import os import sys import math import itertools import numpy as np import tensorflow as tf from PIL import Image from argparse import ArgumentParser as AP from waymo_open_dataset.utils import range_image_utils from waymo_open_dataset.utils import transform_utils from waymo_open_dataset.utils import frame_utils from waymo_open_dataset import dataset_pb2 as open_dataset def printProgressBar(i, max, postText): n_bar = 20 #size of progress bar j= i/max sys.stdout.write('\r') sys.stdout.write(f"[{'=' * int(n_bar * j):{n_bar}s}] {int(100 * j)}% {postText}") sys.stdout.flush() def main(cmdline_opt): DS_PATH = cmdline_opt.load_path files = os.listdir(DS_PATH) files = [os.path.join(DS_PATH,x) for x in files] with open('sunny_sequences.txt') as file: sunny_sequences = file.read().splitlines() for index_file, file in enumerate(files): if not os.path.basename(file).split('_with_camera_labels.tfrecord')[0] in sunny_sequences: # Some sequences are wrongly annotated as sunny. We annotated a subset of really sunny images. continue dataset = tf.data.TFRecordDataset(file, compression_type='') printProgressBar(index_file, len(files), "Files done") for index_data, data in enumerate(dataset): frame = open_dataset.Frame() frame.ParseFromString(bytearray(data.numpy())) if frame.context.stats.weather == 'sunny': (range_images, camera_projections, range_image_top_pose) = frame_utils.parse_range_image_and_camera_projection(frame) for label in frame.camera_labels: if label.name == open_dataset.CameraName.FRONT: path = os.path.join(cmdline_opt.save_path, frame.context.stats.weather, frame.context.stats.time_of_day, '{}-{:06}.png'.format(os.path.basename(file), index_data)) im = tf.image.decode_png(frame.images[0].image) pil_im = Image.fromarray(im.numpy()) res_img = pil_im.resize((480, 320), Image.BILINEAR) os.makedirs(os.path.dirname(path), exist_ok=True) res_img.save(path) else: break if __name__ == '__main__': ap = AP() ap.add_argument('--load_path', default='/datasets_master/waymo_open_dataset_v_1_2_0/validation', type=str, help='Set a path to load the Waymo dataset') ap.add_argument('--save_path', default='/datasets_local/datasets_fpizzati/waymo_480x320/val', type=str, help='Set a path to save the dataset') main(ap.parse_args())