#!/usr/bin/env python # coding: utf-8 import pathlib import torch import yaml import sys import os from math import pi from PIL import Image from munch import Munch from argparse import ArgumentParser as AP from torchvision.transforms import ToPILImage, ToTensor p_mod = str(pathlib.Path('.').absolute()) sys.path.append(p_mod.replace("/scripts", "")) from data.base_dataset import get_transform from networks import create_model device='cuda' if torch.cuda.is_available() else 'cpu' def printProgressBar(i, max, postText): n_bar = 20 # size of progress bar j = i / max sys.stdout.write('\r') sys.stdout.write(f"[{'=' * int(n_bar * j):{n_bar}s}] {int(100 * j)}% {postText}") sys.stdout.flush() def inference(model, opt, A_path, phi): t_phi = torch.tensor(phi) A_img = Image.open(A_path).convert('RGB') A = get_transform(opt, convert=False)(A_img) img_real = (((ToTensor()(A)) * 2) - 1).unsqueeze(0) img_fake = model.forward(img_real.to(device), t_phi.to(device)) return ToPILImage()((img_fake[0].cpu() + 1) / 2) def main(cmdline): if cmdline.checkpoint is None: # Load names of directories inside /logs p = pathlib.Path('./logs') list_run_id = [x.name for x in p.iterdir() if x.is_dir()] RUN_ID = list_run_id[0] root_dir = os.path.join('logs', RUN_ID, 'tensorboard', 'default', 'version_0') p = pathlib.Path(root_dir + '/checkpoints') # Load a list of checkpoints, use the last one by default list_checkpoint = [x.name for x in p.iterdir() if 'iter' in x.name] list_checkpoint.sort(reverse=True, key=lambda x: int(x.split('_')[1].split('.pth')[0])) CHECKPOINT = list_checkpoint[0] else: RUN_ID = os.path.basename(cmdline.checkpoint.split("/tensorboard")[0]) root_dir = os.path.dirname(cmdline.checkpoint.split("/checkpoints")[0]) CHECKPOINT = os.path.basename(cmdline.checkpoint.split('checkpoints/')[1]) print(f"Load checkpoint {CHECKPOINT} from {RUN_ID}") # Load parameters with open(os.path.join(root_dir, 'hparams.yaml')) as cfg_file: opt = Munch(yaml.safe_load(cfg_file)) opt.no_flip = True # Load parameters to the model, load the checkpoint model = create_model(opt) model = model.load_from_checkpoint(os.path.join(root_dir, 'checkpoints', CHECKPOINT)) # Transfer the model to the GPU model.to(device) # Load paths of all files contained in /Day p = pathlib.Path(cmdline.load_path) dataset_paths = [str(x.relative_to(cmdline.load_path)) for x in p.iterdir()] dataset_paths.sort() # Load only files that contained the given string sequence_name = [] if cmdline.sequence is not None: for file in dataset_paths: if cmdline.sequence in file: sequence_name.append(file) else: sequence_name = dataset_paths # Create directory if it doesn't exist os.makedirs(cmdline.save_path, exist_ok=True) i = 0 for path_img in sequence_name: printProgressBar(i, len(sequence_name), path_img) # Loop over phi values from 0 to 2pi with increments of 0.2 for phi in torch.arange(0, 2 * pi, 0.2): # Forward our image into the model with the specified ΙΈ out_img = inference(model, opt, os.path.join(cmdline.load_path, path_img), phi) # Saving the generated image with phi in the filename save_path = os.path.join(cmdline.save_path, f"{os.path.splitext(os.path.basename(path_img))[0]}_phi_{phi:.1f}.png") out_img.save(save_path) i += 1 if __name__ == '__main__': ap = AP() ap.add_argument('--load_path', default='/datasets/waymo_comogan/val/sunny/Day/', type=str, help='Set a path to load the dataset to translate') ap.add_argument('--save_path', default='/CoMoGan/images/', type=str, help='Set a path to save the dataset') ap.add_argument('--sequence', default=None, type=str, help='Set a sequence, will only use the image that contained the string specified') ap.add_argument('--checkpoint', default=None, type=str, help='Set a path to the checkpoint that you want to use') ap.add_argument('--phi', default=0.0, type=float, help='Choose the angle of the sun πœ™ between [0,2πœ‹], which maps to a sun elevation ∈ [+30β—¦,βˆ’40β—¦]') main(ap.parse_args()) print("\n")