import pytorch_lightning as pl from hashlib import md5 import os class LogAndCheckpointEveryNSteps(pl.Callback): """ Save a checkpoint/logs every N steps """ def __init__( self, save_step_frequency=50, viz_frequency=5, log_frequency=5 ): self.save_step_frequency = save_step_frequency self.viz_frequency = viz_frequency self.log_frequency = log_frequency def on_batch_end(self, trainer: pl.Trainer, _): global_step = trainer.global_step # Saving checkpoint if global_step % self.save_step_frequency == 0 and global_step != 0: filename = "iter_{}.pth".format(global_step) ckpt_path = os.path.join(trainer.checkpoint_callback.dirpath, filename) trainer.save_checkpoint(ckpt_path) # Logging losses if global_step % self.log_frequency == 0 and global_step != 0: trainer.model.log_current_losses() # Image visualization if global_step % self.viz_frequency == 0 and global_step != 0: trainer.model.log_current_visuals() class Hash(pl.Callback): def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): if batch_idx == 99: print("Hash " + md5(pl_module.state_dict()["netG_B.dec.model.4.conv.weight"].cpu().detach().numpy()).hexdigest())