.08801420032978058,0.10173121094703674
|
365 |
+
0.07044325768947601,0.08741123974323273,0.10102904587984085
|
366 |
+
0.06995910406112671,0.08676818013191223,0.10030879825353622
|
367 |
+
0.06947772204875946,0.08615327626466751,0.09958089888095856
|
368 |
+
0.06896509230136871,0.08553499728441238,0.09889496862888336
|
369 |
+
0.06848003715276718,0.08491000533103943,0.09818513691425323
|
370 |
+
0.06798884272575378,0.08427488803863525,0.09745294600725174
|
371 |
+
0.06751113384962082,0.0836452916264534,0.09674250334501266
|
372 |
+
0.06700585782527924,0.08303101360797882,0.09599654376506805
|
373 |
+
0.06646904349327087,0.08239223062992096,0.09523190557956696
|
374 |
+
0.06592732667922974,0.08174791932106018,0.09444766491651535
|
375 |
+
0.0653623417019844,0.08108188956975937,0.09370844066143036
|
376 |
+
0.06484022736549377,0.08038890361785889,0.09295084327459335
|
377 |
+
0.06428411602973938,0.07972194254398346,0.09216352552175522
|
378 |
+
0.06372066587209702,0.07903385162353516,0.09142736345529556
|
379 |
+
0.06318140774965286,0.07833933085203171,0.09062627702951431
|
380 |
+
0.06263478845357895,0.07766930758953094,0.0897899866104126
|
381 |
+
0.062071334570646286,0.0769805982708931,0.08896960318088531
|
382 |
+
0.061534520238637924,0.07629863172769547,0.08817525953054428
|
383 |
+
0.06096555292606354,0.07558420300483704,0.08734385669231415
|
384 |
+
0.060398418456315994,0.07484344393014908,0.08652285486459732
|
385 |
+
0.059790559113025665,0.0740959420800209,0.08572086691856384
|
386 |
+
0.059174131602048874,0.07335303723812103,0.08482055366039276
|
387 |
+
0.058550044894218445,0.07259542495012283,0.08393312245607376
|
388 |
+
0.05792197212576866,0.07185190171003342,0.08306373655796051
|
389 |
+
0.05730707570910454,0.07108970731496811,0.0821729376912117
|
390 |
+
0.056691866368055344,0.07033699005842209,0.08129469305276871
|
391 |
+
0.05607237294316292,0.06957050412893295,0.08042500168085098
|
392 |
+
0.055435724556446075,0.06874828785657883,0.0794643834233284
|
393 |
+
0.05481715500354767,0.06790462881326675,0.07851538807153702
|
394 |
+
0.054182350635528564,0.0670781210064888,0.07756548374891281
|
395 |
+
0.05346854031085968,0.06624824553728104,0.07659352570772171
|
396 |
+
0.05276361107826233,0.06540275365114212,0.07565678656101227
|
397 |
+
0.05205194652080536,0.06458421051502228,0.07468605041503906
|
398 |
+
0.05134119465947151,0.06373504549264908,0.07364580035209656
|
399 |
+
0.05062953010201454,0.06281912326812744,0.07259513437747955
|
400 |
+
0.04989795759320259,0.061891257762908936,0.07154660671949387
|
401 |
+
0.04918720945715904,0.060972586274147034,0.07051646709442139
|
402 |
+
0.04847554489970207,0.060027871280908585,0.06944466382265091
|
403 |
+
0.04772529378533363,0.05909694358706474,0.06834499537944794
|
404 |
+
0.046907056123018265,0.05815959349274635,0.06719602644443512
|
405 |
+
0.046073514968156815,0.05716956779360771,0.06604368984699249
|
406 |
+
0.04524242505431175,0.056131161749362946,0.06491249054670334
|
407 |
+
0.044410716742277145,0.055077437311410904,0.06375158578157425
|
408 |
+
0.043564312160015106,0.05403565987944603,0.06249513849616051
|
409 |
+
0.04272831603884697,0.05296080932021141,0.06120256334543228
|
410 |
+
0.0418776273727417,0.051906172186136246,0.05995253846049309
|
411 |
+
0.04095129668712616,0.050736699253320694,0.05867007002234459
|
412 |
+
0.039960961788892746,0.049539968371391296,0.05731777474284172
|
413 |
+
0.038953784853219986,0.04831783473491669,0.05587637424468994
|
414 |
+
0.0379573218524456,0.04711682349443436,0.05445212125778198
|
415 |
+
0.036944933235645294,0.04588426649570465,0.05303368717432022
|
416 |
+
0.035924892872571945,0.0445328913629055,0.051456935703754425
|
417 |
+
0.034868404269218445,0.04312395304441452,0.049866095185279846
|
418 |
+
0.03364961966872215,0.04169970005750656,0.04824923351407051
|
419 |
+
0.03240327537059784,0.04026351124048233,0.0465429425239563
|
420 |
+
0.03115847148001194,0.038714926689863205,0.0447101853787899
|
421 |
+
0.029900187626481056,0.03702608868479729,0.0428403802216053
|
422 |
+
0.02859964594244957,0.035308461636304855,0.040890950709581375
|
423 |
+
0.027002375572919846,0.0335911326110363,0.03868337348103523
|
424 |
+
0.025380603969097137,0.03152747079730034,0.03650704026222229
|
425 |
+
0.023741384968161583,0.029405318200588226,0.033972397446632385
|
426 |
+
0.021979982033371925,0.02722162753343582,0.03135690093040466
|
427 |
+
0.01972923055291176,0.02449806034564972,0.02834027074277401
|
428 |
+
0.017425181344151497,0.02169947512447834,0.025121228769421577
|
429 |
+
0.014567777514457703,0.017999667674303055,0.02086562104523182
|
430 |
+
0.010865208692848682,0.013364309445023537,0.015476967208087444
|
431 |
+
0.00415243161842227,0.004356072284281254,0.004636881407350302
|
432 |
+
0.0,0.0,0.0
|
433 |
+
0.0,0.0,0.0
|
434 |
+
0.0,0.0,0.0
|
435 |
+
0.0,0.0,0.0
|
436 |
+
0.0,0.0,0.0
|
437 |
+
0.0,0.0,0.0
|
438 |
+
0.0,0.0,0.0
|
439 |
+
0.0,0.0,0.0
|
440 |
+
0.0,0.0,0.0
|
441 |
+
0.0,0.0,0.0
|
442 |
+
0.0,0.0,0.0
|
443 |
+
0.0,0.0,0.0
|
444 |
+
0.0,0.0,0.0
|
445 |
+
0.0,0.0,0.0
|
446 |
+
0.0,0.0,0.0
|
447 |
+
0.0,0.0,0.0
|
448 |
+
0.0,0.0,0.0
|
449 |
+
0.0,0.0,0.0
|
450 |
+
0.0,0.0,0.0
|
451 |
+
0.0,0.0,0.0
|
452 |
+
0.0,0.0,0.0
|
453 |
+
0.0,0.0,0.0
|
454 |
+
0.0,0.0,0.0
|
455 |
+
0.0,0.0,0.0
|
456 |
+
0.0,0.0,0.0
|
457 |
+
0.0,0.0,0.0
|
458 |
+
0.0,0.0,0.0
|
459 |
+
0.0,0.0,0.0
|
460 |
+
0.0,0.0,0.0
|
461 |
+
0.0,0.0,0.0
|
462 |
+
0.0,0.0,0.0
|
463 |
+
0.0,0.0,0.0
|
464 |
+
0.0,0.0,0.0
|
465 |
+
0.0,0.0,0.0
|
466 |
+
0.0,0.0,0.0
|
467 |
+
0.0,0.0,0.0
|
468 |
+
0.0,0.0,0.0
|
469 |
+
0.0,0.0,0.0
|
470 |
+
0.0,0.0,0.0
|
471 |
+
0.0,0.0,0.0
|
472 |
+
0.0,0.0,0.0
|
473 |
+
0.0,0.0,0.0
|
474 |
+
0.0,0.0,0.0
|
475 |
+
0.0,0.0,0.0
|
476 |
+
0.0,0.0,0.0
|
477 |
+
0.0,0.0,0.0
|
478 |
+
0.0,0.0,0.0
|
479 |
+
0.0,0.0,0.0
|
480 |
+
0.0,0.0,0.0
|
481 |
+
0.0,0.0,0.0
|
482 |
+
0.0,0.0,0.0
|
483 |
+
0.0,0.0,0.0
|
484 |
+
0.0,0.0,0.0
|
485 |
+
0.0,0.0,0.0
|
486 |
+
0.0,0.0,0.0
|
487 |
+
0.0,0.0,0.0
|
488 |
+
0.0,0.0,0.0
|
489 |
+
0.0,0.0,0.0
|
490 |
+
0.0,0.0,0.0
|
491 |
+
0.0,0.0,0.0
|
492 |
+
0.0,0.0,0.0
|
493 |
+
0.0,0.0,0.0
|
494 |
+
0.0,0.0,0.0
|
495 |
+
0.0,0.0,0.0
|
496 |
+
0.0,0.0,0.0
|
497 |
+
0.0,0.0,0.0
|
498 |
+
0.0,0.0,0.0
|
499 |
+
0.0,0.0,0.0
|
500 |
+
0.0,0.0,0.0
|
501 |
+
0.0,0.0,0.0
|
502 |
+
0.0,0.0,0.0
|
503 |
+
0.0,0.0,0.0
|
504 |
+
0.0,0.0,0.0
|
505 |
+
0.0,0.0,0.0
|
506 |
+
0.0,0.0,0.0
|
507 |
+
0.0,0.0,0.0
|
508 |
+
0.0,0.0,0.0
|
509 |
+
0.0,0.0,0.0
|
510 |
+
0.0,0.0,0.0
|
511 |
+
0.0,0.0,0.0
|
512 |
+
0.0,0.0,0.0
|
513 |
+
0.0,0.0,0.0
|
514 |
+
0.0,0.0,0.0
|
515 |
+
0.0,0.0,0.0
|
516 |
+
0.0,0.0,0.0
|
517 |
+
0.0,0.0,0.0
|
518 |
+
0.0,0.0,0.0
|
519 |
+
0.0,0.0,0.0
|
520 |
+
0.0,0.0,0.0
|
521 |
+
0.0,0.0,0.0
|
522 |
+
0.0,0.0,0.0
|
523 |
+
0.0,0.0,0.0
|
524 |
+
0.0,0.0,0.0
|
525 |
+
0.0,0.0,0.0
|
526 |
+
0.0,0.0,0.0
|
527 |
+
0.0,0.0,0.0
|
528 |
+
0.0,0.0,0.0
|
529 |
+
0.0,0.0,0.0
|
530 |
+
0.0,0.0,0.0
|
531 |
+
0.0,0.0,0.0
|
532 |
+
0.0,0.0,0.0
|
533 |
+
0.0,0.0,0.0
|
534 |
+
0.0,0.0,0.0
|
535 |
+
0.0,0.0,0.0
|
536 |
+
0.0,0.0,0.0
|
537 |
+
0.0,0.0,0.0
|
538 |
+
0.0,0.0,0.0
|
539 |
+
0.0,0.0,0.0
|
540 |
+
0.0,0.0,0.0
|
541 |
+
0.0,0.0,0.0
|
542 |
+
0.0,0.0,0.0
|
543 |
+
0.0,0.0,0.0
|
544 |
+
0.0,0.0,0.0
|
545 |
+
0.0,0.0,0.0
|
546 |
+
0.0,0.0,0.0
|
547 |
+
0.0,0.0,0.0
|
548 |
+
0.0,0.0,0.0
|
549 |
+
0.0,0.0,0.0
|
550 |
+
0.0,0.0,0.0
|
imgs_test/zurich_000116_000019_leftImg8bit_1.png
ADDED
Git LFS Details
|
infer.ipynb
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
" # CoMoGan\n",
|
8 |
+
"Notebook to test our model after training."
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"metadata": {
|
14 |
+
"ExecuteTime": {
|
15 |
+
"end_time": "2024-08-24T11:36:37.046598Z",
|
16 |
+
"start_time": "2024-08-24T11:36:35.526168Z"
|
17 |
+
}
|
18 |
+
},
|
19 |
+
"source": [
|
20 |
+
"import ipywidgets as widgets\n",
|
21 |
+
"import pytorch_lightning as pl\n",
|
22 |
+
"import pathlib\n",
|
23 |
+
"import torch\n",
|
24 |
+
"import yaml\n",
|
25 |
+
"import os\n",
|
26 |
+
"\n",
|
27 |
+
"from math import pi\n",
|
28 |
+
"from PIL import Image\n",
|
29 |
+
"from munch import Munch\n",
|
30 |
+
"from threading import Timer\n",
|
31 |
+
"from IPython.display import clear_output\n",
|
32 |
+
"from torchvision.transforms import ToPILImage\n",
|
33 |
+
"\n",
|
34 |
+
"from data import create_dataset\n",
|
35 |
+
"from torchvision.transforms import ToTensor\n",
|
36 |
+
"from data.base_dataset import get_transform\n",
|
37 |
+
"from networks import find_model_using_name, create_model"
|
38 |
+
],
|
39 |
+
"outputs": [],
|
40 |
+
"execution_count": 1
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "markdown",
|
44 |
+
"metadata": {},
|
45 |
+
"source": [
|
46 |
+
"## Load the model with a checkpoint\n",
|
47 |
+
"Choose the directory that contains the checkpoint that you want."
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"metadata": {},
|
53 |
+
"source": [
|
54 |
+
"import pathlib\n",
|
55 |
+
"\n",
|
56 |
+
"# Load names of directories inside /logs\n",
|
57 |
+
"p = pathlib.Path('./logs')\n",
|
58 |
+
"\n",
|
59 |
+
"# Use x.name to get the directory name instead of splitting the path\n",
|
60 |
+
"list_run_id = [x.name for x in p.iterdir() if x.is_dir()]\n",
|
61 |
+
"\n",
|
62 |
+
"import ipywidgets as widgets\n",
|
63 |
+
"from IPython.display import display, clear_output\n",
|
64 |
+
"import os\n",
|
65 |
+
"\n",
|
66 |
+
"w_run = widgets.Dropdown(options=list_run_id,\n",
|
67 |
+
" description='Select RUN_ID',\n",
|
68 |
+
" disabled=False,\n",
|
69 |
+
" style=dict(description_width='initial'))\n",
|
70 |
+
"\n",
|
71 |
+
"\n",
|
72 |
+
"w_check = None\n",
|
73 |
+
"root_dir = None\n",
|
74 |
+
"\n",
|
75 |
+
"def on_value_change_check(change):\n",
|
76 |
+
" global w_check, w_run, root_dir\n",
|
77 |
+
" \n",
|
78 |
+
" clear_output(wait=True)\n",
|
79 |
+
" \n",
|
80 |
+
" root_dir = os.path.join('logs', w_run.value, 'tensorboard', 'default', 'version_0')\n",
|
81 |
+
" p = pathlib.Path(root_dir + '/checkpoints')\n",
|
82 |
+
" \n",
|
83 |
+
" # Load a list of checkpoints, use the last one by default\n",
|
84 |
+
" list_checkpoint = [x.name for x in p.iterdir() if 'iter' in x.name]\n",
|
85 |
+
" list_checkpoint.sort(reverse=True, key=lambda x: int(x.split('_')[1].split('.pth')[0]))\n",
|
86 |
+
" \n",
|
87 |
+
" w_check = widgets.Dropdown(options=list_checkpoint,\n",
|
88 |
+
" description='Select checkpoint',\n",
|
89 |
+
" disabled=False,\n",
|
90 |
+
" style=dict(description_width='initial'))\n",
|
91 |
+
" display(widgets.HBox([w_run, w_check]))\n",
|
92 |
+
"\n",
|
93 |
+
"on_value_change_check({'new': w_run.value})\n",
|
94 |
+
"w_run.observe(on_value_change_check, names='value')\n"
|
95 |
+
],
|
96 |
+
"execution_count": 2,
|
97 |
+
"outputs": []
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "code",
|
101 |
+
"metadata": {
|
102 |
+
"ExecuteTime": {
|
103 |
+
"end_time": "2024-08-24T11:36:39.368141Z",
|
104 |
+
"start_time": "2024-08-24T11:36:37.080571Z"
|
105 |
+
}
|
106 |
+
},
|
107 |
+
"source": [
|
108 |
+
"RUN_ID = w_run.value\n",
|
109 |
+
"CHECKPOINT = w_check.value\n",
|
110 |
+
"\n",
|
111 |
+
"# Load parameters\n",
|
112 |
+
"with open(os.path.join(root_dir, 'hparams.yaml')) as cfg_file:\n",
|
113 |
+
" opt = Munch(yaml.safe_load(cfg_file))\n",
|
114 |
+
"\n",
|
115 |
+
"opt.no_flip = True\n",
|
116 |
+
"# Load parameters to the model, load the checkpoint\n",
|
117 |
+
"model = create_model(opt)\n",
|
118 |
+
"model = model.load_from_checkpoint((os.path.join(root_dir, 'checkpoints/', CHECKPOINT)))\n",
|
119 |
+
"# Transfer the model to the GPU\n",
|
120 |
+
"model.to('cpu');"
|
121 |
+
],
|
122 |
+
"outputs": [],
|
123 |
+
"execution_count": 3
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "markdown",
|
127 |
+
"metadata": {},
|
128 |
+
"source": [
|
129 |
+
"## Load the validation dataset"
|
130 |
+
]
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"cell_type": "code",
|
134 |
+
"metadata": {
|
135 |
+
"ExecuteTime": {
|
136 |
+
"end_time": "2024-08-24T11:36:39.383167Z",
|
137 |
+
"start_time": "2024-08-24T11:36:39.370142Z"
|
138 |
+
}
|
139 |
+
},
|
140 |
+
"source": [
|
141 |
+
"import pathlib\n",
|
142 |
+
"from PIL import Image\n",
|
143 |
+
"\n",
|
144 |
+
"# Set opt.dataroot to the imgs_test directory\n",
|
145 |
+
"opt.dataroot = 'imgs_test/'\n",
|
146 |
+
"\n",
|
147 |
+
"# Load paths of all files contained in /imgs_test\n",
|
148 |
+
"p = pathlib.Path(opt.dataroot)\n",
|
149 |
+
"dataset_paths = [str(x.relative_to(opt.dataroot)) for x in p.iterdir()]\n",
|
150 |
+
"dataset_paths.sort()\n",
|
151 |
+
"\n",
|
152 |
+
"sequence_name = {}\n",
|
153 |
+
"# Make a dict with each sequence name as a key and\n",
|
154 |
+
"# a list of paths to the images of the sequence as a value\n",
|
155 |
+
"for file in dataset_paths:\n",
|
156 |
+
" # Keep only the sequence part contained in the name of the image\n",
|
157 |
+
" strip_name = file.split('_')[0]\n",
|
158 |
+
" \n",
|
159 |
+
" if strip_name not in sequence_name:\n",
|
160 |
+
" sequence_name[strip_name] = [file]\n",
|
161 |
+
" else:\n",
|
162 |
+
" sequence_name[strip_name].append(file)\n"
|
163 |
+
],
|
164 |
+
"outputs": [],
|
165 |
+
"execution_count": 4
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"cell_type": "markdown",
|
169 |
+
"metadata": {},
|
170 |
+
"source": [
|
171 |
+
"## Select a sequence, an image and the moment of the day\n",
|
172 |
+
"Select the sequence on which you want to work before choosing which image should be used.<br>\n",
|
173 |
+
"Select the moment of the day, by choosing the angle of the sun $\\phi$ between [0,2$\\pi$],\n",
|
174 |
+
"which maps to a sun elevation ∈ [+30◦,−40◦]\n",
|
175 |
+
"<ul>\n",
|
176 |
+
"<li>0 means day</li>\n",
|
177 |
+
"<li>$\\pi$/2 means dusk</li>\n",
|
178 |
+
"<li>$\\pi$ means night</li>\n",
|
179 |
+
"<li>$\\pi$ + $\\pi$/2 means dawn</li>\n",
|
180 |
+
"<li>2$\\pi$ means day (again)</li>\n",
|
181 |
+
"</ul>"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"cell_type": "code",
|
186 |
+
"metadata": {
|
187 |
+
"scrolled": true,
|
188 |
+
"ExecuteTime": {
|
189 |
+
"end_time": "2024-08-24T11:40:52.233134Z",
|
190 |
+
"start_time": "2024-08-24T11:40:45.511403Z"
|
191 |
+
}
|
192 |
+
},
|
193 |
+
"source": [
|
194 |
+
"def drop_list():\n",
|
195 |
+
" # Select the sequence on which you want to make your test\n",
|
196 |
+
" return widgets.Dropdown(options=sequence_name.keys(),\n",
|
197 |
+
" description='Select sequence',\n",
|
198 |
+
" disabled=False,\n",
|
199 |
+
" style=dict(description_width='initial'))\n",
|
200 |
+
"def slider_img():\n",
|
201 |
+
" # Select an image from the sequence\n",
|
202 |
+
" return widgets.IntSlider(min=0, max=len(sequence_name[w_seq.value]) - 1,\n",
|
203 |
+
" description='Select image')\n",
|
204 |
+
"def slider_time():\n",
|
205 |
+
" # Select time\n",
|
206 |
+
" return widgets.FloatSlider(value=0, min=0, max=pi*2, step=0.01,\n",
|
207 |
+
" description='Select time',\n",
|
208 |
+
" readout_format='.2f')\n",
|
209 |
+
"\n",
|
210 |
+
"def debounce(wait):\n",
|
211 |
+
" # Decorator that will debounce the call to a function\n",
|
212 |
+
" def decorator(fn):\n",
|
213 |
+
" timer = None\n",
|
214 |
+
" def debounced(*args, **kwargs):\n",
|
215 |
+
" nonlocal timer\n",
|
216 |
+
" def call_it():\n",
|
217 |
+
" fn(*args, **kwargs)\n",
|
218 |
+
" if timer is not None:\n",
|
219 |
+
" timer.cancel()\n",
|
220 |
+
" timer = Timer(wait, call_it)\n",
|
221 |
+
" timer.start()\n",
|
222 |
+
" return debounced\n",
|
223 |
+
" return decorator\n",
|
224 |
+
" \n",
|
225 |
+
"def inference(seq, index_img, phi, output = True):\n",
|
226 |
+
" global sequence_name, w_img_time, w_seq, opt, out\n",
|
227 |
+
" # Load the image\n",
|
228 |
+
" A_path = os.path.join(opt.dataroot, sequence_name[seq.value][index_img])\n",
|
229 |
+
" A_img = Image.open(A_path).convert('RGB')\n",
|
230 |
+
" # Apply image transformation\n",
|
231 |
+
" A = get_transform(opt, convert=False)(A_img)\n",
|
232 |
+
" # Normalization between -1 and 1\n",
|
233 |
+
" img_real = (((ToTensor()(A)) * 2) - 1).unsqueeze(0)\n",
|
234 |
+
" # Forward our image into the model with the specified ɸ\n",
|
235 |
+
" img_fake = model.forward(img_real.cpu(), phi.cpu()) \n",
|
236 |
+
" # Encapsulate the initial image beside our result\n",
|
237 |
+
" new_im = Image.new('RGB', (A_img.width * 2, A_img.height))\n",
|
238 |
+
" new_im.paste(A_img, (0, 0))\n",
|
239 |
+
" new_im.paste(ToPILImage()((img_fake[0].cpu() + 1) / 2), (A_img.width, 0))\n",
|
240 |
+
" # Clear the output and display the widgets and the images\n",
|
241 |
+
" if output:\n",
|
242 |
+
" out.clear_output(wait=True)\n",
|
243 |
+
" with out:\n",
|
244 |
+
" # Resize the output\n",
|
245 |
+
" O_img = new_im.resize((new_im.width // 2, new_im.height // 2))\n",
|
246 |
+
" display(w_img_time, O_img)\n",
|
247 |
+
" display(out)\n",
|
248 |
+
" \n",
|
249 |
+
" return new_im\n",
|
250 |
+
"\n",
|
251 |
+
"@debounce(0.2)\n",
|
252 |
+
"def on_value_change_img(change):\n",
|
253 |
+
" global w_seq, w_time\n",
|
254 |
+
" inference(w_seq, change['new'], torch.tensor(w_time.value))\n",
|
255 |
+
" \n",
|
256 |
+
"@debounce(0.2)\n",
|
257 |
+
"def on_value_change_time(change):\n",
|
258 |
+
" global w_seq, w_img\n",
|
259 |
+
" inference(w_seq, w_img.value, torch.tensor(change['new']))\n",
|
260 |
+
" \n",
|
261 |
+
"def on_value_change_seq(change):\n",
|
262 |
+
" global w_seq, w_img, w_time\n",
|
263 |
+
" w_img = slider_img()\n",
|
264 |
+
" w_time = slider_time()\n",
|
265 |
+
" inference(w_seq, w_img.value, torch.tensor(w_time.value))\n",
|
266 |
+
" \n",
|
267 |
+
"w_seq = drop_list()\n",
|
268 |
+
"w_img = slider_img()\n",
|
269 |
+
"w_time = slider_time()\n",
|
270 |
+
"w_img_time = widgets.VBox([w_seq, widgets.HBox([w_img, w_time])])\n",
|
271 |
+
"# Set the size of the output cell\n",
|
272 |
+
"out = widgets.Output(layout=widgets.Layout(width='auto', height='240px'))\n",
|
273 |
+
"\n",
|
274 |
+
"inference(w_seq, w_img.value, torch.tensor(w_time.value))\n",
|
275 |
+
"w_img.observe(on_value_change_img, names='value')\n",
|
276 |
+
"w_time.observe(on_value_change_time, names='value')\n",
|
277 |
+
"w_seq.observe(on_value_change_seq, names='value')"
|
278 |
+
],
|
279 |
+
"outputs": [
|
280 |
+
{
|
281 |
+
"data": {
|
282 |
+
"text/plain": [
|
283 |
+
"Output(layout=Layout(height='240px', width='auto'))"
|
284 |
+
],
|
285 |
+
"application/vnd.jupyter.widget-view+json": {
|
286 |
+
"version_major": 2,
|
287 |
+
"version_minor": 0,
|
288 |
+
"model_id": "665fdbd928f148d19f3e341ab0993ab7"
|
289 |
+
}
|
290 |
+
},
|
291 |
+
"metadata": {},
|
292 |
+
"output_type": "display_data"
|
293 |
+
}
|
294 |
+
],
|
295 |
+
"execution_count": 7
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"cell_type": "markdown",
|
299 |
+
"metadata": {},
|
300 |
+
"source": [
|
301 |
+
"## Sequence to video\n",
|
302 |
+
"The code below translates a sequence of images into a video.<br>\n",
|
303 |
+
"By default, the 'Select time' slider is on 'Variable phi' ($\\phi$), in this case the time parameter will progressively increase from 0 to 2$\\pi$.<br>\n",
|
304 |
+
"2$\\pi$ is reached at the end of the video. If you move the slider, you can select a fixed $\\phi$.<br>\n",
|
305 |
+
"Require to install two more packages <code>pip install imageio imageio-ffmpeg<code>"
|
306 |
+
]
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"cell_type": "code",
|
310 |
+
"execution_count": null,
|
311 |
+
"metadata": {},
|
312 |
+
"outputs": [],
|
313 |
+
"source": [
|
314 |
+
"from IPython.display import Video\n",
|
315 |
+
"import numpy as np\n",
|
316 |
+
"import imageio\n",
|
317 |
+
"\n",
|
318 |
+
"w_button = widgets.Button(description='Start', tooltip='Start the inference of a sequence',\n",
|
319 |
+
" icon='play')\n",
|
320 |
+
"\n",
|
321 |
+
"phi_opt = ['Variable phi'] + [str(round(f, 2)) for f in np.arange(0, pi*2, 0.01)]\n",
|
322 |
+
"w_vid_time = widgets.SelectionSlider(options=phi_opt, value=phi_opt[0], description='Select time : ')\n",
|
323 |
+
"\n",
|
324 |
+
"w_vid_seq = drop_list()\n",
|
325 |
+
"\n",
|
326 |
+
"w_button_seq = widgets.VBox([widgets.HBox([w_vid_seq, w_vid_time]), w_button])\n",
|
327 |
+
"display(w_button_seq)\n",
|
328 |
+
"\n",
|
329 |
+
"def get_video(bt):\n",
|
330 |
+
" global sequence_name, w_vid_seq, w_vid_time, w_button_seq\n",
|
331 |
+
" \n",
|
332 |
+
" clear_output(wait=True)\n",
|
333 |
+
" display(w_button_seq)\n",
|
334 |
+
" seq_size = len(sequence_name[w_vid_seq.value])\n",
|
335 |
+
" # Display progress bar\n",
|
336 |
+
" w_prog = widgets.IntProgress(value=0, min=0, max=seq_size, description='Loading:')\n",
|
337 |
+
" display(w_prog)\n",
|
338 |
+
" # Create a videos directory to save our video\n",
|
339 |
+
" save_name = str(pathlib.Path('.').absolute()) + '/videos/'\n",
|
340 |
+
" os.makedirs(save_name, exist_ok=True)\n",
|
341 |
+
" # If variable phi\n",
|
342 |
+
" if w_vid_time.value == 'Variable phi':\n",
|
343 |
+
" # Write our video in the project folder\n",
|
344 |
+
" save_name += 'comogan_{}_phi_{}.mp4'.format(w_vid_seq.value.replace('segment-', 'seg_'),\n",
|
345 |
+
" 'variable')\n",
|
346 |
+
" else:\n",
|
347 |
+
" save_name += 'comogan_{}_phi_{}.mp4'.format(w_vid_seq.value.replace('segment-', 'seg_'),\n",
|
348 |
+
" w_vid_time.value.replace('.', '_'))\n",
|
349 |
+
" writer = imageio.get_writer(save_name, fps=10)\n",
|
350 |
+
" # Loop on the images contained in the sequence\n",
|
351 |
+
" for i in range(seq_size):\n",
|
352 |
+
" if w_vid_time.value == 'Variable phi':\n",
|
353 |
+
" # Inference of the i image in sequence_name[key]\n",
|
354 |
+
" phi_var = 2*pi/seq_size * i\n",
|
355 |
+
" my_img = inference(w_vid_seq, i, torch.tensor(phi_var), False)\n",
|
356 |
+
" else:\n",
|
357 |
+
" my_img = inference(w_vid_seq, i, torch.tensor(float(w_vid_time.value)), False)\n",
|
358 |
+
" writer.append_data(np.array(my_img))\n",
|
359 |
+
" # Progress bar\n",
|
360 |
+
" w_prog.value += 1\n",
|
361 |
+
" \n",
|
362 |
+
" writer.close()\n",
|
363 |
+
" display(Video(save_name, embed=True))\n",
|
364 |
+
"\n",
|
365 |
+
"w_button.on_click(get_video)"
|
366 |
+
]
|
367 |
+
}
|
368 |
+
],
|
369 |
+
"metadata": {
|
370 |
+
"kernelspec": {
|
371 |
+
"display_name": "Python 3",
|
372 |
+
"language": "python",
|
373 |
+
"name": "python3"
|
374 |
+
},
|
375 |
+
"language_info": {
|
376 |
+
"codemirror_mode": {
|
377 |
+
"name": "ipython",
|
378 |
+
"version": 3
|
379 |
+
},
|
380 |
+
"file_extension": ".py",
|
381 |
+
"mimetype": "text/x-python",
|
382 |
+
"name": "python",
|
383 |
+
"nbconvert_exporter": "python",
|
384 |
+
"pygments_lexer": "ipython3",
|
385 |
+
"version": "3.7.5"
|
386 |
+
}
|
387 |
+
},
|
388 |
+
"nbformat": 4,
|
389 |
+
"nbformat_minor": 2
|
390 |
+
}
|
logs/pretrained/tensorboard/default/version_0/checkpoints/iter_000000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0986dd0ac3cf8ff8147304359fba9fa198155c3ba08875aef37ee3da15d1b841
|
3 |
+
size 741391945
|
logs/pretrained/tensorboard/default/version_0/hparams.yaml
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size: 1
|
2 |
+
beta1: 0.5
|
3 |
+
dataroot: /datasets_local/datasets_fpizzati/waymo/train
|
4 |
+
dataset_mode: day2timelapse
|
5 |
+
decay_iters_step: 100000
|
6 |
+
decay_step_gamma: 0.5
|
7 |
+
disc_activ: lrelu
|
8 |
+
disc_dim: 64
|
9 |
+
disc_n_layer: 4
|
10 |
+
disc_norm: none
|
11 |
+
disc_pad_type: reflect
|
12 |
+
display_freq: 10000
|
13 |
+
gan_mode: lsgan
|
14 |
+
gen_activ: relu
|
15 |
+
gen_dim: 64
|
16 |
+
gen_pad_type: reflect
|
17 |
+
gpu_ids:
|
18 |
+
- 4
|
19 |
+
init_gain: 0.02
|
20 |
+
init_type_disc: normal
|
21 |
+
init_type_gen: kaiming
|
22 |
+
input_nc: 3
|
23 |
+
lambda_Phinet_A: 1
|
24 |
+
lambda_compare: 10
|
25 |
+
lambda_gan: 1
|
26 |
+
lambda_idt: 1
|
27 |
+
lambda_physics: 10
|
28 |
+
lambda_physics_compare: 1
|
29 |
+
lambda_rec_content: 1
|
30 |
+
lambda_rec_cycle: 10
|
31 |
+
lambda_rec_image: 10
|
32 |
+
lambda_rec_style: 1
|
33 |
+
lambda_vgg: 0.1
|
34 |
+
lr: 0.0001
|
35 |
+
lr_policy: step
|
36 |
+
max_dataset_size: .inf
|
37 |
+
mlp_dim: 256
|
38 |
+
model: comomunit
|
39 |
+
n_downsample: 2
|
40 |
+
n_res: 4
|
41 |
+
no_flip: false
|
42 |
+
num_scales: 3
|
43 |
+
num_threads: 4
|
44 |
+
opt: !munch.Munch
|
45 |
+
batch_size: 1
|
46 |
+
beta1: 0.5
|
47 |
+
dataroot: /datasets_local/datasets_fpizzati/waymo/train
|
48 |
+
dataset_mode: day2timelapse
|
49 |
+
decay_iters_step: 100000
|
50 |
+
decay_step_gamma: 0.5
|
51 |
+
disc_activ: lrelu
|
52 |
+
disc_dim: 64
|
53 |
+
disc_n_layer: 4
|
54 |
+
disc_norm: none
|
55 |
+
disc_pad_type: reflect
|
56 |
+
display_freq: 10000
|
57 |
+
gan_mode: lsgan
|
58 |
+
gen_activ: relu
|
59 |
+
gen_dim: 64
|
60 |
+
gen_pad_type: reflect
|
61 |
+
gpu_ids:
|
62 |
+
- 4
|
63 |
+
init_gain: 0.02
|
64 |
+
init_type_disc: normal
|
65 |
+
init_type_gen: kaiming
|
66 |
+
input_nc: 3
|
67 |
+
lambda_Phinet_A: 1
|
68 |
+
lambda_compare: 10
|
69 |
+
lambda_gan: 1
|
70 |
+
lambda_idt: 1
|
71 |
+
lambda_physics: 10
|
72 |
+
lambda_physics_compare: 1
|
73 |
+
lambda_rec_content: 1
|
74 |
+
lambda_rec_cycle: 10
|
75 |
+
lambda_rec_image: 10
|
76 |
+
lambda_rec_style: 1
|
77 |
+
lambda_vgg: 0.1
|
78 |
+
lr: 0.0001
|
79 |
+
lr_policy: step
|
80 |
+
max_dataset_size: .inf
|
81 |
+
mlp_dim: 256
|
82 |
+
model: comomunit
|
83 |
+
n_downsample: 2
|
84 |
+
n_res: 4
|
85 |
+
no_flip: false
|
86 |
+
num_scales: 3
|
87 |
+
num_threads: 4
|
88 |
+
output_nc: 3
|
89 |
+
preprocess: none
|
90 |
+
print_freq: 10
|
91 |
+
resblocks_cont: 1
|
92 |
+
save_epoch_freq: 5
|
93 |
+
save_latest_freq: 35000
|
94 |
+
serial_batches: false
|
95 |
+
style_dim: 8
|
96 |
+
total_iterations: 30000000
|
97 |
+
output_nc: 3
|
98 |
+
preprocess: none
|
99 |
+
print_freq: 10
|
100 |
+
resblocks_cont: 1
|
101 |
+
save_epoch_freq: 5
|
102 |
+
save_latest_freq: 35000
|
103 |
+
serial_batches: false
|
104 |
+
style_dim: 8
|
105 |
+
total_iterations: 30000000
|
networks/__init__.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This enables dynamic loading of models, similarly to what happens with the dataset.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import importlib
|
6 |
+
from networks.base_model import BaseModel
|
7 |
+
|
8 |
+
|
9 |
+
def find_model_using_name(model_name):
|
10 |
+
"""Import the module "networks/[model_name]_model.py".
|
11 |
+
|
12 |
+
In the file, the class called DatasetNameModel() will
|
13 |
+
be instantiated. It has to be a subclass of BaseModel,
|
14 |
+
and it is case-insensitive.
|
15 |
+
"""
|
16 |
+
model_filename = "networks." + model_name + "_model"
|
17 |
+
modellib = importlib.import_module(model_filename)
|
18 |
+
model = None
|
19 |
+
target_model_name = model_name.replace('_', '') + 'model'
|
20 |
+
for name, cls in modellib.__dict__.items():
|
21 |
+
if name.lower() == target_model_name.lower() \
|
22 |
+
and issubclass(cls, BaseModel):
|
23 |
+
model = cls
|
24 |
+
|
25 |
+
if model is None:
|
26 |
+
print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name))
|
27 |
+
exit(0)
|
28 |
+
|
29 |
+
return model
|
30 |
+
|
31 |
+
|
32 |
+
def get_model_options(model_name):
|
33 |
+
model_filename = "networks." + model_name + "_model"
|
34 |
+
modellib = importlib.import_module(model_filename)
|
35 |
+
for name, cls in modellib.__dict__.items():
|
36 |
+
if name.lower() == 'modeloptions':
|
37 |
+
return cls
|
38 |
+
return None
|
39 |
+
|
40 |
+
def create_model(opt):
|
41 |
+
"""Create a model given the option.
|
42 |
+
|
43 |
+
This function warps the class CustomDatasetDataLoader.
|
44 |
+
This is the main interface between this package and 'train.py'/'test.py'
|
45 |
+
|
46 |
+
Example:
|
47 |
+
>>> from networks import create_model
|
48 |
+
>>> model = create_model(opt)
|
49 |
+
"""
|
50 |
+
model = find_model_using_name(opt.model)
|
51 |
+
instance = model(opt)
|
52 |
+
return instance
|
networks/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (1.73 kB). View file
|
|
networks/__pycache__/base_model.cpython-37.pyc
ADDED
Binary file (4.66 kB). View file
|
|
networks/__pycache__/comomunit_model.cpython-37.pyc
ADDED
Binary file (11.1 kB). View file
|
|
networks/backbones/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .functions import *
|
networks/backbones/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (158 Bytes). View file
|
|
networks/backbones/__pycache__/comomunit.cpython-37.pyc
ADDED
Binary file (23.3 kB). View file
|
|
networks/backbones/__pycache__/functions.cpython-37.pyc
ADDED
Binary file (3.93 kB). View file
|
|
networks/backbones/comomunit.py
ADDED
@@ -0,0 +1,706 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
comomunit.py
|
3 |
+
In this file all architectural components of CoMo-MUNIT are defined. The *logic* is not defined here, but in the *_model.py files.
|
4 |
+
Most of the code is copied from https://github.com/NVlabs/MUNIT
|
5 |
+
Thttps://github.com/junyanz/pytorch-CycleGAN-and-pix2pixhere are some additional function to get compatibility with the CycleGAN codebase (https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix)
|
6 |
+
"""
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch.nn import init
|
11 |
+
import functools
|
12 |
+
from torch.optim import lr_scheduler
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from .functions import init_net, init_weights, get_scheduler
|
15 |
+
|
16 |
+
|
17 |
+
########################################################################################################################
|
18 |
+
# MUNIT architecture
|
19 |
+
########################################################################################################################
|
20 |
+
|
21 |
+
## Functions to get generator / discriminator / DRB
|
22 |
+
def define_G_munit(input_nc, output_nc, gen_dim, style_dim, n_downsample, n_res,
|
23 |
+
pad_type, mlp_dim, activ='relu', init_type = 'kaiming', init_gain=0.02, gpu_ids=[]):
|
24 |
+
gen = AdaINGen(input_nc, output_nc, gen_dim, style_dim, n_downsample, n_res, activ, pad_type, mlp_dim)
|
25 |
+
return init_net(gen, init_type=init_type, init_gain = init_gain, gpu_ids = gpu_ids)
|
26 |
+
|
27 |
+
def define_D_munit(input_nc, disc_dim, norm, activ, n_layer, gan_type, num_scales, pad_type,
|
28 |
+
init_type = 'kaiming', init_gain = 0.02, gpu_ids = [], output_channels = 1, final_function = None):
|
29 |
+
disc = MsImageDis(input_nc, n_layer, gan_type, disc_dim, norm, activ, num_scales, pad_type, output_channels, final_function = final_function)
|
30 |
+
return init_net(disc, init_type=init_type, init_gain = init_gain, gpu_ids = gpu_ids)
|
31 |
+
|
32 |
+
def define_DRB_munit(resblocks, dim, norm, activation, pad_type,
|
33 |
+
init_type = 'kaiming', init_gain = 0.02, gpu_ids = []):
|
34 |
+
demux = DRB(resblocks, dim, norm, activation, pad_type)
|
35 |
+
return init_net(demux, init_type = init_type, init_gain = init_gain, gpu_ids = gpu_ids)
|
36 |
+
|
37 |
+
# This class has been strongly modified from MUNIT default version. We split the default MUNIT decoder
|
38 |
+
# in AdaINBlock + DecoderNoAdain because the DRB must be placed between the two. encode/assign_adain/decode
|
39 |
+
# are called by the network logic following CoMo-MUNIT implementation.
|
40 |
+
class AdaINGen(nn.Module):
|
41 |
+
# AdaIN auto-encoder architecture
|
42 |
+
def __init__(self, input_dim, output_dim, dim, style_dim, n_downsample, n_res, activ, pad_type, mlp_dim):
|
43 |
+
super(AdaINGen, self).__init__()
|
44 |
+
|
45 |
+
# style encoder
|
46 |
+
self.enc_style = StyleEncoder(4, input_dim, dim, style_dim, norm='none', activ=activ, pad_type=pad_type)
|
47 |
+
|
48 |
+
# content encoder
|
49 |
+
self.enc_content = ContentEncoder(n_downsample, n_res, input_dim, dim, 'instance', activ, pad_type=pad_type)
|
50 |
+
self.adainblock = AdaINBlock(n_downsample, n_res, self.enc_content.output_dim, output_dim, res_norm='adain', activ=activ, pad_type=pad_type)
|
51 |
+
self.dec = DecoderNoAdain(n_downsample, n_res, self.enc_content.output_dim, output_dim, res_norm='adain', activ=activ, pad_type=pad_type)
|
52 |
+
# MLP to generate AdaIN parameters
|
53 |
+
self.mlp = MLP(style_dim, self.get_num_adain_params(self.adainblock), mlp_dim, 3, norm='none', activ=activ)
|
54 |
+
|
55 |
+
def forward(self, images):
|
56 |
+
# reconstruct an image
|
57 |
+
content, style_fake = self.encode(images)
|
58 |
+
images_recon = self.decode(content, style_fake)
|
59 |
+
return images_recon
|
60 |
+
|
61 |
+
def encode(self, images):
|
62 |
+
# encode an image to its content and style codes
|
63 |
+
style_fake = self.enc_style(images)
|
64 |
+
content = self.enc_content(images)
|
65 |
+
return content, style_fake
|
66 |
+
|
67 |
+
def assign_adain(self, content, style):
|
68 |
+
# decode content and style codes to an image
|
69 |
+
adain_params = self.mlp(style)
|
70 |
+
self.assign_adain_params(adain_params, self.adainblock)
|
71 |
+
features = self.adainblock(content)
|
72 |
+
return features
|
73 |
+
|
74 |
+
def decode(self, features):
|
75 |
+
return self.dec(features)
|
76 |
+
|
77 |
+
def assign_adain_params(self, adain_params, model):
|
78 |
+
# assign the adain_params to the AdaIN layers in model
|
79 |
+
for m in model.modules():
|
80 |
+
if m.__class__.__name__ == "AdaptiveInstanceNorm2d":
|
81 |
+
mean = adain_params[:, :m.num_features]
|
82 |
+
std = adain_params[:, m.num_features:2*m.num_features]
|
83 |
+
m.bias = mean.contiguous().view(-1)
|
84 |
+
m.weight = std.contiguous().view(-1)
|
85 |
+
if adain_params.size(1) > 2*m.num_features:
|
86 |
+
adain_params = adain_params[:, 2*m.num_features:]
|
87 |
+
|
88 |
+
def get_num_adain_params(self, model):
|
89 |
+
# return the number of AdaIN parameters needed by the model
|
90 |
+
num_adain_params = 0
|
91 |
+
for m in model.modules():
|
92 |
+
if m.__class__.__name__ == "AdaptiveInstanceNorm2d":
|
93 |
+
num_adain_params += 2*m.num_features
|
94 |
+
return num_adain_params
|
95 |
+
|
96 |
+
# This is the FIN layer for cyclic encoding. It's our contribution and it does not exist in MUNIT.
|
97 |
+
class FIN2dCyclic(nn.Module):
|
98 |
+
def __init__(self, dim):
|
99 |
+
super().__init__()
|
100 |
+
self.instance_norm = nn.InstanceNorm2d(dim, affine=False)
|
101 |
+
self.a_gamma = nn.Parameter(torch.zeros(dim))
|
102 |
+
self.b_gamma = nn.Parameter(torch.ones(dim))
|
103 |
+
self.a_beta = nn.Parameter(torch.zeros(dim))
|
104 |
+
self.b_beta = nn.Parameter(torch.zeros(dim))
|
105 |
+
|
106 |
+
def forward(self, x, cos, sin):
|
107 |
+
# The only way to encode something cyclic is to map gamma and beta to an ellipse point (x,y).
|
108 |
+
# We are trying to learn their cyclic manner associating cos(continuity) to gamma and sin(continuity to beta)
|
109 |
+
# Sin and cos are randomly sampled between -1 and 1, we know that they will be associated to one point
|
110 |
+
gamma = self.a_gamma * cos.unsqueeze(-1) + self.b_gamma
|
111 |
+
beta = self.a_beta * sin.unsqueeze(-1) + self.b_beta
|
112 |
+
|
113 |
+
return self.instance_norm(x) * gamma.unsqueeze(-1).unsqueeze(-1) + beta.unsqueeze(-1).unsqueeze(-1)
|
114 |
+
|
115 |
+
# This is the DRB implementation, and it does not exist in MUNIT.
|
116 |
+
class DRB(nn.Module):
|
117 |
+
def __init__(self, n_resblocks, dim, norm, activation, pad_type):
|
118 |
+
super().__init__()
|
119 |
+
self.common_features = []
|
120 |
+
self.physical_features = []
|
121 |
+
self.real_features = []
|
122 |
+
self.continuous_features = nn.ModuleList()
|
123 |
+
|
124 |
+
for i in range(0, n_resblocks):
|
125 |
+
self.common_features += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)]
|
126 |
+
for i in range(0, n_resblocks):
|
127 |
+
self.physical_features += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)]
|
128 |
+
for i in range(0, n_resblocks):
|
129 |
+
self.real_features += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)]
|
130 |
+
for i in range(0, n_resblocks):
|
131 |
+
self.continuous_features.append(ResBlockContinuous(dim, norm='fin', activation=activation, pad_type=pad_type))
|
132 |
+
|
133 |
+
self.common_features = nn.Sequential(*self.common_features)
|
134 |
+
self.physical_features = nn.Sequential(*self.physical_features)
|
135 |
+
self.real_features = nn.Sequential(*self.real_features)
|
136 |
+
|
137 |
+
def forward(self, input_features, continuity_cos, continuity_sin):
|
138 |
+
common_features = self.common_features(input_features)
|
139 |
+
physical_features = self.physical_features(input_features)
|
140 |
+
real_features = self.real_features(input_features)
|
141 |
+
continuous_features = input_features
|
142 |
+
for layer in self.continuous_features:
|
143 |
+
continuous_features = layer(continuous_features, continuity_cos, continuity_sin)
|
144 |
+
|
145 |
+
physical_output_features = common_features + physical_features + continuous_features + input_features
|
146 |
+
real_output_features = common_features + real_features + continuous_features + input_features
|
147 |
+
|
148 |
+
return real_output_features, physical_output_features
|
149 |
+
|
150 |
+
# Again, the default decoder is with adain, but we separated the two.
|
151 |
+
class DecoderNoAdain(nn.Module):
|
152 |
+
def __init__(self, n_upsample, n_res, dim, output_dim, res_norm='adain', activ='relu', pad_type='zero'):
|
153 |
+
super(DecoderNoAdain, self).__init__()
|
154 |
+
|
155 |
+
self.model = []
|
156 |
+
# upsampling blocks
|
157 |
+
for i in range(n_upsample):
|
158 |
+
self.model += [nn.Upsample(scale_factor=2),
|
159 |
+
Conv2dBlock(dim, dim // 2, 5, 1, 2, norm='layer', activation=activ, pad_type=pad_type)]
|
160 |
+
dim //= 2
|
161 |
+
# use reflection padding in the last conv layer
|
162 |
+
self.model += [Conv2dBlock(dim, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type=pad_type)]
|
163 |
+
self.model = nn.Sequential(*self.model)
|
164 |
+
|
165 |
+
def forward(self, x):
|
166 |
+
return self.model(x)
|
167 |
+
|
168 |
+
# This is a residual block with FIN layers inserted.
|
169 |
+
class ResBlockContinuous(nn.Module):
|
170 |
+
def __init__(self, dim, norm='instance', activation='relu', pad_type='zero'):
|
171 |
+
super(ResBlockContinuous, self).__init__()
|
172 |
+
|
173 |
+
self.model = nn.ModuleList()
|
174 |
+
self.model.append(Conv2dBlockContinuous(dim ,dim, 3, 1, 1, norm='fin', activation=activation, pad_type=pad_type))
|
175 |
+
self.model.append(Conv2dBlockContinuous(dim ,dim, 3, 1, 1, norm='fin', activation='none', pad_type=pad_type))
|
176 |
+
|
177 |
+
def forward(self, x, cos_phi, sin_phi):
|
178 |
+
residual = x
|
179 |
+
for layer in self.model:
|
180 |
+
x = layer(x, cos_phi, sin_phi)
|
181 |
+
|
182 |
+
x += residual
|
183 |
+
return x
|
184 |
+
|
185 |
+
# This is a convolutional block+nonlinear+norm with support for FIN layers as normalization strategy.
|
186 |
+
class Conv2dBlockContinuous(nn.Module):
|
187 |
+
def __init__(self, input_dim ,output_dim, kernel_size, stride,
|
188 |
+
padding=0, norm='none', activation='relu', pad_type='zero'):
|
189 |
+
super(Conv2dBlockContinuous, self).__init__()
|
190 |
+
self.use_bias = True
|
191 |
+
# initialize padding
|
192 |
+
if pad_type == 'reflect':
|
193 |
+
self.pad = nn.ReflectionPad2d(padding)
|
194 |
+
elif pad_type == 'replicate':
|
195 |
+
self.pad = nn.ReplicationPad2d(padding)
|
196 |
+
elif pad_type == 'zero':
|
197 |
+
self.pad = nn.ZeroPad2d(padding)
|
198 |
+
else:
|
199 |
+
assert 0, "Unsupported padding type: {}".format(pad_type)
|
200 |
+
|
201 |
+
# initialize normalization
|
202 |
+
norm_dim = output_dim
|
203 |
+
if norm == 'batch':
|
204 |
+
self.norm = nn.BatchNorm2d(norm_dim)
|
205 |
+
elif norm == 'instance':
|
206 |
+
#self.norm = nn.InstanceNorm2d(norm_dim, track_running_stats=True)
|
207 |
+
self.norm = nn.InstanceNorm2d(norm_dim)
|
208 |
+
elif norm == 'layer':
|
209 |
+
self.norm = LayerNorm(norm_dim)
|
210 |
+
elif norm == 'adain':
|
211 |
+
self.norm = AdaptiveInstanceNorm2d(norm_dim)
|
212 |
+
elif norm == 'fin':
|
213 |
+
self.norm = FIN2dCyclic(norm_dim)
|
214 |
+
elif norm == 'none' or norm == 'spectral':
|
215 |
+
self.norm = None
|
216 |
+
else:
|
217 |
+
assert 0, "Unsupported normalization: {}".format(norm)
|
218 |
+
|
219 |
+
# initialize activation
|
220 |
+
if activation == 'relu':
|
221 |
+
self.activation = nn.ReLU(inplace=True)
|
222 |
+
elif activation == 'lrelu':
|
223 |
+
self.activation = nn.LeakyReLU(0.2, inplace=True)
|
224 |
+
elif activation == 'prelu':
|
225 |
+
self.activation = nn.PReLU()
|
226 |
+
elif activation == 'selu':
|
227 |
+
self.activation = nn.SELU(inplace=True)
|
228 |
+
elif activation == 'tanh':
|
229 |
+
self.activation = nn.Tanh()
|
230 |
+
elif activation == 'none':
|
231 |
+
self.activation = None
|
232 |
+
else:
|
233 |
+
assert 0, "Unsupported activation: {}".format(activation)
|
234 |
+
|
235 |
+
# initialize convolution
|
236 |
+
if norm == 'spectral':
|
237 |
+
self.conv = SpectralNorm(nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias))
|
238 |
+
else:
|
239 |
+
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)
|
240 |
+
|
241 |
+
def forward(self, x, continuity_cos, continuity_sin):
|
242 |
+
x = self.conv(self.pad(x))
|
243 |
+
if self.norm:
|
244 |
+
x = self.norm(x, continuity_cos, continuity_sin)
|
245 |
+
if self.activation:
|
246 |
+
x = self.activation(x)
|
247 |
+
return x
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
##################################################################################
|
252 |
+
# All below there are MUNIT default blocks.
|
253 |
+
##################################################################################
|
254 |
+
class ResBlocks(nn.Module):
|
255 |
+
def __init__(self, num_blocks, dim, norm='instance', activation='relu', pad_type='zero'):
|
256 |
+
super(ResBlocks, self).__init__()
|
257 |
+
self.model = []
|
258 |
+
for i in range(num_blocks):
|
259 |
+
self.model += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)]
|
260 |
+
self.model = nn.Sequential(*self.model)
|
261 |
+
|
262 |
+
def forward(self, x):
|
263 |
+
return self.model(x)
|
264 |
+
|
265 |
+
class MLP(nn.Module):
|
266 |
+
def __init__(self, input_dim, output_dim, dim, n_blk, norm='none', activ='relu'):
|
267 |
+
|
268 |
+
super(MLP, self).__init__()
|
269 |
+
self.model = []
|
270 |
+
self.model += [LinearBlock(input_dim, dim, norm=norm, activation=activ)]
|
271 |
+
for i in range(n_blk - 2):
|
272 |
+
self.model += [LinearBlock(dim, dim, norm=norm, activation=activ)]
|
273 |
+
self.model += [LinearBlock(dim, output_dim, norm='none', activation='none')] # no output activations
|
274 |
+
self.model = nn.Sequential(*self.model)
|
275 |
+
|
276 |
+
def forward(self, x):
|
277 |
+
return self.model(x.view(x.size(0), -1))
|
278 |
+
|
279 |
+
|
280 |
+
|
281 |
+
class ResBlock(nn.Module):
|
282 |
+
def __init__(self, dim, norm='instance', activation='relu', pad_type='zero'):
|
283 |
+
super(ResBlock, self).__init__()
|
284 |
+
|
285 |
+
model = []
|
286 |
+
model += [Conv2dBlock(dim ,dim, 3, 1, 1, norm=norm, activation=activation, pad_type=pad_type)]
|
287 |
+
model += [Conv2dBlock(dim ,dim, 3, 1, 1, norm=norm, activation='none', pad_type=pad_type)]
|
288 |
+
self.model = nn.Sequential(*model)
|
289 |
+
|
290 |
+
def forward(self, x):
|
291 |
+
residual = x
|
292 |
+
out = self.model(x)
|
293 |
+
out += residual
|
294 |
+
return out
|
295 |
+
|
296 |
+
class Conv2dBlock(nn.Module):
|
297 |
+
def __init__(self, input_dim ,output_dim, kernel_size, stride,
|
298 |
+
padding=0, norm='none', activation='relu', pad_type='zero'):
|
299 |
+
super(Conv2dBlock, self).__init__()
|
300 |
+
self.use_bias = True
|
301 |
+
# initialize padding
|
302 |
+
if pad_type == 'reflect':
|
303 |
+
self.pad = nn.ReflectionPad2d(padding)
|
304 |
+
elif pad_type == 'replicate':
|
305 |
+
self.pad = nn.ReplicationPad2d(padding)
|
306 |
+
elif pad_type == 'zero':
|
307 |
+
self.pad = nn.ZeroPad2d(padding)
|
308 |
+
else:
|
309 |
+
assert 0, "Unsupported padding type: {}".format(pad_type)
|
310 |
+
|
311 |
+
# initialize normalization
|
312 |
+
norm_dim = output_dim
|
313 |
+
if norm == 'batch':
|
314 |
+
self.norm = nn.BatchNorm2d(norm_dim)
|
315 |
+
elif norm == 'instance':
|
316 |
+
#self.norm = nn.InstanceNorm2d(norm_dim, track_running_stats=True)
|
317 |
+
self.norm = nn.InstanceNorm2d(norm_dim)
|
318 |
+
elif norm == 'layer':
|
319 |
+
self.norm = LayerNorm(norm_dim)
|
320 |
+
elif norm == 'adain':
|
321 |
+
self.norm = AdaptiveInstanceNorm2d(norm_dim)
|
322 |
+
elif norm == 'none' or norm == 'spectral':
|
323 |
+
self.norm = None
|
324 |
+
else:
|
325 |
+
assert 0, "Unsupported normalization: {}".format(norm)
|
326 |
+
|
327 |
+
# initialize activation
|
328 |
+
if activation == 'relu':
|
329 |
+
self.activation = nn.ReLU(inplace=True)
|
330 |
+
elif activation == 'lrelu':
|
331 |
+
self.activation = nn.LeakyReLU(0.2, inplace=True)
|
332 |
+
elif activation == 'prelu':
|
333 |
+
self.activation = nn.PReLU()
|
334 |
+
elif activation == 'selu':
|
335 |
+
self.activation = nn.SELU(inplace=True)
|
336 |
+
elif activation == 'tanh':
|
337 |
+
self.activation = nn.Tanh()
|
338 |
+
elif activation == 'none':
|
339 |
+
self.activation = None
|
340 |
+
else:
|
341 |
+
assert 0, "Unsupported activation: {}".format(activation)
|
342 |
+
|
343 |
+
# initialize convolution
|
344 |
+
if norm == 'spectral':
|
345 |
+
self.conv = SpectralNorm(nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias))
|
346 |
+
else:
|
347 |
+
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)
|
348 |
+
|
349 |
+
def forward(self, x):
|
350 |
+
x = self.conv(self.pad(x))
|
351 |
+
if self.norm:
|
352 |
+
x = self.norm(x)
|
353 |
+
if self.activation:
|
354 |
+
x = self.activation(x)
|
355 |
+
return x
|
356 |
+
|
357 |
+
|
358 |
+
class LinearBlock(nn.Module):
|
359 |
+
def __init__(self, input_dim, output_dim, norm='none', activation='relu'):
|
360 |
+
super(LinearBlock, self).__init__()
|
361 |
+
use_bias = True
|
362 |
+
# initialize fully connected layer
|
363 |
+
if norm == 'spectral':
|
364 |
+
self.fc = SpectralNorm(nn.Linear(input_dim, output_dim, bias=use_bias))
|
365 |
+
else:
|
366 |
+
self.fc = nn.Linear(input_dim, output_dim, bias=use_bias)
|
367 |
+
|
368 |
+
# initialize normalization
|
369 |
+
norm_dim = output_dim
|
370 |
+
if norm == 'batch':
|
371 |
+
self.norm = nn.BatchNorm1d(norm_dim)
|
372 |
+
elif norm == 'instance':
|
373 |
+
self.norm = nn.InstanceNorm1d(norm_dim)
|
374 |
+
elif norm == 'layer':
|
375 |
+
self.norm = LayerNorm(norm_dim)
|
376 |
+
elif norm == 'none' or norm == 'spectral':
|
377 |
+
self.norm = None
|
378 |
+
else:
|
379 |
+
assert 0, "Unsupported normalization: {}".format(norm)
|
380 |
+
|
381 |
+
# initialize activation
|
382 |
+
if activation == 'relu':
|
383 |
+
self.activation = nn.ReLU(inplace=True)
|
384 |
+
elif activation == 'lrelu':
|
385 |
+
self.activation = nn.LeakyReLU(0.2, inplace=True)
|
386 |
+
elif activation == 'prelu':
|
387 |
+
self.activation = nn.PReLU()
|
388 |
+
elif activation == 'selu':
|
389 |
+
self.activation = nn.SELU(inplace=True)
|
390 |
+
elif activation == 'tanh':
|
391 |
+
self.activation = nn.Tanh()
|
392 |
+
elif activation == 'none':
|
393 |
+
self.activation = None
|
394 |
+
else:
|
395 |
+
assert 0, "Unsupported activation: {}".format(activation)
|
396 |
+
|
397 |
+
def forward(self, x):
|
398 |
+
out = self.fc(x)
|
399 |
+
if self.norm:
|
400 |
+
out = self.norm(out)
|
401 |
+
if self.activation:
|
402 |
+
out = self.activation(out)
|
403 |
+
return out
|
404 |
+
|
405 |
+
|
406 |
+
class Vgg16(nn.Module):
|
407 |
+
def __init__(self):
|
408 |
+
super(Vgg16, self).__init__()
|
409 |
+
self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
|
410 |
+
self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
|
411 |
+
|
412 |
+
self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
|
413 |
+
self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
|
414 |
+
|
415 |
+
self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
|
416 |
+
self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
|
417 |
+
self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
|
418 |
+
|
419 |
+
self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
|
420 |
+
self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
|
421 |
+
self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
|
422 |
+
|
423 |
+
self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
|
424 |
+
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
|
425 |
+
self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
|
426 |
+
|
427 |
+
def forward(self, X):
|
428 |
+
h = F.relu(self.conv1_1(X), inplace=True)
|
429 |
+
h = F.relu(self.conv1_2(h), inplace=True)
|
430 |
+
# relu1_2 = h
|
431 |
+
h = F.max_pool2d(h, kernel_size=2, stride=2)
|
432 |
+
|
433 |
+
h = F.relu(self.conv2_1(h), inplace=True)
|
434 |
+
h = F.relu(self.conv2_2(h), inplace=True)
|
435 |
+
# relu2_2 = h
|
436 |
+
h = F.max_pool2d(h, kernel_size=2, stride=2)
|
437 |
+
|
438 |
+
h = F.relu(self.conv3_1(h), inplace=True)
|
439 |
+
h = F.relu(self.conv3_2(h), inplace=True)
|
440 |
+
h = F.relu(self.conv3_3(h), inplace=True)
|
441 |
+
# relu3_3 = h
|
442 |
+
h = F.max_pool2d(h, kernel_size=2, stride=2)
|
443 |
+
|
444 |
+
h = F.relu(self.conv4_1(h), inplace=True)
|
445 |
+
h = F.relu(self.conv4_2(h), inplace=True)
|
446 |
+
h = F.relu(self.conv4_3(h), inplace=True)
|
447 |
+
# relu4_3 = h
|
448 |
+
|
449 |
+
h = F.relu(self.conv5_1(h), inplace=True)
|
450 |
+
h = F.relu(self.conv5_2(h), inplace=True)
|
451 |
+
h = F.relu(self.conv5_3(h), inplace=True)
|
452 |
+
relu5_3 = h
|
453 |
+
|
454 |
+
return relu5_3
|
455 |
+
# return [relu1_2, relu2_2, relu3_3, relu4_3]
|
456 |
+
|
457 |
+
|
458 |
+
class AdaptiveInstanceNorm2d(nn.Module):
|
459 |
+
def __init__(self, num_features, eps=1e-5, momentum=0.1):
|
460 |
+
super(AdaptiveInstanceNorm2d, self).__init__()
|
461 |
+
self.num_features = num_features
|
462 |
+
self.eps = eps
|
463 |
+
self.momentum = momentum
|
464 |
+
# weight and bias are dynamically assigned
|
465 |
+
self.weight = None
|
466 |
+
self.bias = None
|
467 |
+
# just dummy buffers, not used
|
468 |
+
self.register_buffer('running_mean', torch.zeros(num_features))
|
469 |
+
self.register_buffer('running_var', torch.ones(num_features))
|
470 |
+
|
471 |
+
def forward(self, x):
|
472 |
+
assert self.weight is not None and self.bias is not None, "Please assign weight and bias before calling AdaIN!"
|
473 |
+
b, c = x.size(0), x.size(1)
|
474 |
+
|
475 |
+
if self.weight.type() == 'torch.cuda.HalfTensor':
|
476 |
+
running_mean = self.running_mean.repeat(b).to(torch.float16)
|
477 |
+
running_var = self.running_var.repeat(b).to(torch.float16)
|
478 |
+
else:
|
479 |
+
running_mean = self.running_mean.repeat(b)
|
480 |
+
running_var = self.running_var.repeat(b)
|
481 |
+
|
482 |
+
# Apply instance norm
|
483 |
+
x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:])
|
484 |
+
|
485 |
+
out = F.batch_norm(
|
486 |
+
x_reshaped, running_mean, running_var, self.weight, self.bias,
|
487 |
+
True, self.momentum, self.eps)
|
488 |
+
|
489 |
+
return out.view(b, c, *x.size()[2:])
|
490 |
+
|
491 |
+
def __repr__(self):
|
492 |
+
return self.__class__.__name__ + '(' + str(self.num_features) + ')'
|
493 |
+
|
494 |
+
|
495 |
+
class LayerNorm(nn.Module):
|
496 |
+
def __init__(self, num_features, eps=1e-5, affine=True):
|
497 |
+
super(LayerNorm, self).__init__()
|
498 |
+
self.num_features = num_features
|
499 |
+
self.affine = affine
|
500 |
+
self.eps = eps
|
501 |
+
|
502 |
+
if self.affine:
|
503 |
+
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
|
504 |
+
self.beta = nn.Parameter(torch.zeros(num_features))
|
505 |
+
|
506 |
+
def forward(self, x):
|
507 |
+
shape = [-1] + [1] * (x.dim() - 1)
|
508 |
+
# print(x.size())
|
509 |
+
if x.size(0) == 1:
|
510 |
+
# These two lines run much faster in pytorch 0.4 than the two lines listed below.
|
511 |
+
mean = x.view(-1).mean().view(*shape)
|
512 |
+
std = x.view(-1).std().view(*shape)
|
513 |
+
else:
|
514 |
+
mean = x.view(x.size(0), -1).mean(1).view(*shape)
|
515 |
+
std = x.view(x.size(0), -1).std(1).view(*shape)
|
516 |
+
|
517 |
+
x = (x - mean) / (std + self.eps)
|
518 |
+
|
519 |
+
if self.affine:
|
520 |
+
shape = [1, -1] + [1] * (x.dim() - 2)
|
521 |
+
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
|
522 |
+
return x
|
523 |
+
|
524 |
+
def l2normalize(v, eps=1e-12):
|
525 |
+
return v / (v.norm() + eps)
|
526 |
+
|
527 |
+
|
528 |
+
class SpectralNorm(nn.Module):
|
529 |
+
"""
|
530 |
+
Based on the paper "Spectral Normalization for Generative Adversarial Networks" by Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida
|
531 |
+
and the Pytorch implementation https://github.com/christiancosgrove/pytorch-spectral-normalization-gan
|
532 |
+
"""
|
533 |
+
def __init__(self, module, name='weight', power_iterations=1):
|
534 |
+
super(SpectralNorm, self).__init__()
|
535 |
+
self.module = module
|
536 |
+
self.name = name
|
537 |
+
self.power_iterations = power_iterations
|
538 |
+
if not self._made_params():
|
539 |
+
self._make_params()
|
540 |
+
|
541 |
+
def _update_u_v(self):
|
542 |
+
u = getattr(self.module, self.name + "_u")
|
543 |
+
v = getattr(self.module, self.name + "_v")
|
544 |
+
w = getattr(self.module, self.name + "_bar")
|
545 |
+
|
546 |
+
height = w.data.shape[0]
|
547 |
+
for _ in range(self.power_iterations):
|
548 |
+
v.data = l2normalize(torch.mv(torch.t(w.view(height,-1).data), u.data))
|
549 |
+
u.data = l2normalize(torch.mv(w.view(height,-1).data, v.data))
|
550 |
+
|
551 |
+
# sigma = torch.dot(u.data, torch.mv(w.view(height,-1).data, v.data))
|
552 |
+
sigma = u.dot(w.view(height, -1).mv(v))
|
553 |
+
setattr(self.module, self.name, w / sigma.expand_as(w))
|
554 |
+
|
555 |
+
def _made_params(self):
|
556 |
+
try:
|
557 |
+
u = getattr(self.module, self.name + "_u")
|
558 |
+
v = getattr(self.module, self.name + "_v")
|
559 |
+
w = getattr(self.module, self.name + "_bar")
|
560 |
+
return True
|
561 |
+
except AttributeError:
|
562 |
+
return False
|
563 |
+
|
564 |
+
|
565 |
+
def _make_params(self):
|
566 |
+
w = getattr(self.module, self.name)
|
567 |
+
|
568 |
+
height = w.data.shape[0]
|
569 |
+
width = w.view(height, -1).data.shape[1]
|
570 |
+
|
571 |
+
u = nn.Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
|
572 |
+
v = nn.Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
|
573 |
+
u.data = l2normalize(u.data)
|
574 |
+
v.data = l2normalize(v.data)
|
575 |
+
w_bar = nn.Parameter(w.data)
|
576 |
+
|
577 |
+
del self.module._parameters[self.name]
|
578 |
+
|
579 |
+
self.module.register_parameter(self.name + "_u", u)
|
580 |
+
self.module.register_parameter(self.name + "_v", v)
|
581 |
+
self.module.register_parameter(self.name + "_bar", w_bar)
|
582 |
+
|
583 |
+
|
584 |
+
def forward(self, *args):
|
585 |
+
self._update_u_v()
|
586 |
+
return self.module.forward(*args)
|
587 |
+
|
588 |
+
class MsImageDis(nn.Module):
|
589 |
+
# Multi-scale discriminator architecture
|
590 |
+
def __init__(self, input_dim, n_layer, gan_type, dim, norm, activ, num_scales, pad_type, output_channels = 1, final_function = None):
|
591 |
+
super(MsImageDis, self).__init__()
|
592 |
+
self.n_layer = n_layer
|
593 |
+
self.gan_type = gan_type
|
594 |
+
self.output_channels = output_channels
|
595 |
+
self.dim = dim
|
596 |
+
self.norm = norm
|
597 |
+
self.activ = activ
|
598 |
+
self.num_scales = num_scales
|
599 |
+
self.pad_type = pad_type
|
600 |
+
self.input_dim = input_dim
|
601 |
+
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)
|
602 |
+
self.cnns = nn.ModuleList()
|
603 |
+
self.final_function = final_function
|
604 |
+
for _ in range(self.num_scales):
|
605 |
+
self.cnns.append(self._make_net())
|
606 |
+
|
607 |
+
def _make_net(self):
|
608 |
+
dim = self.dim
|
609 |
+
cnn_x = []
|
610 |
+
cnn_x += [Conv2dBlock(self.input_dim, dim, 4, 2, 1, norm='none', activation=self.activ, pad_type=self.pad_type)]
|
611 |
+
for i in range(self.n_layer - 1):
|
612 |
+
cnn_x += [Conv2dBlock(dim, dim * 2, 4, 2, 1, norm=self.norm, activation=self.activ, pad_type=self.pad_type)]
|
613 |
+
dim *= 2
|
614 |
+
cnn_x += [nn.Conv2d(dim, self.output_channels, 1, 1, 0)]
|
615 |
+
cnn_x = nn.Sequential(*cnn_x)
|
616 |
+
return cnn_x
|
617 |
+
|
618 |
+
def forward(self, x):
|
619 |
+
outputs = []
|
620 |
+
for model in self.cnns:
|
621 |
+
output = model(x)
|
622 |
+
if self.final_function is not None:
|
623 |
+
output = self.final_function(output)
|
624 |
+
outputs.append(output)
|
625 |
+
x = self.downsample(x)
|
626 |
+
return outputs
|
627 |
+
|
628 |
+
def calc_dis_loss(self, input_fake, input_real):
|
629 |
+
# calculate the loss to train D
|
630 |
+
outs0 = self.forward(input_fake)
|
631 |
+
outs1 = self.forward(input_real)
|
632 |
+
loss = 0
|
633 |
+
|
634 |
+
for it, (out0, out1) in enumerate(zip(outs0, outs1)):
|
635 |
+
if self.gan_type == 'lsgan':
|
636 |
+
loss += torch.mean((out0 - 0)**2) + torch.mean((out1 - 1)**2)
|
637 |
+
elif self.gan_type == 'nsgan':
|
638 |
+
all0 = torch.zeros_like(out0)
|
639 |
+
all1 = torch.ones_like(out1)
|
640 |
+
loss += torch.mean(F.binary_cross_entropy(F.sigmoid(out0), all0) +
|
641 |
+
F.binary_cross_entropy(F.sigmoid(out1), all1))
|
642 |
+
else:
|
643 |
+
assert 0, "Unsupported GAN type: {}".format(self.gan_type)
|
644 |
+
return loss
|
645 |
+
|
646 |
+
def calc_gen_loss(self, input_fake):
|
647 |
+
# calculate the loss to train G
|
648 |
+
outs0 = self.forward(input_fake)
|
649 |
+
loss = 0
|
650 |
+
for it, (out0) in enumerate(outs0):
|
651 |
+
if self.gan_type == 'lsgan':
|
652 |
+
loss += torch.mean((out0 - 1)**2) # LSGAN
|
653 |
+
elif self.gan_type == 'nsgan':
|
654 |
+
all1 = torch.ones_like(out0.data)
|
655 |
+
loss += torch.mean(F.binary_cross_entropy(F.sigmoid(out0), all1))
|
656 |
+
else:
|
657 |
+
assert 0, "Unsupported GAN type: {}".format(self.gan_type)
|
658 |
+
return loss
|
659 |
+
|
660 |
+
class StyleEncoder(nn.Module):
|
661 |
+
def __init__(self, n_downsample, input_dim, dim, style_dim, norm, activ, pad_type):
|
662 |
+
super(StyleEncoder, self).__init__()
|
663 |
+
self.model = []
|
664 |
+
self.model += [Conv2dBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type=pad_type)]
|
665 |
+
for i in range(2):
|
666 |
+
self.model += [Conv2dBlock(dim, 2 * dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)]
|
667 |
+
dim *= 2
|
668 |
+
for i in range(n_downsample - 2):
|
669 |
+
self.model += [Conv2dBlock(dim, dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)]
|
670 |
+
self.model += [nn.AdaptiveAvgPool2d(1)] # global average pooling
|
671 |
+
self.model += [nn.Conv2d(dim, style_dim, 1, 1, 0)]
|
672 |
+
self.model = nn.Sequential(*self.model)
|
673 |
+
self.output_dim = dim
|
674 |
+
|
675 |
+
def forward(self, x):
|
676 |
+
return self.model(x)
|
677 |
+
|
678 |
+
class ContentEncoder(nn.Module):
|
679 |
+
def __init__(self, n_downsample, n_res, input_dim, dim, norm, activ, pad_type):
|
680 |
+
super(ContentEncoder, self).__init__()
|
681 |
+
self.model = []
|
682 |
+
self.model += [Conv2dBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type=pad_type)]
|
683 |
+
# downsampling blocks
|
684 |
+
for i in range(n_downsample):
|
685 |
+
self.model += [Conv2dBlock(dim, 2 * dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)]
|
686 |
+
dim *= 2
|
687 |
+
# residual blocks
|
688 |
+
self.model += [ResBlocks(n_res, dim, norm=norm, activation=activ, pad_type=pad_type)]
|
689 |
+
self.model = nn.Sequential(*self.model)
|
690 |
+
self.output_dim = dim
|
691 |
+
|
692 |
+
def forward(self, x):
|
693 |
+
return self.model(x)
|
694 |
+
|
695 |
+
class AdaINBlock(nn.Module):
|
696 |
+
def __init__(self, n_upsample, n_res, dim, output_dim, res_norm='adain', activ='relu', pad_type='zero'):
|
697 |
+
super(AdaINBlock, self).__init__()
|
698 |
+
|
699 |
+
self.model = []
|
700 |
+
# AdaIN residual blocks
|
701 |
+
self.model += [ResBlocks(n_res, dim, res_norm, activ, pad_type=pad_type)]
|
702 |
+
self.model = nn.Sequential(*self.model)
|
703 |
+
|
704 |
+
def forward(self, x):
|
705 |
+
return self.model(x)
|
706 |
+
|
networks/backbones/functions.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
functions.py
|
3 |
+
Here we get helper functions to 1) get schedulers given an option 2) initialize the network weights.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch.nn import init
|
8 |
+
from torch.optim import lr_scheduler
|
9 |
+
|
10 |
+
###############################################################################
|
11 |
+
# Helper Functions
|
12 |
+
###############################################################################
|
13 |
+
|
14 |
+
def get_scheduler(optimizer, opt):
|
15 |
+
"""Return a learning rate scheduler
|
16 |
+
|
17 |
+
Parameters:
|
18 |
+
optimizer -- the optimizer of the network
|
19 |
+
opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions.
|
20 |
+
opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine
|
21 |
+
|
22 |
+
For 'linear', we keep the same learning rate for the first <opt.n_epochs> epochs
|
23 |
+
and linearly decay the rate to zero over the next <opt.n_epochs_decay> epochs.
|
24 |
+
For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers.
|
25 |
+
See https://pytorch.org/docs/stable/optim.html for more details.
|
26 |
+
"""
|
27 |
+
if opt.lr_policy == 'linear':
|
28 |
+
def lambda_rule(iteration):
|
29 |
+
lr_l = 1.0 - max(0, logger.get_global_step() - opt.static_iters) / float(opt.decay_iters + 1)
|
30 |
+
return lr_l
|
31 |
+
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
|
32 |
+
elif opt.lr_policy == 'step':
|
33 |
+
scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.decay_iters_step, gamma=0.1)
|
34 |
+
elif opt.lr_policy == 'plateau':
|
35 |
+
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
|
36 |
+
elif opt.lr_policy == 'cosine':
|
37 |
+
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0)
|
38 |
+
else:
|
39 |
+
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
|
40 |
+
return scheduler
|
41 |
+
|
42 |
+
|
43 |
+
def init_weights(net, init_type='normal', init_gain=0.02):
|
44 |
+
"""Initialize network weights.
|
45 |
+
|
46 |
+
Parameters:
|
47 |
+
net (network) -- network to be initialized
|
48 |
+
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
|
49 |
+
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
|
50 |
+
|
51 |
+
We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
|
52 |
+
work better for some applications. Feel free to try yourself.
|
53 |
+
"""
|
54 |
+
def init_func(m): # define the initialization function
|
55 |
+
classname = m.__class__.__name__
|
56 |
+
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
|
57 |
+
if init_type == 'normal':
|
58 |
+
init.normal_(m.weight.data, 0.0, init_gain)
|
59 |
+
elif init_type == 'xavier':
|
60 |
+
init.xavier_normal_(m.weight.data, gain=init_gain)
|
61 |
+
elif init_type == 'kaiming':
|
62 |
+
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
|
63 |
+
elif init_type == 'orthogonal':
|
64 |
+
init.orthogonal_(m.weight.data, gain=init_gain)
|
65 |
+
else:
|
66 |
+
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
|
67 |
+
if hasattr(m, 'bias') and m.bias is not None:
|
68 |
+
init.constant_(m.bias.data, 0.0)
|
69 |
+
elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
|
70 |
+
init.normal_(m.weight.data, 1.0, init_gain)
|
71 |
+
init.constant_(m.bias.data, 0.0)
|
72 |
+
|
73 |
+
net.apply(init_func) # apply the initialization function <init_func>
|
74 |
+
|
75 |
+
|
76 |
+
def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]):
|
77 |
+
"""Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights
|
78 |
+
Parameters:
|
79 |
+
net (network) -- the network to be initialized
|
80 |
+
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
|
81 |
+
gain (float) -- scaling factor for normal, xavier and orthogonal.
|
82 |
+
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
|
83 |
+
|
84 |
+
Return an initialized network.
|
85 |
+
"""
|
86 |
+
init_weights(net, init_type, init_gain=init_gain)
|
87 |
+
return net
|
networks/base_model.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
base_model.py
|
3 |
+
Abstract definition of a model, where helper functions as image extraction and gradient propagation are defined.
|
4 |
+
"""
|
5 |
+
|
6 |
+
from collections import OrderedDict
|
7 |
+
from abc import abstractmethod
|
8 |
+
|
9 |
+
import pytorch_lightning as pl
|
10 |
+
from torch.optim import lr_scheduler
|
11 |
+
|
12 |
+
from torchvision.transforms import ToPILImage
|
13 |
+
|
14 |
+
class BaseModel(pl.LightningModule):
|
15 |
+
|
16 |
+
def __init__(self, opt):
|
17 |
+
super().__init__()
|
18 |
+
self.opt = opt
|
19 |
+
self.gpu_ids = opt.gpu_ids
|
20 |
+
self.loss_names = []
|
21 |
+
self.model_names = []
|
22 |
+
self.visual_names = []
|
23 |
+
self.image_paths = []
|
24 |
+
self.save_hyperparameters()
|
25 |
+
self.schedulers = []
|
26 |
+
self.metric = 0 # used for learning rate policy 'plateau'
|
27 |
+
|
28 |
+
@abstractmethod
|
29 |
+
def set_input(self, input):
|
30 |
+
pass
|
31 |
+
|
32 |
+
def eval(self):
|
33 |
+
for name in self.model_names:
|
34 |
+
if isinstance(name, str):
|
35 |
+
net = getattr(self, 'net' + name)
|
36 |
+
net.eval()
|
37 |
+
|
38 |
+
def compute_visuals(self):
|
39 |
+
pass
|
40 |
+
|
41 |
+
def get_image_paths(self):
|
42 |
+
return self.image_paths
|
43 |
+
|
44 |
+
def update_learning_rate(self):
|
45 |
+
for scheduler in self.schedulers:
|
46 |
+
if self.opt.lr_policy == 'plateau':
|
47 |
+
scheduler.step(self.metric)
|
48 |
+
else:
|
49 |
+
scheduler.step()
|
50 |
+
|
51 |
+
lr = self.optimizers[0].param_groups[0]['lr']
|
52 |
+
return lr
|
53 |
+
|
54 |
+
def get_current_visuals(self):
|
55 |
+
visual_ret = OrderedDict()
|
56 |
+
for name in self.visual_names:
|
57 |
+
if isinstance(name, str):
|
58 |
+
visual_ret[name] = (getattr(self, name).detach() + 1) / 2
|
59 |
+
return visual_ret
|
60 |
+
|
61 |
+
def log_current_losses(self):
|
62 |
+
losses = '\n'
|
63 |
+
for name in self.loss_names:
|
64 |
+
if isinstance(name, str):
|
65 |
+
loss_value = float(getattr(self, 'loss_' + name))
|
66 |
+
self.logger.log_metrics({'loss_{}'.format(name): loss_value}, self.trainer.global_step)
|
67 |
+
losses += 'loss_{}={:.4f}\t'.format(name, loss_value)
|
68 |
+
print(losses)
|
69 |
+
|
70 |
+
def log_current_visuals(self):
|
71 |
+
visuals = self.get_current_visuals()
|
72 |
+
for key, viz in visuals.items():
|
73 |
+
self.logger.experiment.add_image('img_{}'.format(key), viz[0].cpu(), self.trainer.global_step)
|
74 |
+
|
75 |
+
def get_scheduler(self, opt, optimizer):
|
76 |
+
if opt.lr_policy == 'linear':
|
77 |
+
def lambda_rule(iter):
|
78 |
+
lr_l = 1.0 - max(0, self.trainer.global_step - opt.static_iters) / float(opt.decay_iters + 1)
|
79 |
+
return lr_l
|
80 |
+
|
81 |
+
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
|
82 |
+
elif opt.lr_policy == 'step':
|
83 |
+
scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.decay_iters_step, gamma=0.5)
|
84 |
+
elif opt.lr_policy == 'plateau':
|
85 |
+
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
|
86 |
+
elif opt.lr_policy == 'cosine':
|
87 |
+
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0)
|
88 |
+
else:
|
89 |
+
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
|
90 |
+
return scheduler
|
91 |
+
|
92 |
+
def print_networks(self):
|
93 |
+
for name in self.model_names:
|
94 |
+
if isinstance(name, str):
|
95 |
+
net = getattr(self, 'net' + name)
|
96 |
+
num_params = 0
|
97 |
+
for param in net.parameters():
|
98 |
+
num_params += param.numel()
|
99 |
+
print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6))
|
100 |
+
|
101 |
+
def get_optimizer_dict(self):
|
102 |
+
return_dict = {}
|
103 |
+
for index, opt in enumerate(self.optimizers):
|
104 |
+
return_dict['Optimizer_{}'.format(index)] = opt
|
105 |
+
return return_dict
|
106 |
+
|
107 |
+
def set_requires_grad(self, nets, requires_grad=False):
|
108 |
+
if not isinstance(nets, list):
|
109 |
+
nets = [nets]
|
110 |
+
for net in nets:
|
111 |
+
if net is not None:
|
112 |
+
for param in net.parameters():
|
113 |
+
param.requires_grad = requires_grad
|
networks/comomunit_model.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
continuous_munit_cyclepoint_residual.py
|
3 |
+
This is CoMo-MUNIT *logic*, so how the network is trained.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import math
|
7 |
+
import torch
|
8 |
+
import itertools
|
9 |
+
from .base_model import BaseModel
|
10 |
+
from .backbones import comomunit as networks
|
11 |
+
import random
|
12 |
+
import munch
|
13 |
+
|
14 |
+
|
15 |
+
def ModelOptions():
|
16 |
+
mo = munch.Munch()
|
17 |
+
# Generator
|
18 |
+
mo.gen_dim = 64
|
19 |
+
mo.style_dim = 8
|
20 |
+
mo.gen_activ = 'relu'
|
21 |
+
mo.n_downsample = 2
|
22 |
+
mo.n_res = 4
|
23 |
+
mo.gen_pad_type = 'reflect'
|
24 |
+
mo.mlp_dim = 256
|
25 |
+
|
26 |
+
# Discriminiator
|
27 |
+
mo.disc_dim = 64
|
28 |
+
mo.disc_norm = 'none'
|
29 |
+
mo.disc_activ = 'lrelu'
|
30 |
+
mo.disc_n_layer = 4
|
31 |
+
mo.num_scales = 3 # TODO change for other experiments!
|
32 |
+
mo.disc_pad_type = 'reflect'
|
33 |
+
|
34 |
+
# Initialization
|
35 |
+
mo.init_type_gen = 'kaiming'
|
36 |
+
mo.init_type_disc = 'normal'
|
37 |
+
mo.init_gain = 0.02
|
38 |
+
|
39 |
+
# Weights
|
40 |
+
mo.lambda_gan = 1
|
41 |
+
mo.lambda_rec_image = 10
|
42 |
+
mo.lambda_rec_style = 1
|
43 |
+
mo.lambda_rec_content = 1
|
44 |
+
mo.lambda_rec_cycle = 10
|
45 |
+
mo.lambda_vgg = 0.1
|
46 |
+
mo.lambda_idt = 1
|
47 |
+
mo.lambda_Phinet_A = 1
|
48 |
+
# Continuous settings
|
49 |
+
mo.resblocks_cont = 1
|
50 |
+
mo.lambda_physics = 10
|
51 |
+
mo.lambda_compare = 10
|
52 |
+
mo.lambda_physics_compare = 1
|
53 |
+
|
54 |
+
return mo
|
55 |
+
|
56 |
+
|
57 |
+
class CoMoMUNITModel(BaseModel):
|
58 |
+
|
59 |
+
def __init__(self, opt):
|
60 |
+
BaseModel.__init__(self, opt)
|
61 |
+
# specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
|
62 |
+
self.loss_names = ['D_A', 'G_A', 'cycle_A', 'rec_A', 'rec_style_B', 'rec_content_A', 'vgg_A', 'phi_net_A',
|
63 |
+
'D_B', 'G_B', 'cycle_B', 'rec_B', 'rec_style_A', 'rec_content_B', 'vgg_B', 'idt_B',
|
64 |
+
'recon_physics', 'phi_net']
|
65 |
+
# specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
|
66 |
+
visual_names_A = ['x', 'y', 'rec_A_img', 'rec_A_cycle', 'y_M_tilde', 'y_M']
|
67 |
+
visual_names_B = ['y_tilde', 'fake_A', 'rec_B_img', 'rec_B_cycle', 'idt_B_img']
|
68 |
+
|
69 |
+
self.visual_names = visual_names_A + visual_names_B # combine visualizations for A and B
|
70 |
+
# specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>.
|
71 |
+
self.model_names = ['G_A', 'D_A', 'G_B', 'D_B', 'DRB', 'Phi_net', 'Phi_net_A']
|
72 |
+
|
73 |
+
self.netG_A = networks.define_G_munit(opt.input_nc, opt.output_nc, opt.gen_dim, opt.style_dim, opt.n_downsample,
|
74 |
+
opt.n_res, opt.gen_pad_type, opt.mlp_dim, opt.gen_activ, opt.init_type_gen,
|
75 |
+
opt.init_gain, self.gpu_ids)
|
76 |
+
self.netG_B = networks.define_G_munit(opt.output_nc, opt.input_nc, opt.gen_dim, opt.style_dim, opt.n_downsample,
|
77 |
+
opt.n_res, opt.gen_pad_type, opt.mlp_dim, opt.gen_activ, opt.init_type_gen,
|
78 |
+
opt.init_gain, self.gpu_ids)
|
79 |
+
|
80 |
+
self.netDRB = networks.define_DRB_munit(opt.resblocks_cont, opt.gen_dim * (2 ** opt.n_downsample), 'instance', opt.gen_activ,
|
81 |
+
opt.gen_pad_type, opt.init_type_gen, opt.init_gain, self.gpu_ids)
|
82 |
+
# define discriminators
|
83 |
+
self.netD_A = networks.define_D_munit(opt.output_nc, opt.disc_dim, opt.disc_norm, opt.disc_activ, opt.disc_n_layer,
|
84 |
+
opt.gan_mode, opt.num_scales, opt.disc_pad_type, opt.init_type_disc,
|
85 |
+
opt.init_gain, self.gpu_ids)
|
86 |
+
|
87 |
+
self.netD_B = networks.define_D_munit(opt.input_nc, opt.disc_dim, opt.disc_norm, opt.disc_activ, opt.disc_n_layer,
|
88 |
+
opt.gan_mode, opt.num_scales, opt.disc_pad_type, opt.init_type_disc,
|
89 |
+
opt.init_gain, self.gpu_ids)
|
90 |
+
|
91 |
+
# We use munit style encoder as phinet/phinet_A
|
92 |
+
self.netPhi_net = networks.init_net(networks.StyleEncoder(4, opt.input_nc * 2, opt.gen_dim, 2, norm='instance',
|
93 |
+
activ='lrelu', pad_type=opt.gen_pad_type), init_type=opt.init_type_gen,
|
94 |
+
init_gain = opt.init_gain, gpu_ids = opt.gpu_ids)
|
95 |
+
|
96 |
+
self.netPhi_net_A = networks.init_net(networks.StyleEncoder(4, opt.input_nc, opt.gen_dim, 1, norm='instance',
|
97 |
+
activ='lrelu', pad_type=opt.gen_pad_type), init_type=opt.init_type_gen,
|
98 |
+
init_gain = opt.init_gain, gpu_ids = opt.gpu_ids)
|
99 |
+
|
100 |
+
# define loss functions
|
101 |
+
self.reconCriterion = torch.nn.L1Loss()
|
102 |
+
self.criterionPhysics = torch.nn.L1Loss()
|
103 |
+
self.criterionIdt = torch.nn.L1Loss()
|
104 |
+
|
105 |
+
# initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
|
106 |
+
|
107 |
+
if opt.lambda_vgg > 0:
|
108 |
+
self.instance_norm = torch.nn.InstanceNorm2d(512)
|
109 |
+
self.vgg = networks.Vgg16()
|
110 |
+
self.vgg.load_state_dict(torch.load('res/vgg_imagenet.pth'))
|
111 |
+
self.vgg.eval()
|
112 |
+
for param in self.vgg.parameters():
|
113 |
+
param.requires_grad = False
|
114 |
+
|
115 |
+
def configure_optimizers(self):
|
116 |
+
opt_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters(),
|
117 |
+
self.netDRB.parameters(), self.netPhi_net.parameters(),
|
118 |
+
self.netPhi_net_A.parameters()),
|
119 |
+
weight_decay=0.0001, lr=self.opt.lr, betas=(self.opt.beta1, 0.999))
|
120 |
+
opt_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()),
|
121 |
+
weight_decay=0.0001, lr=self.opt.lr, betas=(self.opt.beta1, 0.999))
|
122 |
+
|
123 |
+
scheduler_G = self.get_scheduler(self.opt, opt_G)
|
124 |
+
scheduler_D = self.get_scheduler(self.opt, opt_D)
|
125 |
+
return [opt_D, opt_G], [scheduler_D, scheduler_G]
|
126 |
+
|
127 |
+
def set_input(self, input):
|
128 |
+
# Input image. everything is mixed so we only have one style
|
129 |
+
self.x = input['A']
|
130 |
+
# Paths just because maybe they are needed
|
131 |
+
self.image_paths = input['A_paths']
|
132 |
+
# Desired continuity value which is used to render self.y_M_tilde
|
133 |
+
# Desired continuity value which is used to render self.y_M_tilde
|
134 |
+
self.phi = input['phi'].float()
|
135 |
+
self.cos_phi = input['cos_phi'].float()
|
136 |
+
self.sin_phi = input['sin_phi'].float()
|
137 |
+
# Term used to train SSN
|
138 |
+
self.phi_prime = input['phi_prime'].float()
|
139 |
+
self.cos_phi_prime = input['cos_phi_prime'].float()
|
140 |
+
self.sin_phi_prime = input['sin_phi_prime'].float()
|
141 |
+
# physical model applied to self.x with continuity self.continuity
|
142 |
+
self.y_M_tilde = input['A_cont']
|
143 |
+
# physical model applied to self.x with continuity self.continuity_compare
|
144 |
+
self.y_M_tilde_prime = input['A_cont_compare']
|
145 |
+
# Other image, in reality the two will belong to the same domain
|
146 |
+
self.y_tilde = input['B']
|
147 |
+
|
148 |
+
def __vgg_preprocess(self, batch):
|
149 |
+
tensortype = type(batch)
|
150 |
+
(r, g, b) = torch.chunk(batch, 3, dim=1)
|
151 |
+
batch = torch.cat((b, g, r), dim=1) # convert RGB to BGR
|
152 |
+
batch = (batch + 1) * 255 * 0.5 # [-1, 1] -> [0, 255]
|
153 |
+
mean = tensortype(batch.data.size()).to(self.device)
|
154 |
+
|
155 |
+
mean[:, 0, :, :] = 103.939
|
156 |
+
mean[:, 1, :, :] = 116.779
|
157 |
+
mean[:, 2, :, :] = 123.680
|
158 |
+
batch = batch.sub(mean) # subtract mean
|
159 |
+
return batch
|
160 |
+
|
161 |
+
def __compute_vgg_loss(self, img, target):
|
162 |
+
img_vgg = self.__vgg_preprocess(img)
|
163 |
+
target_vgg = self.__vgg_preprocess(target)
|
164 |
+
img_fea = self.vgg(img_vgg)
|
165 |
+
target_fea = self.vgg(target_vgg)
|
166 |
+
return torch.mean((self.instance_norm(img_fea) - self.instance_norm(target_fea)) ** 2)
|
167 |
+
|
168 |
+
|
169 |
+
def forward(self, img, phi = None, style_B_fake = None):
|
170 |
+
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
|
171 |
+
# Random style sampling
|
172 |
+
if style_B_fake is None:
|
173 |
+
style_B_fake = torch.randn(img.size(0), self.opt.style_dim, 1, 1).to(self.device)
|
174 |
+
if phi is None:
|
175 |
+
phi = torch.zeros(1).fill_(random.random()).to(self.device) * math.pi * 2
|
176 |
+
|
177 |
+
self.cos_phi = torch.cos(phi)
|
178 |
+
self.sin_phi = torch.sin(phi)
|
179 |
+
|
180 |
+
# Encoding
|
181 |
+
self.content_A, self.style_A_real = self.netG_A.encode(img)
|
182 |
+
|
183 |
+
features_A = self.netG_B.assign_adain(self.content_A, style_B_fake)
|
184 |
+
features_A_real, features_A_physics = self.netDRB(features_A, self.cos_phi, self.sin_phi)
|
185 |
+
fake_B = self.netG_B.decode(features_A_real)
|
186 |
+
return fake_B
|
187 |
+
|
188 |
+
def training_step_D(self):
|
189 |
+
with torch.no_grad():
|
190 |
+
# Random style sampling
|
191 |
+
self.style_A_fake = torch.randn(self.x.size(0), self.opt.style_dim, 1, 1).to(self.device)
|
192 |
+
self.style_B_fake = torch.randn(self.y_tilde.size(0), self.opt.style_dim, 1, 1).to(self.device)
|
193 |
+
|
194 |
+
self.content_A, self.style_A_real = self.netG_A.encode(self.x)
|
195 |
+
features_A = self.netG_B.assign_adain(self.content_A, self.style_B_fake)
|
196 |
+
features_A_real, features_A_physics = self.netDRB(features_A, self.cos_phi, self.sin_phi)
|
197 |
+
self.y = self.netG_B.decode(features_A_real)
|
198 |
+
|
199 |
+
# Encoding
|
200 |
+
self.content_B, self.style_B_real = self.netG_B.encode(self.y_tilde)
|
201 |
+
features_B = self.netG_A.assign_adain(self.content_B, self.style_A_fake)
|
202 |
+
features_B_real, _ = self.netDRB(features_B,
|
203 |
+
torch.ones(self.cos_phi.size()).to(self.device),
|
204 |
+
torch.zeros(self.sin_phi.size()).to(self.device)
|
205 |
+
)
|
206 |
+
self.fake_A = self.netG_A.decode(features_B_real)
|
207 |
+
|
208 |
+
self.loss_D_A = self.netD_A.calc_dis_loss(self.y, self.y_tilde) * self.opt.lambda_gan
|
209 |
+
self.loss_D_B = self.netD_B.calc_dis_loss(self.fake_A, self.x) * self.opt.lambda_gan
|
210 |
+
|
211 |
+
loss_D = self.loss_D_A + self.loss_D_B
|
212 |
+
return loss_D
|
213 |
+
|
214 |
+
|
215 |
+
def phi_loss_fn(self):
|
216 |
+
# the distance between the generated image and the image at the output of the
|
217 |
+
# physical model should be zero
|
218 |
+
|
219 |
+
input_zerodistance = torch.cat((self.y, self.y_M_tilde), dim = 1)
|
220 |
+
|
221 |
+
# Distance between generated image and other image of the physical model should be
|
222 |
+
# taken from the ground truth value
|
223 |
+
input_normaldistance = torch.cat((self.y, self.y_M_tilde_prime), dim = 1)
|
224 |
+
|
225 |
+
# same for this, but this does not depend on a GAN generation so it's used as a regularization term
|
226 |
+
input_regolarize = torch.cat((self.y_M_tilde, self.y_M_tilde_prime), dim = 1)
|
227 |
+
# essentailly, ground truth distance given by the physical model renderings
|
228 |
+
# Cosine distance, we are trying to encode cyclic stuff
|
229 |
+
|
230 |
+
distance_cos = (torch.cos(self.phi) - torch.cos(self.phi_prime)) / 2
|
231 |
+
distance_sin = (torch.sin(self.phi) - torch.sin(self.phi_prime)) / 2
|
232 |
+
|
233 |
+
# We evaluate the angle distance and we normalize it in -1/1
|
234 |
+
output_zerodistance = torch.tanh(self.netPhi_net(input_zerodistance))#[0])
|
235 |
+
output_normaldistance = torch.tanh(self.netPhi_net(input_normaldistance))#[0])
|
236 |
+
output_regolarize = torch.tanh(self.netPhi_net(input_regolarize))#[0])
|
237 |
+
|
238 |
+
loss_cos = torch.pow(output_zerodistance[:, 0] - 0, 2).mean()
|
239 |
+
loss_cos += torch.pow(output_normaldistance[:, 0] - distance_cos, 2).mean()
|
240 |
+
loss_cos += torch.pow(output_regolarize[:, 0] - distance_cos, 2).mean()
|
241 |
+
|
242 |
+
loss_sin = torch.pow(output_zerodistance[:, 1] - 0, 2).mean()
|
243 |
+
loss_sin += torch.pow(output_normaldistance[:, 1] - distance_sin, 2).mean()
|
244 |
+
loss_sin += torch.pow(output_regolarize[:, 1] - distance_sin, 2).mean()
|
245 |
+
|
246 |
+
|
247 |
+
# additional terms on the other image generated by the GAN, i.e. something that should resemble exactly
|
248 |
+
# the image generated by the physical model
|
249 |
+
# This terms follow the same reasoning as before and weighted differently
|
250 |
+
input_physics_zerodistance = torch.cat((self.y_M, self.y_M_tilde), dim = 1)
|
251 |
+
input_physics_regolarize = torch.cat((self.y_M, self.y_M_tilde_prime), dim = 1)
|
252 |
+
output_physics_zerodistance = torch.tanh(self.netPhi_net(input_physics_zerodistance))#[0])
|
253 |
+
output_physics_regolarize = torch.tanh(self.netPhi_net(input_physics_regolarize))#[0])
|
254 |
+
|
255 |
+
loss_cos += torch.pow(output_physics_zerodistance[:, 0] - 0, 2).mean() * self.opt.lambda_physics_compare
|
256 |
+
loss_cos += torch.pow(output_physics_regolarize[:, 0] - distance_cos,
|
257 |
+
2).mean() * self.opt.lambda_physics_compare
|
258 |
+
loss_sin += torch.pow(output_physics_zerodistance[:, 1] - 0, 2).mean() * self.opt.lambda_physics_compare
|
259 |
+
loss_sin += torch.pow(output_physics_regolarize[:, 1] - distance_sin,
|
260 |
+
2).mean() * self.opt.lambda_physics_compare
|
261 |
+
|
262 |
+
# Also distance between the two outputs of the gan should be 0
|
263 |
+
input_twoheads = torch.cat((self.y_M, self.y), dim = 1)
|
264 |
+
output_twoheads = torch.tanh(self.netPhi_net(input_twoheads))#[0])
|
265 |
+
|
266 |
+
loss_cos += torch.pow(output_twoheads[:, 0] - 0, 2).mean()
|
267 |
+
loss_sin += torch.pow(output_twoheads[:, 1] - 0, 2).mean()
|
268 |
+
|
269 |
+
loss = loss_cos + loss_sin * 0.5
|
270 |
+
|
271 |
+
return loss
|
272 |
+
|
273 |
+
def training_step_G(self):
|
274 |
+
self.style_B_fake = torch.randn(self.y_tilde.size(0), self.opt.style_dim, 1, 1).to(self.device)
|
275 |
+
self.style_A_fake = torch.randn(self.x.size(0), self.opt.style_dim, 1, 1).to(self.device)
|
276 |
+
|
277 |
+
self.content_A, self.style_A_real = self.netG_A.encode(self.x)
|
278 |
+
self.content_B, self.style_B_real = self.netG_B.encode(self.y_tilde)
|
279 |
+
self.phi_est = torch.sigmoid(self.netPhi_net_A.forward(self.y_tilde).view(self.y_tilde.size(0), -1)).view(self.y_tilde.size(0)) * 2 * math.pi
|
280 |
+
self.estimated_cos_B = torch.cos(self.phi_est)
|
281 |
+
self.estimated_sin_B = torch.sin(self.phi_est)
|
282 |
+
|
283 |
+
# Reconstruction
|
284 |
+
features_A_reconstruction = self.netG_A.assign_adain(self.content_A, self.style_A_real)
|
285 |
+
features_A_reconstruction, _ = self.netDRB(features_A_reconstruction,
|
286 |
+
torch.ones(self.estimated_cos_B.size()).to(self.device),
|
287 |
+
torch.zeros(self.estimated_sin_B.size()).to(self.device))
|
288 |
+
|
289 |
+
self.rec_A_img = self.netG_A.decode(features_A_reconstruction)
|
290 |
+
|
291 |
+
features_B_reconstruction = self.netG_B.assign_adain(self.content_B, self.style_B_real)
|
292 |
+
features_B_reconstruction, _ = self.netDRB(features_B_reconstruction, self.estimated_cos_B, self.estimated_sin_B)
|
293 |
+
|
294 |
+
self.rec_B_img = self.netG_B.decode(features_B_reconstruction)
|
295 |
+
|
296 |
+
# Cross domain
|
297 |
+
features_A = self.netG_B.assign_adain(self.content_A, self.style_B_fake)
|
298 |
+
features_A_real, features_A_physics = self.netDRB(features_A, self.cos_phi, self.sin_phi)
|
299 |
+
self.y_M = self.netG_B.decode(features_A_physics)
|
300 |
+
self.y = self.netG_B.decode(features_A_real)
|
301 |
+
|
302 |
+
features_B = self.netG_A.assign_adain(self.content_B, self.style_A_fake)
|
303 |
+
features_B_real, _ = self.netDRB(features_B,
|
304 |
+
torch.ones(self.cos_phi.size()).to(self.device),
|
305 |
+
torch.zeros(self.sin_phi.size()).to(self.device))
|
306 |
+
self.fake_A = self.netG_A.decode(features_B_real)
|
307 |
+
|
308 |
+
self.rec_content_B, self.rec_style_A = self.netG_A.encode(self.fake_A)
|
309 |
+
self.rec_content_A, self.rec_style_B = self.netG_B.encode(self.y)
|
310 |
+
|
311 |
+
if self.opt.lambda_rec_cycle > 0:
|
312 |
+
features_A_reconstruction_cycle = self.netG_A.assign_adain(self.rec_content_A, self.style_A_real)
|
313 |
+
features_A_reconstruction_cycle, _ = self.netDRB(features_A_reconstruction_cycle,
|
314 |
+
torch.ones(self.cos_phi.size()).to(self.device),
|
315 |
+
torch.zeros(self.sin_phi.size()).to(self.device))
|
316 |
+
self.rec_A_cycle = self.netG_A.decode(features_A_reconstruction_cycle)
|
317 |
+
|
318 |
+
features_B_reconstruction_cycle = self.netG_B.assign_adain(self.rec_content_B, self.style_B_real)
|
319 |
+
features_B_reconstruction_cycle, _ = self.netDRB(features_B_reconstruction_cycle, self.estimated_cos_B, self.estimated_sin_B)
|
320 |
+
self.rec_B_cycle = self.netG_B.decode(features_B_reconstruction_cycle)
|
321 |
+
if self.opt.lambda_idt > 0:
|
322 |
+
features_B_identity = self.netG_B.assign_adain(self.content_A, torch.randn(self.style_B_fake.size()).to(self.device))
|
323 |
+
features_B_identity, _ = self.netDRB(features_B_identity,
|
324 |
+
torch.ones(self.estimated_cos_B.size()).to(self.device),
|
325 |
+
torch.zeros(self.estimated_sin_B.size()).to(self.device))
|
326 |
+
self.idt_B_img = self.netG_B.decode(features_B_identity)
|
327 |
+
|
328 |
+
|
329 |
+
if self.opt.lambda_idt > 0:
|
330 |
+
self.loss_idt_A = 0
|
331 |
+
self.loss_idt_B = self.criterionIdt(self.idt_B_img, self.x) * self.opt.lambda_gan * self.opt.lambda_idt
|
332 |
+
else:
|
333 |
+
self.loss_idt_A = 0
|
334 |
+
self.loss_idt_B = 0
|
335 |
+
|
336 |
+
continuity_angle_fake = torch.sigmoid(self.netPhi_net_A.forward(self.y).view(self.y_tilde.size(0), -1)).view(self.y_tilde.size(0)) * 2 * math.pi
|
337 |
+
|
338 |
+
continuity_cos_fake = 1 - ((torch.cos(continuity_angle_fake) + 1) / 2)
|
339 |
+
continuity_cos_gt = 1 - ((torch.cos(self.phi) + 1) / 2)
|
340 |
+
continuity_sin_fake = 1 - ((torch.sin(continuity_angle_fake) + 1) / 2)
|
341 |
+
continuity_sin_gt = 1 - ((torch.sin(self.phi) + 1) / 2)
|
342 |
+
distance_cos_fake = (continuity_cos_fake - continuity_cos_gt)
|
343 |
+
distance_sin_fake = (continuity_sin_fake - continuity_sin_gt)
|
344 |
+
|
345 |
+
self.loss_phi_net_A = (distance_cos_fake ** 2) * self.opt.lambda_Phinet_A
|
346 |
+
self.loss_phi_net_A += (distance_sin_fake ** 2) * self.opt.lambda_Phinet_A
|
347 |
+
|
348 |
+
self.loss_rec_A = self.reconCriterion(self.rec_A_img, self.x) * self.opt.lambda_rec_image
|
349 |
+
self.loss_rec_B = self.reconCriterion(self.rec_B_img, self.y_tilde) * self.opt.lambda_rec_image
|
350 |
+
|
351 |
+
self.loss_rec_style_B = self.reconCriterion(self.rec_style_B, self.style_B_fake) * self.opt.lambda_rec_style
|
352 |
+
self.loss_rec_style_A = self.reconCriterion(self.rec_style_A, self.style_A_fake) * self.opt.lambda_rec_style
|
353 |
+
|
354 |
+
self.loss_rec_content_A = self.reconCriterion(self.rec_content_A, self.content_A) * self.opt.lambda_rec_content
|
355 |
+
self.loss_rec_content_B = self.reconCriterion(self.rec_content_B, self.content_B) * self.opt.lambda_rec_content
|
356 |
+
|
357 |
+
if self.opt.lambda_rec_cycle > 0:
|
358 |
+
self.loss_cycle_A = self.reconCriterion(self.rec_A_cycle, self.x) * self.opt.lambda_rec_cycle
|
359 |
+
self.loss_cycle_B = self.reconCriterion(self.rec_B_cycle, self.y_tilde) * self.opt.lambda_rec_cycle
|
360 |
+
else:
|
361 |
+
self.loss_cycle_A = 0
|
362 |
+
|
363 |
+
self.loss_G_A = self.netD_A.calc_gen_loss(self.y) * self.opt.lambda_gan
|
364 |
+
self.loss_G_B = self.netD_B.calc_gen_loss(self.fake_A) * self.opt.lambda_gan
|
365 |
+
|
366 |
+
self.loss_recon_physics = self.opt.lambda_physics * self.criterionPhysics(self.y_M, self.y_M_tilde)
|
367 |
+
self.loss_phi_net = self.phi_loss_fn() * self.opt.lambda_compare
|
368 |
+
|
369 |
+
if self.opt.lambda_vgg > 0:
|
370 |
+
self.loss_vgg_A = self.__compute_vgg_loss(self.fake_A, self.y_tilde) * self.opt.lambda_vgg
|
371 |
+
self.loss_vgg_B = self.__compute_vgg_loss(self.y, self.x) * self.opt.lambda_vgg
|
372 |
+
else:
|
373 |
+
self.loss_vgg_A = 0
|
374 |
+
self.loss_vgg_B = 0
|
375 |
+
|
376 |
+
self.loss_G = self.loss_rec_A + self.loss_rec_style_B + self.loss_rec_content_A + \
|
377 |
+
self.loss_cycle_A + self.loss_G_B + self.loss_vgg_A + \
|
378 |
+
self.loss_rec_B + self.loss_rec_style_A + self.loss_rec_content_B + \
|
379 |
+
self.loss_cycle_B + self.loss_G_A + self.loss_vgg_B + \
|
380 |
+
self.loss_recon_physics + self.loss_phi_net + self.loss_idt_B + self.loss_phi_net_A
|
381 |
+
|
382 |
+
return self.loss_G
|
383 |
+
|
384 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
385 |
+
|
386 |
+
self.set_input(batch)
|
387 |
+
if optimizer_idx == 0:
|
388 |
+
self.set_requires_grad([self.netD_A, self.netD_B], True)
|
389 |
+
self.set_requires_grad([self.netG_A, self.netG_B], False)
|
390 |
+
|
391 |
+
return self.training_step_D()
|
392 |
+
elif optimizer_idx == 1:
|
393 |
+
self.set_requires_grad([self.netD_A, self.netD_B], False) # Ds require no gradients when optimizing Gs
|
394 |
+
self.set_requires_grad([self.netG_A, self.netG_B], True)
|
395 |
+
|
396 |
+
return self.training_step_G()
|
options/__init__.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This package options includes option modules: training options, test options, and basic options (used in both training and test)."""
|
2 |
+
|
3 |
+
from argparse import ArgumentParser as AP
|
4 |
+
from .train_options import TrainOptions
|
5 |
+
from .log_options import LogOptions
|
6 |
+
from networks import get_model_options
|
7 |
+
from data import get_dataset_options
|
8 |
+
import munch
|
9 |
+
|
10 |
+
|
11 |
+
def get_options(cmdline_opt):
|
12 |
+
|
13 |
+
bo = munch.Munch()
|
14 |
+
# Set the number of channels of input image
|
15 |
+
# Set the number of channels of output image
|
16 |
+
bo.input_nc = 3
|
17 |
+
bo.output_nc = 3
|
18 |
+
bo.gpu_ids = cmdline_opt.gpus
|
19 |
+
# Dataset options
|
20 |
+
bo.dataroot = cmdline_opt.path_data
|
21 |
+
bo.dataset_mode = cmdline_opt.data_importer
|
22 |
+
bo.model = cmdline_opt.model
|
23 |
+
# Scheduling policies
|
24 |
+
bo.lr = cmdline_opt.learning_rate
|
25 |
+
bo.lr_policy = cmdline_opt.scheduler_policy
|
26 |
+
bo.decay_iters_step = cmdline_opt.decay_iters_step
|
27 |
+
bo.decay_step_gamma = cmdline_opt.decay_step_gamma
|
28 |
+
|
29 |
+
opts = []
|
30 |
+
opts.append(get_model_options(bo.model)())
|
31 |
+
opts.append(get_dataset_options(bo.dataset_mode)())
|
32 |
+
opts.append(LogOptions())
|
33 |
+
opts.append(TrainOptions())
|
34 |
+
|
35 |
+
# Checks for Nones
|
36 |
+
opts = [x for x in opts if x]
|
37 |
+
for x in opts:
|
38 |
+
bo.update(x)
|
39 |
+
return bo
|
options/log_options.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import munch
|
2 |
+
|
3 |
+
def LogOptions():
|
4 |
+
lo = munch.Munch()
|
5 |
+
# Save images each x iters
|
6 |
+
lo.display_freq = 10000
|
7 |
+
|
8 |
+
# Print info each x iters
|
9 |
+
lo.print_freq = 10
|
10 |
+
return lo
|
options/train_options.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import munch
|
2 |
+
|
3 |
+
|
4 |
+
def TrainOptions():
|
5 |
+
to = munch.Munch()
|
6 |
+
# Iterations
|
7 |
+
to.total_iterations = 30000000
|
8 |
+
|
9 |
+
# Save checkpoint every x iters
|
10 |
+
to.save_latest_freq = 35000
|
11 |
+
|
12 |
+
# Save checkpoint every x epochs
|
13 |
+
to.save_epoch_freq = 5
|
14 |
+
|
15 |
+
# Adam settings
|
16 |
+
to.beta1 = 0.5
|
17 |
+
|
18 |
+
# gan type
|
19 |
+
to.gan_mode = 'lsgan'
|
20 |
+
|
21 |
+
return to
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.7.1
|
2 |
+
torchvision==0.8.2
|
3 |
+
torchaudio==0.7.2
|
4 |
+
pytorch-lightning==1.1.8
|
5 |
+
torchtext==0.7.0
|
requirements.yml
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: comogan
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- defaults
|
5 |
+
dependencies:
|
6 |
+
- _libgcc_mutex=0.1=main
|
7 |
+
- blas=1.0=mkl
|
8 |
+
- ca-certificates=2021.1.19=h06a4308_1
|
9 |
+
- certifi=2020.12.5=py37h06a4308_0
|
10 |
+
- cudatoolkit=11.0.221=h6bb024c_0
|
11 |
+
- cycler=0.10.0=py37_0
|
12 |
+
- dbus=1.13.18=hb2f20db_0
|
13 |
+
- expat=2.2.10=he6710b0_2
|
14 |
+
- fontconfig=2.13.1=h6c09931_0
|
15 |
+
- freetype=2.10.4=h5ab3b9f_0
|
16 |
+
- glib=2.63.1=h5a9c865_0
|
17 |
+
- gst-plugins-base=1.14.0=hbbd80ab_1
|
18 |
+
- gstreamer=1.14.0=hb453b48_1
|
19 |
+
- icu=58.2=he6710b0_3
|
20 |
+
- intel-openmp=2020.2=254
|
21 |
+
- jpeg=9b=h024ee3a_2
|
22 |
+
- kiwisolver=1.3.1=py37h2531618_0
|
23 |
+
- lcms2=2.11=h396b838_0
|
24 |
+
- libedit=3.1.20191231=h14c3975_1
|
25 |
+
- libffi=3.2.1=hf484d3e_1007
|
26 |
+
- libgcc-ng=9.1.0=hdf63c60_0
|
27 |
+
- libpng=1.6.37=hbc83047_0
|
28 |
+
- libstdcxx-ng=9.1.0=hdf63c60_0
|
29 |
+
- libtiff=4.1.0=h2733197_1
|
30 |
+
- libuuid=1.0.3=h1bed415_2
|
31 |
+
- libuv=1.40.0=h7b6447c_0
|
32 |
+
- libxcb=1.14=h7b6447c_0
|
33 |
+
- libxml2=2.9.10=hb55368b_3
|
34 |
+
- lz4-c=1.9.3=h2531618_0
|
35 |
+
- matplotlib=3.3.4=py37h06a4308_0
|
36 |
+
- matplotlib-base=3.3.4=py37h62a2d02_0
|
37 |
+
- mkl=2020.2=256
|
38 |
+
- mkl-service=2.3.0=py37he8ac12f_0
|
39 |
+
- mkl_fft=1.3.0=py37h54f3939_0
|
40 |
+
- mkl_random=1.1.1=py37h0573a6f_0
|
41 |
+
- ncurses=6.2=he6710b0_1
|
42 |
+
- ninja=1.10.2=py37hff7bd54_0
|
43 |
+
- olefile=0.46=py37_0
|
44 |
+
- openssl=1.1.1j=h27cfd23_0
|
45 |
+
- pcre=8.44=he6710b0_0
|
46 |
+
- pillow=8.1.1=py37he98fc37_0
|
47 |
+
- pip=21.0.1=py37h06a4308_0
|
48 |
+
- pyparsing=2.4.7=pyhd3eb1b0_0
|
49 |
+
- pyqt=5.9.2=py37h05f1152_2
|
50 |
+
- python=3.7.5=h0371630_0
|
51 |
+
- python-dateutil=2.8.1=pyhd3eb1b0_0
|
52 |
+
- pytorch=1.7.1=py3.7_cuda11.0.221_cudnn8.0.5_0
|
53 |
+
- qt=5.9.7=h5867ecd_1
|
54 |
+
- readline=7.0=h7b6447c_5
|
55 |
+
- setuptools=52.0.0=py37h06a4308_0
|
56 |
+
- sip=4.19.8=py37hf484d3e_0
|
57 |
+
- six=1.15.0=py37h06a4308_0
|
58 |
+
- sqlite=3.33.0=h62c20be_0
|
59 |
+
- tk=8.6.10=hbc83047_0
|
60 |
+
- torchaudio=0.7.2=py37
|
61 |
+
- torchvision=0.8.2=py37_cu110
|
62 |
+
- tornado=6.1=py37h27cfd23_0
|
63 |
+
- typing_extensions=3.7.4.3=pyha847dfd_0
|
64 |
+
- wheel=0.36.2=pyhd3eb1b0_0
|
65 |
+
- xz=5.2.5=h7b6447c_0
|
66 |
+
- zlib=1.2.11=h7b6447c_3
|
67 |
+
- zstd=1.4.5=h9ceee32_0
|
68 |
+
- pip:
|
69 |
+
- absl-py==0.12.0
|
70 |
+
- aiohttp==3.7.4.post0
|
71 |
+
- argon2-cffi==20.1.0
|
72 |
+
- astunparse==1.6.3
|
73 |
+
- async-generator==1.10
|
74 |
+
- async-timeout==3.0.1
|
75 |
+
- attrs==20.3.0
|
76 |
+
- backcall==0.2.0
|
77 |
+
- bleach==3.3.0
|
78 |
+
- cachetools==4.2.1
|
79 |
+
- cffi==1.14.5
|
80 |
+
- chardet==4.0.0
|
81 |
+
- click==7.1.2
|
82 |
+
- coverage==5.5
|
83 |
+
- decorator==4.4.2
|
84 |
+
- defusedxml==0.7.1
|
85 |
+
- dominate==2.6.0
|
86 |
+
- entrypoints==0.3
|
87 |
+
- fsspec==0.8.7
|
88 |
+
- future==0.18.2
|
89 |
+
- gast==0.3.3
|
90 |
+
- google-auth==1.28.0
|
91 |
+
- google-auth-oauthlib==0.4.3
|
92 |
+
- google-pasta==0.2.0
|
93 |
+
- grpcio==1.36.1
|
94 |
+
- h5py==2.10.0
|
95 |
+
- human-id==0.1.0.post3
|
96 |
+
- idna==2.10
|
97 |
+
- importlib-metadata==3.7.3
|
98 |
+
- ipykernel==5.5.0
|
99 |
+
- ipython==7.21.0
|
100 |
+
- ipython-genutils==0.2.0
|
101 |
+
- ipywidgets==7.6.3
|
102 |
+
- jedi==0.18.0
|
103 |
+
- jinja2==2.11.3
|
104 |
+
- jsonpatch==1.32
|
105 |
+
- jsonpointer==2.1
|
106 |
+
- jsonschema==3.2.0
|
107 |
+
- jupyter==1.0.0
|
108 |
+
- jupyter-client==6.1.12
|
109 |
+
- jupyter-console==6.4.0
|
110 |
+
- jupyter-core==4.7.1
|
111 |
+
- jupyterlab-pygments==0.1.2
|
112 |
+
- jupyterlab-widgets==1.0.0
|
113 |
+
- keras-preprocessing==1.1.2
|
114 |
+
- markdown==3.3.4
|
115 |
+
- markupsafe==1.1.1
|
116 |
+
- mistune==0.8.4
|
117 |
+
- multidict==5.1.0
|
118 |
+
- munch==2.5.0
|
119 |
+
- nbclient==0.5.3
|
120 |
+
- nbconvert==6.0.7
|
121 |
+
- nbformat==5.1.2
|
122 |
+
- nest-asyncio==1.5.1
|
123 |
+
- notebook==6.3.0
|
124 |
+
- numpy==1.18.5
|
125 |
+
- oauthlib==3.1.0
|
126 |
+
- opt-einsum==3.3.0
|
127 |
+
- packaging==20.9
|
128 |
+
- pandocfilters==1.4.3
|
129 |
+
- parso==0.8.1
|
130 |
+
- pexpect==4.8.0
|
131 |
+
- pickleshare==0.7.5
|
132 |
+
- prometheus-client==0.9.0
|
133 |
+
- prompt-toolkit==3.0.18
|
134 |
+
- protobuf==3.15.6
|
135 |
+
- ptyprocess==0.7.0
|
136 |
+
- pyasn1==0.4.8
|
137 |
+
- pyasn1-modules==0.2.8
|
138 |
+
- pycparser==2.20
|
139 |
+
- pygments==2.8.1
|
140 |
+
- pyrsistent==0.17.3
|
141 |
+
- pytorch-lightning==1.1.8
|
142 |
+
- pyyaml==5.3.1
|
143 |
+
- pyzmq==22.0.3
|
144 |
+
- qtconsole==5.0.3
|
145 |
+
- qtpy==1.9.0
|
146 |
+
- requests==2.25.1
|
147 |
+
- requests-oauthlib==1.3.0
|
148 |
+
- rsa==4.7.2
|
149 |
+
- scipy==1.4.1
|
150 |
+
- send2trash==1.5.0
|
151 |
+
- tensorboard==2.3.0
|
152 |
+
- tensorboard-plugin-wit==1.8.0
|
153 |
+
- tensorflow==2.3.0
|
154 |
+
- tensorflow-estimator==2.3.0
|
155 |
+
- tensorflow-gpu==2.3.0
|
156 |
+
- termcolor==1.1.0
|
157 |
+
- terminado==0.9.3
|
158 |
+
- testpath==0.4.4
|
159 |
+
- torchfile==0.1.0
|
160 |
+
- tqdm==4.59.0
|
161 |
+
- traitlets==5.0.5
|
162 |
+
- urllib3==1.26.4
|
163 |
+
- visdom==0.1.8.9
|
164 |
+
- waymo-open-dataset-tf-2-3-0==1.3.0
|
165 |
+
- wcwidth==0.2.5
|
166 |
+
- webencodings==0.5.1
|
167 |
+
- websocket-client==0.58.0
|
168 |
+
- werkzeug==1.0.1
|
169 |
+
- widgetsnbextension==3.5.1
|
170 |
+
- wrapt==1.12.1
|
171 |
+
- yarl==1.6.3
|
172 |
+
- zipp==3.4.1
|
res/vgg_imagenet.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:364cfae76a51a908502d7b285bf047ce54da423e75fcdc8505312b00c5105c9e
|
3 |
+
size 58862394
|
scripts/dump_waymo.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import math
|
4 |
+
import itertools
|
5 |
+
import numpy as np
|
6 |
+
import tensorflow as tf
|
7 |
+
|
8 |
+
from PIL import Image
|
9 |
+
from argparse import ArgumentParser as AP
|
10 |
+
from waymo_open_dataset.utils import range_image_utils
|
11 |
+
from waymo_open_dataset.utils import transform_utils
|
12 |
+
from waymo_open_dataset.utils import frame_utils
|
13 |
+
from waymo_open_dataset import dataset_pb2 as open_dataset
|
14 |
+
|
15 |
+
def printProgressBar(i, max, postText):
|
16 |
+
n_bar = 20 #size of progress bar
|
17 |
+
j= i/max
|
18 |
+
sys.stdout.write('\r')
|
19 |
+
sys.stdout.write(f"[{'=' * int(n_bar * j):{n_bar}s}] {int(100 * j)}% {postText}")
|
20 |
+
sys.stdout.flush()
|
21 |
+
|
22 |
+
|
23 |
+
def main(cmdline_opt):
|
24 |
+
DS_PATH = cmdline_opt.load_path
|
25 |
+
files = os.listdir(DS_PATH)
|
26 |
+
files = [os.path.join(DS_PATH,x) for x in files]
|
27 |
+
|
28 |
+
with open('sunny_sequences.txt') as file:
|
29 |
+
sunny_sequences = file.read().splitlines()
|
30 |
+
|
31 |
+
for index_file, file in enumerate(files):
|
32 |
+
if not os.path.basename(file).split('_with_camera_labels.tfrecord')[0] in sunny_sequences: # Some sequences are wrongly annotated as sunny. We annotated a subset of really sunny images.
|
33 |
+
continue
|
34 |
+
dataset = tf.data.TFRecordDataset(file, compression_type='')
|
35 |
+
printProgressBar(index_file, len(files), "Files done")
|
36 |
+
|
37 |
+
for index_data, data in enumerate(dataset):
|
38 |
+
frame = open_dataset.Frame()
|
39 |
+
frame.ParseFromString(bytearray(data.numpy()))
|
40 |
+
|
41 |
+
if frame.context.stats.weather == 'sunny':
|
42 |
+
(range_images, camera_projections, range_image_top_pose) = frame_utils.parse_range_image_and_camera_projection(frame)
|
43 |
+
|
44 |
+
for label in frame.camera_labels:
|
45 |
+
if label.name == open_dataset.CameraName.FRONT:
|
46 |
+
path = os.path.join(cmdline_opt.save_path,
|
47 |
+
frame.context.stats.weather,
|
48 |
+
frame.context.stats.time_of_day,
|
49 |
+
'{}-{:06}.png'.format(os.path.basename(file), index_data))
|
50 |
+
|
51 |
+
im = tf.image.decode_png(frame.images[0].image)
|
52 |
+
pil_im = Image.fromarray(im.numpy())
|
53 |
+
res_img = pil_im.resize((480, 320), Image.BILINEAR)
|
54 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
55 |
+
res_img.save(path)
|
56 |
+
else:
|
57 |
+
break
|
58 |
+
|
59 |
+
if __name__ == '__main__':
|
60 |
+
ap = AP()
|
61 |
+
ap.add_argument('--load_path', default='/datasets_master/waymo_open_dataset_v_1_2_0/validation', type=str, help='Set a path to load the Waymo dataset')
|
62 |
+
ap.add_argument('--save_path', default='/datasets_local/datasets_fpizzati/waymo_480x320/val', type=str, help='Set a path to save the dataset')
|
63 |
+
main(ap.parse_args())
|
scripts/sunny_sequences.txt
ADDED
@@ -0,0 +1,850 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
segment-11486225968269855324_92_000_112_000
|
2 |
+
segment-11566385337103696871_5740_000_5760_000
|
3 |
+
segment-7000927478052605119_1052_330_1072_330
|
4 |
+
segment-2975249314261309142_6540_000_6560_000
|
5 |
+
segment-8031709558315183746_491_220_511_220
|
6 |
+
segment-10723911392655396041_860_000_880_000
|
7 |
+
segment-1022527355599519580_4866_960_4886_960
|
8 |
+
segment-15644354861949427452_3645_350_3665_350
|
9 |
+
segment-16801666784196221098_2480_000_2500_000
|
10 |
+
segment-11967272535264406807_580_000_600_000
|
11 |
+
segment-4266984864799709257_720_000_740_000
|
12 |
+
segment-15445436653637630344_3957_561_3977_561
|
13 |
+
segment-13182548552824592684_4160_250_4180_250
|
14 |
+
segment-10498013744573185290_1240_000_1260_000
|
15 |
+
segment-12551320916264703416_1420_000_1440_000
|
16 |
+
segment-2036908808378190283_4340_000_4360_000
|
17 |
+
segment-10750135302241325253_180_000_200_000
|
18 |
+
segment-15696964848687303249_4615_200_4635_200
|
19 |
+
segment-4167304237516228486_5720_000_5740_000
|
20 |
+
segment-14810689888487451189_720_000_740_000
|
21 |
+
segment-8158128948493708501_7477_230_7497_230
|
22 |
+
segment-1382515516588059826_780_000_800_000
|
23 |
+
segment-7768517933263896280_1120_000_1140_000
|
24 |
+
segment-16345319168590318167_1420_000_1440_000
|
25 |
+
segment-8663006751916427679_1520_000_1540_000
|
26 |
+
segment-15795616688853411272_1245_000_1265_000
|
27 |
+
segment-454855130179746819_4580_000_4600_000
|
28 |
+
segment-12174529769287588121_3848_440_3868_440
|
29 |
+
segment-5446766520699850364_157_000_177_000
|
30 |
+
segment-11183906854663518829_2294_000_2314_000
|
31 |
+
segment-13238419657658219864_4630_850_4650_850
|
32 |
+
segment-3154510051521049916_7000_000_7020_000
|
33 |
+
segment-7727809428114700355_2960_000_2980_000
|
34 |
+
segment-9016865488168499365_4780_000_4800_000
|
35 |
+
segment-10588771936253546636_2300_000_2320_000
|
36 |
+
segment-16977844994272847523_2140_000_2160_000
|
37 |
+
segment-4447423683538547117_536_022_556_022
|
38 |
+
segment-14777753086917826209_4147_000_4167_000
|
39 |
+
segment-15550613280008674010_1780_000_1800_000
|
40 |
+
segment-11070802577416161387_740_000_760_000
|
41 |
+
segment-16534202648288984983_900_000_920_000
|
42 |
+
segment-15448466074775525292_2920_000_2940_000
|
43 |
+
segment-17647858901077503501_1500_000_1520_000
|
44 |
+
segment-15717839202171538526_1124_920_1144_920
|
45 |
+
segment-16093022852977039323_2981_100_3001_100
|
46 |
+
segment-12681651284932598380_3585_280_3605_280
|
47 |
+
segment-15868625208244306149_4340_000_4360_000
|
48 |
+
segment-10625026498155904401_200_000_220_000
|
49 |
+
segment-7189996641300362130_3360_000_3380_000
|
50 |
+
segment-11623618970700582562_2840_367_2860_367
|
51 |
+
segment-2684088316387726629_180_000_200_000
|
52 |
+
segment-14964131310266936779_3292_850_3312_850
|
53 |
+
segment-5349843997395815699_1040_000_1060_000
|
54 |
+
segment-3988957004231180266_5566_500_5586_500
|
55 |
+
segment-16034875274658204340_240_000_260_000
|
56 |
+
segment-6280779486809627179_760_000_780_000
|
57 |
+
segment-10094743350625019937_3420_000_3440_000
|
58 |
+
segment-5214491533551928383_1918_780_1938_780
|
59 |
+
segment-2570264768774616538_860_000_880_000
|
60 |
+
segment-5459113827443493510_380_000_400_000
|
61 |
+
segment-14424804287031718399_1281_030_1301_030
|
62 |
+
segment-5222336716599194110_8940_000_8960_000
|
63 |
+
segment-4414235478445376689_2020_000_2040_000
|
64 |
+
segment-2206505463279484253_476_189_496_189
|
65 |
+
segment-5458962501360340931_3140_000_3160_000
|
66 |
+
segment-574762194520856849_1660_000_1680_000
|
67 |
+
segment-9465500459680839281_1100_000_1120_000
|
68 |
+
segment-9907794657177651763_1126_570_1146_570
|
69 |
+
segment-15803855782190483017_1060_000_1080_000
|
70 |
+
segment-17750787536486427868_560_000_580_000
|
71 |
+
segment-14763701469114129880_2260_000_2280_000
|
72 |
+
segment-14369250836076988112_7249_040_7269_040
|
73 |
+
segment-80599353855279550_2604_480_2624_480
|
74 |
+
segment-4487677815262010875_4940_000_4960_000
|
75 |
+
segment-7999729608823422351_1483_600_1503_600
|
76 |
+
segment-16608525782988721413_100_000_120_000
|
77 |
+
segment-15458436361042752328_3549_030_3569_030
|
78 |
+
segment-2711351338963414257_1360_000_1380_000
|
79 |
+
segment-3132641021038352938_1937_160_1957_160
|
80 |
+
segment-15903544160717261009_3961_870_3981_870
|
81 |
+
segment-14348136031422182645_3360_000_3380_000
|
82 |
+
segment-17958696356648515477_1660_000_1680_000
|
83 |
+
segment-4114454788208078028_660_000_680_000
|
84 |
+
segment-2598465433001774398_740_670_760_670
|
85 |
+
segment-10676267326664322837_311_180_331_180
|
86 |
+
segment-8811210064692949185_3066_770_3086_770
|
87 |
+
segment-12365808668068790137_2920_000_2940_000
|
88 |
+
segment-2508530288521370100_3385_660_3405_660
|
89 |
+
segment-4747171543583769736_425_544_445_544
|
90 |
+
segment-5835049423600303130_180_000_200_000
|
91 |
+
segment-2259324582958830057_3767_030_3787_030
|
92 |
+
segment-16191439239940794174_2245_000_2265_000
|
93 |
+
segment-13363977648531075793_343_000_363_000
|
94 |
+
segment-4672649953433758614_2700_000_2720_000
|
95 |
+
segment-3060057659029579482_420_000_440_000
|
96 |
+
segment-1172406780360799916_1660_000_1680_000
|
97 |
+
segment-6456165750159303330_1770_080_1790_080
|
98 |
+
segment-12257951615341726923_2196_690_2216_690
|
99 |
+
segment-10275144660749673822_5755_561_5775_561
|
100 |
+
segment-3437741670889149170_1411_550_1431_550
|
101 |
+
segment-17159836069183024120_640_000_660_000
|
102 |
+
segment-15834329472172048691_2956_760_2976_760
|
103 |
+
segment-1051897962568538022_238_170_258_170
|
104 |
+
segment-5602237689147924753_760_000_780_000
|
105 |
+
segment-11199484219241918646_2810_030_2830_030
|
106 |
+
segment-4781039348168995891_280_000_300_000
|
107 |
+
segment-16042842363202855955_265_000_285_000
|
108 |
+
segment-7447927974619745860_820_000_840_000
|
109 |
+
segment-7019385869759035132_4270_850_4290_850
|
110 |
+
segment-13085453465864374565_2040_000_2060_000
|
111 |
+
segment-16042886962142359737_1060_000_1080_000
|
112 |
+
segment-11318901554551149504_520_000_540_000
|
113 |
+
segment-915935412356143375_1740_030_1760_030
|
114 |
+
segment-9747453753779078631_940_000_960_000
|
115 |
+
segment-14824622621331930560_2395_420_2415_420
|
116 |
+
segment-18096167044602516316_2360_000_2380_000
|
117 |
+
segment-2547899409721197155_1380_000_1400_000
|
118 |
+
segment-12581809607914381746_1219_547_1239_547
|
119 |
+
segment-11379226583756500423_6230_810_6250_810
|
120 |
+
segment-5100136784230856773_2517_300_2537_300
|
121 |
+
segment-13402473631986525162_5700_000_5720_000
|
122 |
+
segment-5127440443725457056_2921_340_2941_340
|
123 |
+
segment-14561791273891593514_2558_030_2578_030
|
124 |
+
segment-2618605158242502527_1860_000_1880_000
|
125 |
+
segment-1357883579772440606_2365_000_2385_000
|
126 |
+
segment-9015546800913584551_4431_180_4451_180
|
127 |
+
segment-17885096890374683162_755_580_775_580
|
128 |
+
segment-14388269713149187289_1994_280_2014_280
|
129 |
+
segment-1994338527906508494_3438_100_3458_100
|
130 |
+
segment-8323028393459455521_2105_000_2125_000
|
131 |
+
segment-10327752107000040525_1120_000_1140_000
|
132 |
+
segment-13258835835415292197_965_000_985_000
|
133 |
+
segment-16102220208346880_1420_000_1440_000
|
134 |
+
segment-11454085070345530663_1905_000_1925_000
|
135 |
+
segment-15270638100874320175_2720_000_2740_000
|
136 |
+
segment-17388121177218499911_2520_000_2540_000
|
137 |
+
segment-7761658966964621355_1000_000_1020_000
|
138 |
+
segment-514687114615102902_6240_000_6260_000
|
139 |
+
segment-17850487901509155700_9065_000_9085_000
|
140 |
+
segment-16202688197024602345_3818_820_3838_820
|
141 |
+
segment-18331713844982117868_2920_900_2940_900
|
142 |
+
segment-6417523992887712896_1180_000_1200_000
|
143 |
+
segment-10770759614217273359_1465_000_1485_000
|
144 |
+
segment-12858738411692807959_2865_000_2885_000
|
145 |
+
segment-3068522656378006650_540_000_560_000
|
146 |
+
segment-8207498713503609786_3005_450_3025_450
|
147 |
+
segment-10072231702153043603_5725_000_5745_000
|
148 |
+
segment-7934693355186591404_73_000_93_000
|
149 |
+
segment-57132587708734824_1020_000_1040_000
|
150 |
+
segment-15365821471737026848_1160_000_1180_000
|
151 |
+
segment-10964956617027590844_1584_680_1604_680
|
152 |
+
segment-1972128316147758939_2500_000_2520_000
|
153 |
+
segment-8659567063494726263_2480_000_2500_000
|
154 |
+
segment-9529958888589376527_640_000_660_000
|
155 |
+
segment-14818835630668820137_1780_000_1800_000
|
156 |
+
segment-3224923476345749285_4480_000_4500_000
|
157 |
+
segment-14791260641858988448_1018_000_1038_000
|
158 |
+
segment-10786629299947667143_3440_000_3460_000
|
159 |
+
segment-3270384983482134275_3220_000_3240_000
|
160 |
+
segment-7239123081683545077_4044_370_4064_370
|
161 |
+
segment-3195159706851203049_2763_790_2783_790
|
162 |
+
segment-8123909110537564436_7220_000_7240_000
|
163 |
+
segment-17778522338768131809_5920_000_5940_000
|
164 |
+
segment-15202102284304593700_1900_000_1920_000
|
165 |
+
segment-13177337129001451839_9160_000_9180_000
|
166 |
+
segment-7324192826315818756_620_000_640_000
|
167 |
+
segment-4971817041565280127_780_500_800_500
|
168 |
+
segment-3220249619779692045_505_000_525_000
|
169 |
+
segment-9521653920958139982_940_000_960_000
|
170 |
+
segment-1146261869236413282_1680_000_1700_000
|
171 |
+
segment-11918003324473417938_1400_000_1420_000
|
172 |
+
segment-10061305430875486848_1080_000_1100_000
|
173 |
+
segment-15349503153813328111_2160_000_2180_000
|
174 |
+
segment-17790754307864212354_1520_000_1540_000
|
175 |
+
segment-17759280403078053118_6060_580_6080_580
|
176 |
+
segment-4575961016807404107_880_000_900_000
|
177 |
+
segment-10455472356147194054_1560_000_1580_000
|
178 |
+
segment-6904827860701329567_960_000_980_000
|
179 |
+
segment-6229371035421550389_2220_000_2240_000
|
180 |
+
segment-6390847454531723238_6000_000_6020_000
|
181 |
+
segment-4537254579383578009_3820_000_3840_000
|
182 |
+
segment-5144634012371033641_920_000_940_000
|
183 |
+
segment-9547911055204230158_1567_950_1587_950
|
184 |
+
segment-1737018592744049492_1960_000_1980_000
|
185 |
+
segment-6193696614129429757_2420_000_2440_000
|
186 |
+
segment-550171902340535682_2640_000_2660_000
|
187 |
+
segment-744006317457557752_2080_000_2100_000
|
188 |
+
segment-4655005625668154134_560_000_580_000
|
189 |
+
segment-3591015878717398163_1381_280_1401_280
|
190 |
+
segment-3441838785578020259_1300_000_1320_000
|
191 |
+
segment-10235335145367115211_5420_000_5440_000
|
192 |
+
segment-12321865437129862911_3480_000_3500_000
|
193 |
+
segment-1918764220984209654_5680_000_5700_000
|
194 |
+
segment-13840133134545942567_1060_000_1080_000
|
195 |
+
segment-7890808800227629086_6162_700_6182_700
|
196 |
+
segment-2656110181316327570_940_000_960_000
|
197 |
+
segment-990914685337955114_980_000_1000_000
|
198 |
+
segment-10940952441434390507_1888_710_1908_710
|
199 |
+
segment-473735159277431842_630_095_650_095
|
200 |
+
segment-3543045673995761051_460_000_480_000
|
201 |
+
segment-11126313430116606120_1439_990_1459_990
|
202 |
+
segment-7290499689576448085_3960_000_3980_000
|
203 |
+
segment-18311996733670569136_5880_000_5900_000
|
204 |
+
segment-4916527289027259239_5180_000_5200_000
|
205 |
+
segment-17552108427312284959_3200_000_3220_000
|
206 |
+
segment-5200186706748209867_80_000_100_000
|
207 |
+
segment-1265122081809781363_2879_530_2899_530
|
208 |
+
segment-6303332643743862144_5600_000_5620_000
|
209 |
+
segment-3112630089558008159_7280_000_7300_000
|
210 |
+
segment-2088865281951278665_4460_000_4480_000
|
211 |
+
segment-13310437789759009684_2645_000_2665_000
|
212 |
+
segment-13944915979337652825_4260_668_4280_668
|
213 |
+
segment-10526338824408452410_5714_660_5734_660
|
214 |
+
segment-9062286840846668802_31_000_51_000
|
215 |
+
segment-16911037681440249335_700_000_720_000
|
216 |
+
segment-4960194482476803293_4575_960_4595_960
|
217 |
+
segment-16336545122307923741_486_637_506_637
|
218 |
+
segment-2101027554826767753_2504_580_2524_580
|
219 |
+
segment-2922309829144504838_1840_000_1860_000
|
220 |
+
segment-809159138284604331_3355_840_3375_840
|
221 |
+
segment-15646511153936256674_1620_000_1640_000
|
222 |
+
segment-5870668058140631588_1180_000_1200_000
|
223 |
+
segment-3872781118550194423_3654_670_3674_670
|
224 |
+
segment-7996500550445322129_2333_304_2353_304
|
225 |
+
segment-16625429321676352815_1543_860_1563_860
|
226 |
+
segment-16208935658045135756_4412_730_4432_730
|
227 |
+
segment-6207195415812436731_805_000_825_000
|
228 |
+
segment-15482064737890453610_5180_000_5200_000
|
229 |
+
segment-11674150664140226235_680_000_700_000
|
230 |
+
segment-4604173119409817302_2820_000_2840_000
|
231 |
+
segment-9653249092275997647_980_000_1000_000
|
232 |
+
segment-11928449532664718059_1200_000_1220_000
|
233 |
+
segment-9758342966297863572_875_230_895_230
|
234 |
+
segment-6037403592521973757_3260_000_3280_000
|
235 |
+
segment-4114548607314119333_2780_000_2800_000
|
236 |
+
segment-12894036666871194216_787_000_807_000
|
237 |
+
segment-7741361323303179462_1230_310_1250_310
|
238 |
+
segment-10517728057304349900_3360_000_3380_000
|
239 |
+
segment-14619874262915043759_2801_090_2821_090
|
240 |
+
segment-3490810581309970603_11125_000_11145_000
|
241 |
+
segment-16485056021060230344_1576_741_1596_741
|
242 |
+
segment-9415086857375798767_4760_000_4780_000
|
243 |
+
segment-11119453952284076633_1369_940_1389_940
|
244 |
+
segment-2752216004511723012_260_000_280_000
|
245 |
+
segment-6625150143263637936_780_000_800_000
|
246 |
+
segment-169115044301335945_480_000_500_000
|
247 |
+
segment-12251442326766052580_1840_000_1860_000
|
248 |
+
segment-15844593126368860820_3260_000_3280_000
|
249 |
+
segment-16600468011801266684_1500_000_1520_000
|
250 |
+
segment-10023947602400723454_1120_000_1140_000
|
251 |
+
segment-1773696223367475365_1060_000_1080_000
|
252 |
+
segment-1887497421568128425_94_000_114_000
|
253 |
+
segment-18441113814326864765_725_000_745_000
|
254 |
+
segment-10444454289801298640_4360_000_4380_000
|
255 |
+
segment-2791302832590946720_1900_000_1920_000
|
256 |
+
segment-10963653239323173269_1924_000_1944_000
|
257 |
+
segment-11839652018869852123_2565_000_2585_000
|
258 |
+
segment-14004546003548947884_2331_861_2351_861
|
259 |
+
segment-1306458236359471795_2524_330_2544_330
|
260 |
+
segment-17386718718413812426_1763_140_1783_140
|
261 |
+
segment-8424573439186068308_3460_000_3480_000
|
262 |
+
segment-9058545212382992974_5236_200_5256_200
|
263 |
+
segment-5576800480528461086_1000_000_1020_000
|
264 |
+
segment-13679757109245957439_4167_170_4187_170
|
265 |
+
segment-16403578704435467513_5133_870_5153_870
|
266 |
+
segment-4164064449185492261_400_000_420_000
|
267 |
+
segment-3461811179177118163_1161_000_1181_000
|
268 |
+
segment-2415873247906962761_5460_000_5480_000
|
269 |
+
segment-13965460994524880649_2842_050_2862_050
|
270 |
+
segment-18397511418934954408_620_000_640_000
|
271 |
+
segment-11925224148023145510_1040_000_1060_000
|
272 |
+
segment-12027892938363296829_4086_280_4106_280
|
273 |
+
segment-33101359476901423_6720_910_6740_910
|
274 |
+
segment-12879640240483815315_5852_605_5872_605
|
275 |
+
segment-17818548625922145895_1372_430_1392_430
|
276 |
+
segment-4324227028219935045_1520_000_1540_000
|
277 |
+
segment-5083516879091912247_3600_000_3620_000
|
278 |
+
segment-1758724094753801109_1251_037_1271_037
|
279 |
+
segment-1730266523558914470_305_260_325_260
|
280 |
+
segment-5072733804607719382_5807_570_5827_570
|
281 |
+
segment-1231623110026745648_480_000_500_000
|
282 |
+
segment-4348478035380346090_1000_000_1020_000
|
283 |
+
segment-912496333665446669_1680_000_1700_000
|
284 |
+
segment-1940032764689855266_3690_210_3710_210
|
285 |
+
segment-7940496892864900543_4783_540_4803_540
|
286 |
+
segment-4723255145958809564_741_350_761_350
|
287 |
+
segment-17144150788361379549_2720_000_2740_000
|
288 |
+
segment-2739239662326039445_5890_320_5910_320
|
289 |
+
segment-14705303724557273004_3105_000_3125_000
|
290 |
+
segment-8722413665055769182_2840_000_2860_000
|
291 |
+
segment-16793466851577046940_2800_000_2820_000
|
292 |
+
segment-15331851695963211598_1620_000_1640_000
|
293 |
+
segment-3002379261592154728_2256_691_2276_691
|
294 |
+
segment-1208303279778032257_1360_000_1380_000
|
295 |
+
segment-3584210979358667442_2880_000_2900_000
|
296 |
+
segment-10500357041547037089_1474_800_1494_800
|
297 |
+
segment-2265177645248606981_2340_000_2360_000
|
298 |
+
segment-13619063687271391084_1519_680_1539_680
|
299 |
+
segment-7313718849795510302_280_000_300_000
|
300 |
+
segment-14076089808269682731_54_730_74_730
|
301 |
+
segment-11846396154240966170_3540_000_3560_000
|
302 |
+
segment-17330200445788773877_2700_000_2720_000
|
303 |
+
segment-4784689467343773295_1700_000_1720_000
|
304 |
+
segment-6142170920525844857_2080_000_2100_000
|
305 |
+
segment-14869732972903148657_2420_000_2440_000
|
306 |
+
segment-9105380625923157726_4420_000_4440_000
|
307 |
+
segment-11847506886204460250_1640_000_1660_000
|
308 |
+
segment-4292360793125812833_3080_000_3100_000
|
309 |
+
segment-6128311556082453976_2520_000_2540_000
|
310 |
+
segment-1255991971750044803_1700_000_1720_000
|
311 |
+
segment-6694593639447385226_1040_000_1060_000
|
312 |
+
segment-11718898130355901268_2300_000_2320_000
|
313 |
+
segment-11343624116265195592_5910_530_5930_530
|
314 |
+
segment-9123867659877264673_3569_950_3589_950
|
315 |
+
segment-4641822195449131669_380_000_400_000
|
316 |
+
segment-3364861183015885008_1720_000_1740_000
|
317 |
+
segment-5614471637960666943_6955_675_6975_675
|
318 |
+
segment-3966447614090524826_320_000_340_000
|
319 |
+
segment-12161824480686739258_1813_380_1833_380
|
320 |
+
segment-7120839653809570957_1060_000_1080_000
|
321 |
+
segment-4392459808686681511_5006_200_5026_200
|
322 |
+
segment-1422926405879888210_51_310_71_310
|
323 |
+
segment-7670103006580549715_360_000_380_000
|
324 |
+
segment-10072140764565668044_4060_000_4080_000
|
325 |
+
segment-16262849101474060261_3459_585_3479_585
|
326 |
+
segment-14964691552976940738_2219_229_2239_229
|
327 |
+
segment-1988987616835805847_3500_000_3520_000
|
328 |
+
segment-786582060300383668_2944_060_2964_060
|
329 |
+
segment-10734565072045778791_440_000_460_000
|
330 |
+
segment-17993467596234560701_4940_000_4960_000
|
331 |
+
segment-11004685739714500220_2300_000_2320_000
|
332 |
+
segment-9509506420470671704_4049_100_4069_100
|
333 |
+
segment-10485926982439064520_4980_000_5000_000
|
334 |
+
segment-1352150727715827110_3710_250_3730_250
|
335 |
+
segment-4457475194088194008_3100_000_3120_000
|
336 |
+
segment-10664823084372323928_4360_000_4380_000
|
337 |
+
segment-6813611334239274394_535_000_555_000
|
338 |
+
segment-5718418936283106890_1200_000_1220_000
|
339 |
+
segment-2114574223307001959_1163_280_1183_280
|
340 |
+
segment-15125792363972595336_4960_000_4980_000
|
341 |
+
segment-14183710428479823719_3140_000_3160_000
|
342 |
+
segment-8603916601243187272_540_000_560_000
|
343 |
+
segment-12896629105712361308_4520_000_4540_000
|
344 |
+
segment-4323857429732097807_1005_000_1025_000
|
345 |
+
segment-2935377810101940676_300_000_320_000
|
346 |
+
segment-14143054494855609923_4529_100_4549_100
|
347 |
+
segment-2151482270865536784_900_000_920_000
|
348 |
+
segment-17987556068410436875_520_610_540_610
|
349 |
+
segment-3425716115468765803_977_756_997_756
|
350 |
+
segment-17066133495361694802_1220_000_1240_000
|
351 |
+
segment-6792191642931213648_1522_000_1542_000
|
352 |
+
segment-15578655130939579324_620_000_640_000
|
353 |
+
segment-5268267801500934740_2160_000_2180_000
|
354 |
+
segment-6771783338734577946_6105_840_6125_840
|
355 |
+
segment-10231929575853664160_1160_000_1180_000
|
356 |
+
segment-11489533038039664633_4820_000_4840_000
|
357 |
+
segment-18380281348728758158_4820_000_4840_000
|
358 |
+
segment-9288629315134424745_4360_000_4380_000
|
359 |
+
segment-15374821596407640257_3388_480_3408_480
|
360 |
+
segment-18111897798871103675_320_000_340_000
|
361 |
+
segment-9110125340505914899_380_000_400_000
|
362 |
+
segment-7458568461947999548_700_000_720_000
|
363 |
+
segment-54293441958058219_2335_200_2355_200
|
364 |
+
segment-11060291335850384275_3761_210_3781_210
|
365 |
+
segment-12339284075576056695_1920_000_1940_000
|
366 |
+
segment-17160696560226550358_6229_820_6249_820
|
367 |
+
segment-3031519073799366723_1140_000_1160_000
|
368 |
+
segment-13271285919570645382_5320_000_5340_000
|
369 |
+
segment-8763126149209091146_1843_320_1863_320
|
370 |
+
segment-3156155872654629090_2474_780_2494_780
|
371 |
+
segment-9350921499281634194_2403_251_2423_251
|
372 |
+
segment-16578409328451172992_3780_000_3800_000
|
373 |
+
segment-11940460932056521663_1760_000_1780_000
|
374 |
+
segment-14830022845193837364_3488_060_3508_060
|
375 |
+
segment-17270469718624587995_5202_030_5222_030
|
376 |
+
segment-17959337482465423746_2840_000_2860_000
|
377 |
+
segment-16651261238721788858_2365_000_2385_000
|
378 |
+
segment-4458730539804900192_535_000_555_000
|
379 |
+
segment-15832924468527961_1564_160_1584_160
|
380 |
+
segment-11392401368700458296_1086_429_1106_429
|
381 |
+
segment-2336233899565126347_1180_000_1200_000
|
382 |
+
segment-16873108320324977627_780_000_800_000
|
383 |
+
segment-13622747960068272448_1678_930_1698_930
|
384 |
+
segment-17216329305659006368_4800_000_4820_000
|
385 |
+
segment-7950869827763684964_8685_000_8705_000
|
386 |
+
segment-3657581213864582252_340_000_360_000
|
387 |
+
segment-2899357195020129288_3723_163_3743_163
|
388 |
+
segment-9179922063516210200_157_000_177_000
|
389 |
+
segment-16087604685956889409_40_000_60_000
|
390 |
+
segment-17342274091983078806_80_000_100_000
|
391 |
+
segment-6742105013468660925_3645_000_3665_000
|
392 |
+
segment-1999080374382764042_7094_100_7114_100
|
393 |
+
segment-8582923946352460474_2360_000_2380_000
|
394 |
+
segment-15379350264706417068_3120_000_3140_000
|
395 |
+
segment-204421859195625800_1080_000_1100_000
|
396 |
+
segment-6242822583398487496_73_000_93_000
|
397 |
+
segment-6350707596465488265_2393_900_2413_900
|
398 |
+
segment-16121633832852116614_240_000_260_000
|
399 |
+
segment-13731697468004921673_4920_000_4940_000
|
400 |
+
segment-12505030131868863688_1740_000_1760_000
|
401 |
+
segment-12337317986514501583_5346_260_5366_260
|
402 |
+
segment-6234738900256277070_320_000_340_000
|
403 |
+
segment-12566399510596872945_2078_320_2098_320
|
404 |
+
segment-7921369793217703814_1060_000_1080_000
|
405 |
+
segment-3418007171190630157_3585_530_3605_530
|
406 |
+
segment-15053781258223091665_3192_117_3212_117
|
407 |
+
segment-15787777881771177481_8820_000_8840_000
|
408 |
+
segment-13862220583747475906_1260_000_1280_000
|
409 |
+
segment-9311322119128915594_5285_000_5305_000
|
410 |
+
segment-6606076833441976341_1340_000_1360_000
|
411 |
+
segment-7331965392247645851_1005_940_1025_940
|
412 |
+
segment-11113047206980595400_2560_000_2580_000
|
413 |
+
segment-15535062863944567958_1100_000_1120_000
|
414 |
+
segment-2692887320656885771_2480_000_2500_000
|
415 |
+
segment-8099457465580871094_4764_380_4784_380
|
416 |
+
segment-13033853066564892960_1040_000_1060_000
|
417 |
+
segment-9385013624094020582_2547_650_2567_650
|
418 |
+
segment-3504776317009340435_6920_000_6940_000
|
419 |
+
segment-2660301763960988190_3742_580_3762_580
|
420 |
+
segment-13186511704021307558_2000_000_2020_000
|
421 |
+
segment-16435050660165962165_3635_310_3655_310
|
422 |
+
segment-1939881723297238689_6848_040_6868_040
|
423 |
+
segment-11799592541704458019_9828_750_9848_750
|
424 |
+
segment-18403940760739364047_920_000_940_000
|
425 |
+
segment-2555987917096562599_1620_000_1640_000
|
426 |
+
segment-4337887720320812223_1857_930_1877_930
|
427 |
+
segment-9568394837328971633_466_365_486_365
|
428 |
+
segment-3635081602482786801_900_000_920_000
|
429 |
+
segment-17761959194352517553_5448_420_5468_420
|
430 |
+
segment-8938046348067069210_3800_000_3820_000
|
431 |
+
segment-5592790652933523081_667_770_687_770
|
432 |
+
segment-1191788760630624072_3880_000_3900_000
|
433 |
+
segment-12979718722917614085_1039_490_1059_490
|
434 |
+
segment-17547795428359040137_5056_070_5076_070
|
435 |
+
segment-16331619444570993520_1020_000_1040_000
|
436 |
+
segment-16646502593577530501_4878_080_4898_080
|
437 |
+
segment-6410495600874495447_5287_500_5307_500
|
438 |
+
segment-6177474146670383260_4200_000_4220_000
|
439 |
+
segment-13823509240483976870_1514_190_1534_190
|
440 |
+
segment-8120716761799622510_862_120_882_120
|
441 |
+
segment-5215905243049326497_20_000_40_000
|
442 |
+
segment-7543690094688232666_4945_350_4965_350
|
443 |
+
segment-13196796799137805454_3036_940_3056_940
|
444 |
+
segment-2961247865039433386_920_000_940_000
|
445 |
+
segment-17674974223808194792_8787_692_8807_692
|
446 |
+
segment-5526948896847934178_1039_000_1059_000
|
447 |
+
segment-4931036732523207946_10755_600_10775_600
|
448 |
+
segment-7089765864827567005_1020_000_1040_000
|
449 |
+
segment-5005815668926224220_2194_330_2214_330
|
450 |
+
segment-15266427834976906738_1620_000_1640_000
|
451 |
+
segment-6104545334635651714_2780_000_2800_000
|
452 |
+
segment-4546515828974914709_922_040_942_040
|
453 |
+
segment-9985243312780923024_3049_720_3069_720
|
454 |
+
segment-7566697458525030390_1440_000_1460_000
|
455 |
+
segment-10923963890428322967_1445_000_1465_000
|
456 |
+
segment-6638427309837298695_220_000_240_000
|
457 |
+
segment-17941839888833418904_1240_000_1260_000
|
458 |
+
segment-17407069523496279950_4354_900_4374_900
|
459 |
+
segment-7517545172000568481_2325_000_2345_000
|
460 |
+
segment-10596949720463106554_1933_530_1953_530
|
461 |
+
segment-15628918650068847391_8077_670_8097_670
|
462 |
+
segment-5846229052615948000_2120_000_2140_000
|
463 |
+
segment-18286677872269962604_3520_000_3540_000
|
464 |
+
segment-16951470340360921766_2840_000_2860_000
|
465 |
+
segment-1863454917318776530_1040_000_1060_000
|
466 |
+
segment-14098605172844003779_5084_630_5104_630
|
467 |
+
segment-8327447186504415549_5200_000_5220_000
|
468 |
+
segment-11388947676680954806_5427_320_5447_320
|
469 |
+
segment-12179768245749640056_5561_070_5581_070
|
470 |
+
segment-2590213596097851051_460_000_480_000
|
471 |
+
segment-1442753028323350651_4065_000_4085_000
|
472 |
+
segment-8399876466981146110_2560_000_2580_000
|
473 |
+
segment-16646360389507147817_3320_000_3340_000
|
474 |
+
segment-10793018113277660068_2714_540_2734_540
|
475 |
+
segment-14018515129165961775_483_260_503_260
|
476 |
+
segment-2863984611797967753_3200_000_3220_000
|
477 |
+
segment-13909033332341079321_4007_930_4027_930
|
478 |
+
segment-13390791323468600062_6718_570_6738_570
|
479 |
+
segment-13476374534576730229_240_000_260_000
|
480 |
+
segment-18141076662151909970_2755_710_2775_710
|
481 |
+
segment-7101099554331311287_5320_000_5340_000
|
482 |
+
segment-2224716024428969146_1420_000_1440_000
|
483 |
+
segment-8700094808505895018_7272_488_7292_488
|
484 |
+
segment-5731414711882954246_1990_250_2010_250
|
485 |
+
segment-4733704239941053266_960_000_980_000
|
486 |
+
segment-634378055350569306_280_000_300_000
|
487 |
+
segment-6172160122069514875_6866_560_6886_560
|
488 |
+
segment-15942468615931009553_1243_190_1263_190
|
489 |
+
segment-16224018017168210482_6353_500_6373_500
|
490 |
+
segment-18025338595059503802_571_216_591_216
|
491 |
+
segment-7885161619764516373_289_280_309_280
|
492 |
+
segment-9820553434532681355_2820_000_2840_000
|
493 |
+
segment-207754730878135627_1140_000_1160_000
|
494 |
+
segment-15882343134097151256_4820_000_4840_000
|
495 |
+
segment-9325580606626376787_4509_140_4529_140
|
496 |
+
segment-13254498462985394788_980_000_1000_000
|
497 |
+
segment-16676683078119047936_300_000_320_000
|
498 |
+
segment-3911646355261329044_580_000_600_000
|
499 |
+
segment-6740694556948402155_3040_000_3060_000
|
500 |
+
segment-14233522945839943589_100_000_120_000
|
501 |
+
segment-4017824591066644473_3000_000_3020_000
|
502 |
+
segment-14250544550818363063_880_000_900_000
|
503 |
+
segment-8822503619482926605_1080_000_1100_000
|
504 |
+
segment-6814918034011049245_134_170_154_170
|
505 |
+
segment-10391312872392849784_4099_400_4119_400
|
506 |
+
segment-4468278022208380281_455_820_475_820
|
507 |
+
segment-1005081002024129653_5313_150_5333_150
|
508 |
+
segment-2577669988012459365_1640_000_1660_000
|
509 |
+
segment-13506499849906169066_120_000_140_000
|
510 |
+
segment-8148053503558757176_4240_000_4260_000
|
511 |
+
segment-12273083120751993429_7285_000_7305_000
|
512 |
+
segment-9250355398701464051_4166_132_4186_132
|
513 |
+
segment-15533468984793020049_800_000_820_000
|
514 |
+
segment-5451442719480728410_5660_000_5680_000
|
515 |
+
segment-12511696717465549299_4209_630_4229_630
|
516 |
+
segment-1926967104529174124_5214_780_5234_780
|
517 |
+
segment-15903184480576180688_3160_000_3180_000
|
518 |
+
segment-15265053588821562107_60_000_80_000
|
519 |
+
segment-6378340771722906187_1120_000_1140_000
|
520 |
+
segment-7861168750216313148_1305_290_1325_290
|
521 |
+
segment-13142190313715360621_3888_090_3908_090
|
522 |
+
segment-972142630887801133_642_740_662_740
|
523 |
+
segment-13145971249179441231_1640_000_1660_000
|
524 |
+
segment-4702302448560822815_927_380_947_380
|
525 |
+
segment-3461228720457810721_4511_120_4531_120
|
526 |
+
segment-4058410353286511411_3980_000_4000_000
|
527 |
+
segment-11588853832866011756_2184_462_2204_462
|
528 |
+
segment-5495302100265783181_80_000_100_000
|
529 |
+
segment-3711598698808133144_2060_000_2080_000
|
530 |
+
segment-16372013171456210875_5631_040_5651_040
|
531 |
+
segment-15062351272945542584_5921_360_5941_360
|
532 |
+
segment-6935841224766931310_2770_310_2790_310
|
533 |
+
segment-3644145307034257093_3000_400_3020_400
|
534 |
+
segment-12012663867578114640_820_000_840_000
|
535 |
+
segment-16080705915014211452_620_000_640_000
|
536 |
+
segment-7912728502266478772_1202_200_1222_200
|
537 |
+
segment-1857377326903987736_80_000_100_000
|
538 |
+
segment-3919438171935923501_280_000_300_000
|
539 |
+
segment-5129792222840846899_2145_000_2165_000
|
540 |
+
segment-12974838039736660070_4586_990_4606_990
|
541 |
+
segment-2342300897175196823_1179_360_1199_360
|
542 |
+
segment-7344536712079322768_1360_000_1380_000
|
543 |
+
segment-3338044015505973232_1804_490_1824_490
|
544 |
+
segment-13181198025433053194_2620_770_2640_770
|
545 |
+
segment-16504318334867223853_480_000_500_000
|
546 |
+
segment-5973788713714489548_2179_770_2199_770
|
547 |
+
segment-3078075798413050298_890_370_910_370
|
548 |
+
segment-6561206763751799279_2348_600_2368_600
|
549 |
+
segment-3451017128488170637_5280_000_5300_000
|
550 |
+
segment-13207915841618107559_2980_000_3000_000
|
551 |
+
segment-17912777897400903477_2047_500_2067_500
|
552 |
+
segment-8126606965364870152_985_090_1005_090
|
553 |
+
segment-6433401807220119698_4560_000_4580_000
|
554 |
+
segment-7837172662136597262_1140_000_1160_000
|
555 |
+
segment-1305342127382455702_3720_000_3740_000
|
556 |
+
segment-2919021496271356282_2300_000_2320_000
|
557 |
+
segment-16735938448970076374_1126_430_1146_430
|
558 |
+
segment-8806931859563747931_1160_000_1180_000
|
559 |
+
segment-7554208726220851641_380_000_400_000
|
560 |
+
segment-14940138913070850675_5755_330_5775_330
|
561 |
+
segment-5076950993715916459_3265_000_3285_000
|
562 |
+
segment-16797668128356194527_2430_390_2450_390
|
563 |
+
segment-7038362761309539946_4207_130_4227_130
|
564 |
+
segment-14766384747691229841_6315_730_6335_730
|
565 |
+
segment-10876852935525353526_1640_000_1660_000
|
566 |
+
segment-14276116893664145886_1785_080_1805_080
|
567 |
+
segment-8487809726845917818_4779_870_4799_870
|
568 |
+
segment-14358192009676582448_3396_400_3416_400
|
569 |
+
segment-3563349510410371738_7465_000_7485_000
|
570 |
+
segment-12212767626682531382_2100_150_2120_150
|
571 |
+
segment-6559997992780479765_1039_000_1059_000
|
572 |
+
segment-3698685523057788592_4303_630_4323_630
|
573 |
+
segment-1432918953215186312_5101_320_5121_320
|
574 |
+
segment-13585809231635721258_1910_770_1930_770
|
575 |
+
segment-8345535260120974350_1980_000_2000_000
|
576 |
+
segment-4138614210962611770_2459_360_2479_360
|
577 |
+
segment-15943938987133888575_2767_300_2787_300
|
578 |
+
segment-15036582848618865396_3752_830_3772_830
|
579 |
+
segment-11252086830380107152_1540_000_1560_000
|
580 |
+
segment-141184560845819621_10582_560_10602_560
|
581 |
+
segment-6150191934425217908_2747_800_2767_800
|
582 |
+
segment-14430914081327266277_6480_000_6500_000
|
583 |
+
segment-8543158371164842559_4131_530_4151_530
|
584 |
+
segment-10212406498497081993_5300_000_5320_000
|
585 |
+
segment-14503113925613619599_975_506_995_506
|
586 |
+
segment-16341778301681295961_178_800_198_800
|
587 |
+
segment-14734824171146590110_880_000_900_000
|
588 |
+
segment-17752423643206316420_920_850_940_850
|
589 |
+
segment-13005562150845909564_3141_360_3161_360
|
590 |
+
segment-16470190748368943792_4369_490_4389_490
|
591 |
+
segment-12281202743097872109_3387_370_3407_370
|
592 |
+
segment-4013698638848102906_7757_240_7777_240
|
593 |
+
segment-3276301746183196185_436_450_456_450
|
594 |
+
segment-13519445614718437933_4060_000_4080_000
|
595 |
+
segment-1891390218766838725_4980_000_5000_000
|
596 |
+
segment-200287570390499785_2102_000_2122_000
|
597 |
+
segment-16473613811052081539_1060_000_1080_000
|
598 |
+
segment-3928923269768424494_3060_000_3080_000
|
599 |
+
segment-2475623575993725245_400_000_420_000
|
600 |
+
segment-4305539677513798673_2200_000_2220_000
|
601 |
+
segment-575209926587730008_3880_000_3900_000
|
602 |
+
segment-11017034898130016754_697_830_717_830
|
603 |
+
segment-8796914080594559459_4284_170_4304_170
|
604 |
+
segment-16552287303455735122_7587_380_7607_380
|
605 |
+
segment-1907783283319966632_3221_000_3241_000
|
606 |
+
segment-5525943706123287091_4100_000_4120_000
|
607 |
+
segment-12856053589272984699_1020_000_1040_000
|
608 |
+
segment-16153607877566142572_2262_000_2282_000
|
609 |
+
segment-2217043033232259972_2720_000_2740_000
|
610 |
+
segment-7466751345307077932_585_000_605_000
|
611 |
+
segment-5691636094473163491_6889_470_6909_470
|
612 |
+
segment-8859409804103625626_2760_000_2780_000
|
613 |
+
segment-6290334089075942139_1340_000_1360_000
|
614 |
+
segment-2698953791490960477_2660_000_2680_000
|
615 |
+
segment-3665329186611360820_2329_010_2349_010
|
616 |
+
segment-268278198029493143_1400_000_1420_000
|
617 |
+
segment-14466332043440571514_6530_560_6550_560
|
618 |
+
segment-8633296376655504176_514_000_534_000
|
619 |
+
segment-15367782110311024266_2103_310_2123_310
|
620 |
+
segment-15090871771939393635_1266_320_1286_320
|
621 |
+
segment-7850521592343484282_4576_090_4596_090
|
622 |
+
segment-12200383401366682847_2552_140_2572_140
|
623 |
+
segment-2400780041057579262_660_000_680_000
|
624 |
+
segment-12988666890418932775_5516_730_5536_730
|
625 |
+
segment-14073491244121877213_4066_056_4086_056
|
626 |
+
segment-10082223140073588526_6140_000_6160_000
|
627 |
+
segment-17782258508241656695_1354_000_1374_000
|
628 |
+
segment-4191035366928259953_1732_708_1752_708
|
629 |
+
segment-4967385055468388261_720_000_740_000
|
630 |
+
segment-2025831330434849594_1520_000_1540_000
|
631 |
+
segment-10975280749486260148_940_000_960_000
|
632 |
+
segment-7187601925763611197_4384_300_4404_300
|
633 |
+
segment-8513241054672631743_115_960_135_960
|
634 |
+
segment-16652690380969095006_2580_000_2600_000
|
635 |
+
segment-13517115297021862252_2680_000_2700_000
|
636 |
+
segment-2107164705125601090_3920_000_3940_000
|
637 |
+
segment-10226164909075980558_180_000_200_000
|
638 |
+
segment-2323851946122476774_7240_000_7260_000
|
639 |
+
segment-7920326980177504058_2454_310_2474_310
|
640 |
+
segment-7799671367768576481_260_000_280_000
|
641 |
+
segment-17874036087982478403_733_674_753_674
|
642 |
+
segment-2273990870973289942_4009_680_4029_680
|
643 |
+
segment-2330686858362435307_603_210_623_210
|
644 |
+
segment-1473681173028010305_1780_000_1800_000
|
645 |
+
segment-10724020115992582208_7660_400_7680_400
|
646 |
+
segment-10241508783381919015_2889_360_2909_360
|
647 |
+
segment-6674547510992884047_1560_000_1580_000
|
648 |
+
segment-6771922013310347577_4249_290_4269_290
|
649 |
+
segment-17356174167372765800_1720_000_1740_000
|
650 |
+
segment-3417928259332148981_7018_550_7038_550
|
651 |
+
segment-6148393791213790916_4960_000_4980_000
|
652 |
+
segment-7007702792982559244_4400_000_4420_000
|
653 |
+
segment-12956664801249730713_2840_000_2860_000
|
654 |
+
segment-14753089714893635383_873_600_893_600
|
655 |
+
segment-4986495627634617319_2980_000_3000_000
|
656 |
+
segment-10206293520369375008_2796_800_2816_800
|
657 |
+
segment-3927294516406132977_792_740_812_740
|
658 |
+
segment-13940755514149579648_821_157_841_157
|
659 |
+
segment-5572351910320677279_3980_000_4000_000
|
660 |
+
segment-580580436928611523_792_500_812_500
|
661 |
+
segment-12900898236728415654_1906_686_1926_686
|
662 |
+
segment-18136695827203527782_2860_000_2880_000
|
663 |
+
segment-18244334282518155052_2360_000_2380_000
|
664 |
+
segment-4384676699661561426_1662_670_1682_670
|
665 |
+
segment-6386303598440879824_1520_000_1540_000
|
666 |
+
segment-13667377240304615855_500_000_520_000
|
667 |
+
segment-175830748773502782_1580_000_1600_000
|
668 |
+
segment-6763005717101083473_3880_000_3900_000
|
669 |
+
segment-9175749307679169289_5933_260_5953_260
|
670 |
+
segment-14739149465358076158_4740_000_4760_000
|
671 |
+
segment-7732779227944176527_2120_000_2140_000
|
672 |
+
segment-3126522626440597519_806_440_826_440
|
673 |
+
segment-16229547658178627464_380_000_400_000
|
674 |
+
segment-17612470202990834368_2800_000_2820_000
|
675 |
+
segment-12102100359426069856_3931_470_3951_470
|
676 |
+
segment-30779396576054160_1880_000_1900_000
|
677 |
+
segment-8907419590259234067_1960_000_1980_000
|
678 |
+
segment-15021599536622641101_556_150_576_150
|
679 |
+
segment-11450298750351730790_1431_750_1451_750
|
680 |
+
segment-17539775446039009812_440_000_460_000
|
681 |
+
segment-346889320598157350_798_187_818_187
|
682 |
+
segment-9443948810903981522_6538_870_6558_870
|
683 |
+
segment-8956556778987472864_3404_790_3424_790
|
684 |
+
segment-4195774665746097799_7300_960_7320_960
|
685 |
+
segment-4854173791890687260_2880_000_2900_000
|
686 |
+
segment-6707256092020422936_2352_392_2372_392
|
687 |
+
segment-14383152291533557785_240_000_260_000
|
688 |
+
segment-2551868399007287341_3100_000_3120_000
|
689 |
+
segment-12866817684252793621_480_000_500_000
|
690 |
+
segment-3015436519694987712_1300_000_1320_000
|
691 |
+
segment-9024872035982010942_2578_810_2598_810
|
692 |
+
segment-17962792089966876718_2210_933_2230_933
|
693 |
+
segment-3577352947946244999_3980_000_4000_000
|
694 |
+
segment-5832416115092350434_60_000_80_000
|
695 |
+
segment-7253952751374634065_1100_000_1120_000
|
696 |
+
segment-17344036177686610008_7852_160_7872_160
|
697 |
+
segment-14165166478774180053_1786_000_1806_000
|
698 |
+
segment-14333744981238305769_5658_260_5678_260
|
699 |
+
segment-8302000153252334863_6020_000_6040_000
|
700 |
+
segment-6074871217133456543_1000_000_1020_000
|
701 |
+
segment-8506432817378693815_4860_000_4880_000
|
702 |
+
segment-5990032395956045002_6600_000_6620_000
|
703 |
+
segment-366934253670232570_2229_530_2249_530
|
704 |
+
segment-13573359675885893802_1985_970_2005_970
|
705 |
+
segment-13469905891836363794_4429_660_4449_660
|
706 |
+
segment-89454214745557131_3160_000_3180_000
|
707 |
+
segment-12831741023324393102_2673_230_2693_230
|
708 |
+
segment-1105338229944737854_1280_000_1300_000
|
709 |
+
segment-15611747084548773814_3740_000_3760_000
|
710 |
+
segment-933621182106051783_4160_000_4180_000
|
711 |
+
segment-2834723872140855871_1615_000_1635_000
|
712 |
+
segment-10837554759555844344_6525_000_6545_000
|
713 |
+
segment-12306251798468767010_560_000_580_000
|
714 |
+
segment-12374656037744638388_1412_711_1432_711
|
715 |
+
segment-15224741240438106736_960_000_980_000
|
716 |
+
segment-1943605865180232897_680_000_700_000
|
717 |
+
segment-17065833287841703_2980_000_3000_000
|
718 |
+
segment-2736377008667623133_2676_410_2696_410
|
719 |
+
segment-5183174891274719570_3464_030_3484_030
|
720 |
+
segment-1457696187335927618_595_027_615_027
|
721 |
+
segment-10289507859301986274_4200_000_4220_000
|
722 |
+
segment-15724298772299989727_5386_410_5406_410
|
723 |
+
segment-17860546506509760757_6040_000_6060_000
|
724 |
+
segment-14127943473592757944_2068_000_2088_000
|
725 |
+
segment-18446264979321894359_3700_000_3720_000
|
726 |
+
segment-4575389405178805994_4900_000_4920_000
|
727 |
+
segment-2105808889850693535_2295_720_2315_720
|
728 |
+
segment-2367305900055174138_1881_827_1901_827
|
729 |
+
segment-8133434654699693993_1162_020_1182_020
|
730 |
+
segment-14262448332225315249_1280_000_1300_000
|
731 |
+
segment-15496233046893489569_4551_550_4571_550
|
732 |
+
segment-13178092897340078601_5118_604_5138_604
|
733 |
+
segment-10868756386479184868_3000_000_3020_000
|
734 |
+
segment-5302885587058866068_320_000_340_000
|
735 |
+
segment-11048712972908676520_545_000_565_000
|
736 |
+
segment-7119831293178745002_1094_720_1114_720
|
737 |
+
segment-5372281728627437618_2005_000_2025_000
|
738 |
+
segment-902001779062034993_2880_000_2900_000
|
739 |
+
segment-14956919859981065721_1759_980_1779_980
|
740 |
+
segment-7493781117404461396_2140_000_2160_000
|
741 |
+
segment-3731719923709458059_1540_000_1560_000
|
742 |
+
segment-9472420603764812147_850_000_870_000
|
743 |
+
segment-13356997604177841771_3360_000_3380_000
|
744 |
+
segment-4423389401016162461_4235_900_4255_900
|
745 |
+
segment-2094681306939952000_2972_300_2992_300
|
746 |
+
segment-14244512075981557183_1226_840_1246_840
|
747 |
+
segment-14486517341017504003_3406_349_3426_349
|
748 |
+
segment-17135518413411879545_1480_000_1500_000
|
749 |
+
segment-1024360143612057520_3580_000_3600_000
|
750 |
+
segment-2506799708748258165_6455_000_6475_000
|
751 |
+
segment-4759225533437988401_800_000_820_000
|
752 |
+
segment-13299463771883949918_4240_000_4260_000
|
753 |
+
segment-8331804655557290264_4351_740_4371_740
|
754 |
+
segment-11434627589960744626_4829_660_4849_660
|
755 |
+
segment-260994483494315994_2797_545_2817_545
|
756 |
+
segment-4612525129938501780_340_000_360_000
|
757 |
+
segment-9243656068381062947_1297_428_1317_428
|
758 |
+
segment-16767575238225610271_5185_000_5205_000
|
759 |
+
segment-17152649515605309595_3440_000_3460_000
|
760 |
+
segment-662188686397364823_3248_800_3268_800
|
761 |
+
segment-272435602399417322_2884_130_2904_130
|
762 |
+
segment-17703234244970638241_220_000_240_000
|
763 |
+
segment-15096340672898807711_3765_000_3785_000
|
764 |
+
segment-18252111882875503115_378_471_398_471
|
765 |
+
segment-9231652062943496183_1740_000_1760_000
|
766 |
+
segment-13941626351027979229_3363_930_3383_930
|
767 |
+
segment-14811410906788672189_373_113_393_113
|
768 |
+
segment-8079607115087394458_1240_000_1260_000
|
769 |
+
segment-3915587593663172342_10_000_30_000
|
770 |
+
segment-11406166561185637285_1753_750_1773_750
|
771 |
+
segment-16751706457322889693_4475_240_4495_240
|
772 |
+
segment-15948509588157321530_7187_290_7207_290
|
773 |
+
segment-4690718861228194910_1980_000_2000_000
|
774 |
+
segment-4013125682946523088_3540_000_3560_000
|
775 |
+
segment-5373876050695013404_3817_170_3837_170
|
776 |
+
segment-2335854536382166371_2709_426_2729_426
|
777 |
+
segment-6183008573786657189_5414_000_5434_000
|
778 |
+
segment-12940710315541930162_2660_000_2680_000
|
779 |
+
segment-3039251927598134881_1240_610_1260_610
|
780 |
+
segment-7988627150403732100_1487_540_1507_540
|
781 |
+
segment-6680764940003341232_2260_000_2280_000
|
782 |
+
segment-18333922070582247333_320_280_340_280
|
783 |
+
segment-8137195482049459160_3100_000_3120_000
|
784 |
+
segment-4490196167747784364_616_569_636_569
|
785 |
+
segment-7163140554846378423_2717_820_2737_820
|
786 |
+
segment-7932945205197754811_780_000_800_000
|
787 |
+
segment-1906113358876584689_1359_560_1379_560
|
788 |
+
segment-17244566492658384963_2540_000_2560_000
|
789 |
+
segment-5574146396199253121_6759_360_6779_360
|
790 |
+
segment-271338158136329280_2541_070_2561_070
|
791 |
+
segment-18331704533904883545_1560_000_1580_000
|
792 |
+
segment-1071392229495085036_1844_790_1864_790
|
793 |
+
segment-15959580576639476066_5087_580_5107_580
|
794 |
+
segment-10203656353524179475_7625_000_7645_000
|
795 |
+
segment-11616035176233595745_3548_820_3568_820
|
796 |
+
segment-17626999143001784258_2760_000_2780_000
|
797 |
+
segment-3651243243762122041_3920_000_3940_000
|
798 |
+
segment-6324079979569135086_2372_300_2392_300
|
799 |
+
segment-8888517708810165484_1549_770_1569_770
|
800 |
+
segment-6637600600814023975_2235_000_2255_000
|
801 |
+
segment-1505698981571943321_1186_773_1206_773
|
802 |
+
segment-7650923902987369309_2380_000_2400_000
|
803 |
+
segment-5847910688643719375_180_000_200_000
|
804 |
+
segment-7799643635310185714_680_000_700_000
|
805 |
+
segment-18045724074935084846_6615_900_6635_900
|
806 |
+
segment-10247954040621004675_2180_000_2200_000
|
807 |
+
segment-6001094526418694294_4609_470_4629_470
|
808 |
+
segment-6161542573106757148_585_030_605_030
|
809 |
+
segment-3077229433993844199_1080_000_1100_000
|
810 |
+
segment-13336883034283882790_7100_000_7120_000
|
811 |
+
segment-4764167778917495793_860_000_880_000
|
812 |
+
segment-12358364923781697038_2232_990_2252_990
|
813 |
+
segment-9265793588137545201_2981_960_3001_960
|
814 |
+
segment-12820461091157089924_5202_916_5222_916
|
815 |
+
segment-17763730878219536361_3144_635_3164_635
|
816 |
+
segment-12657584952502228282_3940_000_3960_000
|
817 |
+
segment-967082162553397800_5102_900_5122_900
|
818 |
+
segment-9041488218266405018_6454_030_6474_030
|
819 |
+
segment-16213317953898915772_1597_170_1617_170
|
820 |
+
segment-9579041874842301407_1300_000_1320_000
|
821 |
+
segment-15488266120477489949_3162_920_3182_920
|
822 |
+
segment-15396462829361334065_4265_000_4285_000
|
823 |
+
segment-17694030326265859208_2340_000_2360_000
|
824 |
+
segment-14663356589561275673_935_195_955_195
|
825 |
+
segment-9114112687541091312_1100_000_1120_000
|
826 |
+
segment-1331771191699435763_440_000_460_000
|
827 |
+
segment-17136314889476348164_979_560_999_560
|
828 |
+
segment-14931160836268555821_5778_870_5798_870
|
829 |
+
segment-5772016415301528777_1400_000_1420_000
|
830 |
+
segment-4246537812751004276_1560_000_1580_000
|
831 |
+
segment-11037651371539287009_77_670_97_670
|
832 |
+
segment-14624061243736004421_1840_000_1860_000
|
833 |
+
segment-10689101165701914459_2072_300_2092_300
|
834 |
+
segment-4409585400955983988_3500_470_3520_470
|
835 |
+
segment-8845277173853189216_3828_530_3848_530
|
836 |
+
segment-8679184381783013073_7740_000_7760_000
|
837 |
+
segment-10335539493577748957_1372_870_1392_870
|
838 |
+
segment-5289247502039512990_2640_000_2660_000
|
839 |
+
segment-18024188333634186656_1566_600_1586_600
|
840 |
+
segment-13982731384839979987_1680_000_1700_000
|
841 |
+
segment-18305329035161925340_4466_730_4486_730
|
842 |
+
segment-11660186733224028707_420_000_440_000
|
843 |
+
segment-14107757919671295130_3546_370_3566_370
|
844 |
+
segment-1464917900451858484_1960_000_1980_000
|
845 |
+
segment-11387395026864348975_3820_000_3840_000
|
846 |
+
segment-11901761444769610243_556_000_576_000
|
847 |
+
segment-14300007604205869133_1160_000_1180_000
|
848 |
+
segment-9164052963393400298_4692_970_4712_970
|
849 |
+
segment-4426410228514970291_1620_000_1640_000
|
850 |
+
segment-4816728784073043251_5273_410_5293_410
|
scripts/translate.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
import pathlib
|
5 |
+
import torch
|
6 |
+
import yaml
|
7 |
+
import sys
|
8 |
+
import os
|
9 |
+
|
10 |
+
from math import pi
|
11 |
+
from PIL import Image
|
12 |
+
from munch import Munch
|
13 |
+
from argparse import ArgumentParser as AP
|
14 |
+
from torchvision.transforms import ToPILImage, ToTensor
|
15 |
+
|
16 |
+
p_mod = str(pathlib.Path('.').absolute())
|
17 |
+
sys.path.append(p_mod.replace("/scripts", ""))
|
18 |
+
|
19 |
+
from data.base_dataset import get_transform
|
20 |
+
from networks import create_model
|
21 |
+
|
22 |
+
device='cuda' if torch.cuda.is_available() else 'cpu'
|
23 |
+
def printProgressBar(i, max, postText):
|
24 |
+
n_bar = 20 # size of progress bar
|
25 |
+
j = i / max
|
26 |
+
sys.stdout.write('\r')
|
27 |
+
sys.stdout.write(f"[{'=' * int(n_bar * j):{n_bar}s}] {int(100 * j)}% {postText}")
|
28 |
+
sys.stdout.flush()
|
29 |
+
|
30 |
+
def inference(model, opt, A_path, phi):
|
31 |
+
t_phi = torch.tensor(phi)
|
32 |
+
A_img = Image.open(A_path).convert('RGB')
|
33 |
+
A = get_transform(opt, convert=False)(A_img)
|
34 |
+
img_real = (((ToTensor()(A)) * 2) - 1).unsqueeze(0)
|
35 |
+
img_fake = model.forward(img_real.to(device), t_phi.to(device))
|
36 |
+
|
37 |
+
return ToPILImage()((img_fake[0].cpu() + 1) / 2)
|
38 |
+
|
39 |
+
def main(cmdline):
|
40 |
+
if cmdline.checkpoint is None:
|
41 |
+
# Load names of directories inside /logs
|
42 |
+
p = pathlib.Path('./logs')
|
43 |
+
list_run_id = [x.name for x in p.iterdir() if x.is_dir()]
|
44 |
+
|
45 |
+
RUN_ID = list_run_id[0]
|
46 |
+
root_dir = os.path.join('logs', RUN_ID, 'tensorboard', 'default', 'version_0')
|
47 |
+
p = pathlib.Path(root_dir + '/checkpoints')
|
48 |
+
# Load a list of checkpoints, use the last one by default
|
49 |
+
list_checkpoint = [x.name for x in p.iterdir() if 'iter' in x.name]
|
50 |
+
list_checkpoint.sort(reverse=True, key=lambda x: int(x.split('_')[1].split('.pth')[0]))
|
51 |
+
|
52 |
+
CHECKPOINT = list_checkpoint[0]
|
53 |
+
else:
|
54 |
+
RUN_ID = os.path.basename(cmdline.checkpoint.split("/tensorboard")[0])
|
55 |
+
root_dir = os.path.dirname(cmdline.checkpoint.split("/checkpoints")[0])
|
56 |
+
CHECKPOINT = os.path.basename(cmdline.checkpoint.split('checkpoints/')[1])
|
57 |
+
|
58 |
+
print(f"Load checkpoint {CHECKPOINT} from {RUN_ID}")
|
59 |
+
|
60 |
+
# Load parameters
|
61 |
+
with open(os.path.join(root_dir, 'hparams.yaml')) as cfg_file:
|
62 |
+
opt = Munch(yaml.safe_load(cfg_file))
|
63 |
+
|
64 |
+
opt.no_flip = True
|
65 |
+
# Load parameters to the model, load the checkpoint
|
66 |
+
model = create_model(opt)
|
67 |
+
model = model.load_from_checkpoint(os.path.join(root_dir, 'checkpoints', CHECKPOINT))
|
68 |
+
# Transfer the model to the GPU
|
69 |
+
model.to(device)
|
70 |
+
|
71 |
+
# Load paths of all files contained in /Day
|
72 |
+
p = pathlib.Path(cmdline.load_path)
|
73 |
+
dataset_paths = [str(x.relative_to(cmdline.load_path)) for x in p.iterdir()]
|
74 |
+
dataset_paths.sort()
|
75 |
+
|
76 |
+
# Load only files that contained the given string
|
77 |
+
sequence_name = []
|
78 |
+
if cmdline.sequence is not None:
|
79 |
+
for file in dataset_paths:
|
80 |
+
if cmdline.sequence in file:
|
81 |
+
sequence_name.append(file)
|
82 |
+
else:
|
83 |
+
sequence_name = dataset_paths
|
84 |
+
|
85 |
+
# Create directory if it doesn't exist
|
86 |
+
os.makedirs(cmdline.save_path, exist_ok=True)
|
87 |
+
|
88 |
+
i = 0
|
89 |
+
for path_img in sequence_name:
|
90 |
+
printProgressBar(i, len(sequence_name), path_img)
|
91 |
+
# Loop over phi values from 0 to 2pi with increments of 0.2
|
92 |
+
for phi in torch.arange(0, 2 * pi, 0.2):
|
93 |
+
# Forward our image into the model with the specified ɸ
|
94 |
+
out_img = inference(model, opt, os.path.join(cmdline.load_path, path_img), phi)
|
95 |
+
# Saving the generated image with phi in the filename
|
96 |
+
save_path = os.path.join(cmdline.save_path, f"{os.path.splitext(os.path.basename(path_img))[0]}_phi_{phi:.1f}.png")
|
97 |
+
out_img.save(save_path)
|
98 |
+
i += 1
|
99 |
+
|
100 |
+
if __name__ == '__main__':
|
101 |
+
ap = AP()
|
102 |
+
ap.add_argument('--load_path', default='/datasets/waymo_comogan/val/sunny/Day/', type=str, help='Set a path to load the dataset to translate')
|
103 |
+
ap.add_argument('--save_path', default='/CoMoGan/images/', type=str, help='Set a path to save the dataset')
|
104 |
+
ap.add_argument('--sequence', default=None, type=str, help='Set a sequence, will only use the image that contained the string specified')
|
105 |
+
ap.add_argument('--checkpoint', default=None, type=str, help='Set a path to the checkpoint that you want to use')
|
106 |
+
ap.add_argument('--phi', default=0.0, type=float, help='Choose the angle of the sun 𝜙 between [0,2𝜋], which maps to a sun elevation ∈ [+30◦,−40◦]')
|
107 |
+
main(ap.parse_args())
|
108 |
+
print("\n")
|
train.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import os
|
3 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Disables tensorflow loggings
|
4 |
+
|
5 |
+
from options import get_options
|
6 |
+
from data import create_dataset
|
7 |
+
from networks import create_model, get_model_options
|
8 |
+
from argparse import ArgumentParser as AP
|
9 |
+
|
10 |
+
import pytorch_lightning as pl
|
11 |
+
from pytorch_lightning.loggers import TensorBoardLogger
|
12 |
+
|
13 |
+
from util.callbacks import LogAndCheckpointEveryNSteps
|
14 |
+
from human_id import generate_id
|
15 |
+
|
16 |
+
def start(cmdline):
|
17 |
+
|
18 |
+
pl.trainer.seed_everything(cmdline.seed)
|
19 |
+
opt = get_options(cmdline)
|
20 |
+
|
21 |
+
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
|
22 |
+
model = create_model(opt) # create a model given opt.model and other options
|
23 |
+
|
24 |
+
callbacks = []
|
25 |
+
|
26 |
+
logger = None
|
27 |
+
if not cmdline.debug:
|
28 |
+
root_dir = os.path.join('logs/', generate_id()) if cmdline.id == None else os.path.join('logs/', cmdline.id)
|
29 |
+
logger = TensorBoardLogger(save_dir=os.path.join(root_dir, 'tensorboard'))
|
30 |
+
logger.log_hyperparams(opt)
|
31 |
+
callbacks.append(LogAndCheckpointEveryNSteps(save_step_frequency=opt.save_latest_freq,
|
32 |
+
viz_frequency=opt.display_freq,
|
33 |
+
log_frequency=opt.print_freq))
|
34 |
+
else:
|
35 |
+
root_dir = os.path.join('/tmp', generate_id())
|
36 |
+
|
37 |
+
precision = 16 if cmdline.mixed_precision else 32
|
38 |
+
|
39 |
+
trainer = pl.Trainer(default_root_dir=os.path.join(root_dir, 'checkpoints'), callbacks=callbacks,
|
40 |
+
gpus=cmdline.gpus, logger=logger, precision=precision, amp_level='01')
|
41 |
+
trainer.fit(model, dataset)
|
42 |
+
|
43 |
+
|
44 |
+
if __name__ == '__main__':
|
45 |
+
ap = AP()
|
46 |
+
ap.add_argument('--id', default=None, type=str, help='Set an existing uuid to resume a training')
|
47 |
+
ap.add_argument('--debug', default=False, action='store_true', help='Disables experiment saving')
|
48 |
+
ap.add_argument('--gpus', default=[0], type=int, nargs='+', help='gpus to train on')
|
49 |
+
ap.add_argument('--model', default='comomunit', type=str, help='Choose model for training')
|
50 |
+
ap.add_argument('--data_importer', default='day2timelapse', type=str, help='Module name of the dataset importer')
|
51 |
+
ap.add_argument('--path_data', default='/datasets/waymo_comogan/train/', type=str, help='Path to the dataset')
|
52 |
+
ap.add_argument('--learning_rate', default=0.0001, type=float, help='Learning rate')
|
53 |
+
ap.add_argument('--scheduler_policy', default='step', type=str, help='Scheduler policy')
|
54 |
+
ap.add_argument('--decay_iters_step', default=200000, type=int, help='Decay iterations step')
|
55 |
+
ap.add_argument('--decay_step_gamma', default=0.5, type=float, help='Decay step gamma')
|
56 |
+
ap.add_argument('--seed', default=1, type=int, help='Random seed')
|
57 |
+
ap.add_argument('--mixed_precision', default=False, action='store_true', help='Use mixed precision to reduce memory usage')
|
58 |
+
start(ap.parse_args())
|
59 |
+
|
util/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This package includes a miscellaneous collection of useful helper functions."""
|
2 |
+
from torch.nn import DataParallel
|
3 |
+
|
4 |
+
import sys
|
5 |
+
|
6 |
+
class DataParallelPassthrough(DataParallel):
|
7 |
+
def __getattr__(self, name):
|
8 |
+
try:
|
9 |
+
return super().__getattr__(name)
|
10 |
+
except AttributeError:
|
11 |
+
return getattr(self.module, name)
|
util/callbacks.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytorch_lightning as pl
|
2 |
+
from hashlib import md5
|
3 |
+
import os
|
4 |
+
|
5 |
+
class LogAndCheckpointEveryNSteps(pl.Callback):
|
6 |
+
"""
|
7 |
+
Save a checkpoint/logs every N steps
|
8 |
+
"""
|
9 |
+
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
save_step_frequency=50,
|
13 |
+
viz_frequency=5,
|
14 |
+
log_frequency=5
|
15 |
+
):
|
16 |
+
self.save_step_frequency = save_step_frequency
|
17 |
+
self.viz_frequency = viz_frequency
|
18 |
+
self.log_frequency = log_frequency
|
19 |
+
|
20 |
+
def on_batch_end(self, trainer: pl.Trainer, _):
|
21 |
+
global_step = trainer.global_step
|
22 |
+
|
23 |
+
# Saving checkpoint
|
24 |
+
if global_step % self.save_step_frequency == 0 and global_step != 0:
|
25 |
+
filename = "iter_{}.pth".format(global_step)
|
26 |
+
ckpt_path = os.path.join(trainer.checkpoint_callback.dirpath, filename)
|
27 |
+
trainer.save_checkpoint(ckpt_path)
|
28 |
+
|
29 |
+
# Logging losses
|
30 |
+
if global_step % self.log_frequency == 0 and global_step != 0:
|
31 |
+
trainer.model.log_current_losses()
|
32 |
+
|
33 |
+
# Image visualization
|
34 |
+
if global_step % self.viz_frequency == 0 and global_step != 0:
|
35 |
+
trainer.model.log_current_visuals()
|
36 |
+
|
37 |
+
class Hash(pl.Callback):
|
38 |
+
|
39 |
+
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
40 |
+
if batch_idx == 99:
|
41 |
+
print("Hash " + md5(pl_module.state_dict()["netG_B.dec.model.4.conv.weight"].cpu().detach().numpy()).hexdigest())
|
zurich_000116_000019_leftImg8bit_1.png
ADDED
Git LFS Details
|