""" This enables dynamic loading of models, similarly to what happens with the dataset. """ import importlib from networks.base_model import BaseModel def find_model_using_name(model_name): """Import the module "networks/[model_name]_model.py". In the file, the class called DatasetNameModel() will be instantiated. It has to be a subclass of BaseModel, and it is case-insensitive. """ model_filename = "networks." + model_name + "_model" modellib = importlib.import_module(model_filename) model = None target_model_name = model_name.replace('_', '') + 'model' for name, cls in modellib.__dict__.items(): if name.lower() == target_model_name.lower() \ and issubclass(cls, BaseModel): model = cls if model is None: print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name)) exit(0) return model def get_model_options(model_name): model_filename = "networks." + model_name + "_model" modellib = importlib.import_module(model_filename) for name, cls in modellib.__dict__.items(): if name.lower() == 'modeloptions': return cls return None def create_model(opt): """Create a model given the option. This function warps the class CustomDatasetDataLoader. This is the main interface between this package and 'train.py'/'test.py' Example: >>> from networks import create_model >>> model = create_model(opt) """ model = find_model_using_name(opt.model) instance = model(opt) return instance