File size: 8,482 Bytes
83034b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import argparse
import os
import torch
import torch.nn as nn
import torch.utils.data as data
from PIL import Image
from PIL import ImageFile
from tensorboardX import SummaryWriter
from torchvision import transforms
from tqdm import tqdm
from pathlib import Path
import StyTr2.models.transformer_decoder as transformer
from StyTr2.models.StyTR import StyTr
from StyTr2.sampler import InfiniteSamplerWrapper
from torchvision.utils import save_image


from StyTr2.models.transformerEncoder import TransformerEncoder
from StyTr2.models.schedule import CosineAnnealingWarmUpLR
from StyTr2.models.DecoderCNN import Decoder_MV, vgg_structures,decoder_stem # DecoderCNN
from StyTr2.models.transformer_decoder import TransformerDecoder # TransformerDecoder

def train_transform():
    transform_list = [
        transforms.Resize(size=(512, 512)),
        transforms.RandomCrop(size=(224, 224)),
        transforms.ToTensor()
    ]
    return transforms.Compose(transform_list)


class FlatFolderDataset(data.Dataset):
    def __init__(self, root, transform):
        super(FlatFolderDataset, self).__init__()
        self.root = root
        print(self.root)
        self.path = os.listdir(self.root)
        if os.path.isdir(os.path.join(self.root, self.path[0])):
            self.paths = []
            for file_name in os.listdir(self.root):
                for file_name1 in os.listdir(os.path.join(self.root, file_name)):
                    self.paths.append(self.root + "/" + file_name + "/" + file_name1)
        else:
            self.paths = list(Path(self.root).glob('*'))
        self.transform = transform

    def __getitem__(self, index):
        path = self.paths[index]
        img = Image.open(str(path)).convert('RGB')
        img = self.transform(img)
        return img

    def __len__(self):
        return len(self.paths)

    def name(self):
        return 'FlatFolderDataset'

def save_checkpoint(encoder, transModule, decoder, optimizer, scheduler, epoch,

           log_c, log_s, log_id1, log_id2, log_all, loss_count_interval, save_path):
  checkpoint = {
    'encoder': encoder.state_dict() if not encoder is None else None,
    'transModule': transModule.state_dict() if not transModule is None else None,
    'decoder': decoder.state_dict() if not decoder is None else None,
    'optimizer': optimizer.state_dict() if not optimizer is None else None,
    'scheduler': scheduler.state_dict() if not scheduler is None else None,
    'epoch': epoch if not epoch is None else None,
    'log_c': log_c if not log_c is None else None,
    'log_s': log_s if not log_s is None else None,
    'log_id1': log_id1 if not log_id1 is None else None,
    'log_id2': log_id2 if not log_id2 is None else None,
    'log_all': log_all if not log_all is None else None,
    'loss_count_interval': loss_count_interval if not loss_count_interval is None else None
  }

  torch.save(checkpoint, save_path)


parser = argparse.ArgumentParser()
# Basic options
parser.add_argument('--content_dir', default=r'E:\NLP\VAL_Transformers\models\StyTr2\images', type=str,
                    help='Directory path to a batch of content images')
parser.add_argument('--style_dir', default=r'E:\NLP\VAL_Transformers\models\StyTr2\style', type=str,
                    # wikiart dataset crawled from https://www.wikiart.org/
                    help='Directory path to a batch of style images')
parser.add_argument('--vgg', type=str,
                    default=r'/home/share/VAL_ImageTranslation/models/networks/StyTr2/experiments/vgg_normalised.pth')  # run the train.py, please download the pretrained vgg checkpoint

# training options
parser.add_argument('--save_dir', default='./experiments',
                    help='Directory to save the model')
parser.add_argument('--log_dir', default='./logs',
                    help='Directory to save the log')
parser.add_argument('--lr', type=float, default=5e-4)
parser.add_argument('--lr_decay', type=float, default=1e-4)
parser.add_argument('--max_iter', type=int, default=3000)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--style_weight', type=float, default=10.0)
parser.add_argument('--content_weight', type=float, default=7.0)
parser.add_argument('--n_threads', type=int, default=1)
parser.add_argument('--id1_weight', type=float, default=50)
parser.add_argument('--id2_weight', type=float, default=1)
parser.add_argument('--save_model_interval', type=int, default=3000)
parser.add_argument('--loss_count_interval', type=int, default=400)

args = parser.parse_args()
loss_count_interval = args.loss_count_interval

USE_CUDA = torch.cuda.is_available()
device = torch.device("cuda" if USE_CUDA else "cpu")
print(device)

if not os.path.exists(args.save_dir):
    os.makedirs(args.save_dir)

if not os.path.exists(args.log_dir):
    os.mkdir(args.log_dir)

vgg = vgg_structures
vgg.load_state_dict(torch.load(args.vgg))
vgg = nn.Sequential(*list(vgg.children())[:44])

encoder=TransformerEncoder(img_size=224,patch_size=2,in_chans=3,embed_dim=192,depths=[2, 2, 2],nhead=[3, 6, 12],strip_width=[2, 4, 7],drop_path_rate=0.,patch_norm=True)
decoder=Decoder_MV(d_model=768,seq_input=True)
transformer_decoder=TransformerDecoder(nlayer=3,d_model=768,nhead=8,mlp_ratio=4,qkv_bias=False,attn_drop=0.,drop=0.,drop_path=0.,act_layer=nn.GELU,norm_layer=nn.LayerNorm,norm_first=True)

network=StyTr(encoder,decoder,transformer_decoder,vgg)

optimizer = torch.optim.Adam([
    {'params': network.encoder.parameters()},
    {'params': network.decoder.parameters()},
    {'params': network.transModule.parameters()},
], lr=args.lr_decay)
scheduler = CosineAnnealingWarmUpLR(optimizer, warmup_step=args.max_iter//4, max_step=args.max_iter, min_lr=0)


log_c, log_s, log_id1, log_id2, log_all = [],[],[],[],[]
log_c_temp, log_s_temp, log_id1_temp, log_id2_temp, log_all_temp = [],[],[],[],[]
network.train()
network.to(device)

content_tf = train_transform()
style_tf = train_transform()

content_dataset = FlatFolderDataset(args.content_dir, content_tf)
style_dataset = FlatFolderDataset(args.style_dir, style_tf)

content_iter = iter(data.DataLoader(
    content_dataset, batch_size=args.batch_size,
    sampler=InfiniteSamplerWrapper(content_dataset),
    num_workers=args.n_threads))
style_iter = iter(data.DataLoader(
    style_dataset, batch_size=args.batch_size,
    sampler=InfiniteSamplerWrapper(style_dataset),
    num_workers=args.n_threads))

if not os.path.exists(args.save_dir + "/test"):
    os.makedirs(args.save_dir + "/test")

for i in tqdm(range(args.max_iter)):

    content_images = next(content_iter).to(device)
    style_images = next(style_iter).to(device)

    loss_c, loss_s, loss_id_1, loss_id_2, out = network(content_images, style_images)
    loss_all = args.content_weight * loss_c + args.style_weight * loss_s + args.id1_weight * loss_id_1 + args.id2_weight * loss_id_2
    print("loss_all",loss_all.sum().cpu().detach().numpy(),"==>loss_c",loss_c.sum().cpu().detach().numpy(),"==>loss_s",loss_s.sum().cpu().detach().numpy(),"==>loss_id_1",loss_id_1.sum().cpu().detach().numpy(),"==>loss_id_2",loss_id_2.sum().cpu().detach().numpy())

    log_c_temp.append(loss_c.item())
    log_s_temp.append(loss_s.item())
    log_id1_temp.append(loss_id_1.item())
    log_id2_temp.append(loss_id_2.item())
    log_all_temp.append(loss_all.item())

    # update parameters
    optimizer.zero_grad()
    loss_all.backward()
    optimizer.step()
    scheduler.step()



    if i % 100 == 0:
        output_name = '{:s}/test/{:s}{:s}'.format(
            args.save_dir, str(i), ".jpg"
        )
        out = torch.cat((content_images, out), 0)
        out = torch.cat((style_images, out), 0)
        save_image(out, output_name)



    if i % args.save_model_interval == 0:
        save_checkpoint(
            encoder=network.encoder,
            transModule=network.transModule,
            decoder=network.decoder,
            optimizer=optimizer,
            scheduler=scheduler,
            epoch=i,
            log_c=log_c,
            log_s=log_s,
            log_id1=log_id1,
            log_id2=log_id2,
            log_all=log_all,
            loss_count_interval=loss_count_interval,
            save_path=os.path.join(args.save_dir, 'checkpoint_{}_epoch.pkl'.format(i))
        )