File size: 8,482 Bytes
83034b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import argparse
import os
import torch
import torch.nn as nn
import torch.utils.data as data
from PIL import Image
from PIL import ImageFile
from tensorboardX import SummaryWriter
from torchvision import transforms
from tqdm import tqdm
from pathlib import Path
import StyTr2.models.transformer_decoder as transformer
from StyTr2.models.StyTR import StyTr
from StyTr2.sampler import InfiniteSamplerWrapper
from torchvision.utils import save_image
from StyTr2.models.transformerEncoder import TransformerEncoder
from StyTr2.models.schedule import CosineAnnealingWarmUpLR
from StyTr2.models.DecoderCNN import Decoder_MV, vgg_structures,decoder_stem # DecoderCNN
from StyTr2.models.transformer_decoder import TransformerDecoder # TransformerDecoder
def train_transform():
transform_list = [
transforms.Resize(size=(512, 512)),
transforms.RandomCrop(size=(224, 224)),
transforms.ToTensor()
]
return transforms.Compose(transform_list)
class FlatFolderDataset(data.Dataset):
def __init__(self, root, transform):
super(FlatFolderDataset, self).__init__()
self.root = root
print(self.root)
self.path = os.listdir(self.root)
if os.path.isdir(os.path.join(self.root, self.path[0])):
self.paths = []
for file_name in os.listdir(self.root):
for file_name1 in os.listdir(os.path.join(self.root, file_name)):
self.paths.append(self.root + "/" + file_name + "/" + file_name1)
else:
self.paths = list(Path(self.root).glob('*'))
self.transform = transform
def __getitem__(self, index):
path = self.paths[index]
img = Image.open(str(path)).convert('RGB')
img = self.transform(img)
return img
def __len__(self):
return len(self.paths)
def name(self):
return 'FlatFolderDataset'
def save_checkpoint(encoder, transModule, decoder, optimizer, scheduler, epoch,
log_c, log_s, log_id1, log_id2, log_all, loss_count_interval, save_path):
checkpoint = {
'encoder': encoder.state_dict() if not encoder is None else None,
'transModule': transModule.state_dict() if not transModule is None else None,
'decoder': decoder.state_dict() if not decoder is None else None,
'optimizer': optimizer.state_dict() if not optimizer is None else None,
'scheduler': scheduler.state_dict() if not scheduler is None else None,
'epoch': epoch if not epoch is None else None,
'log_c': log_c if not log_c is None else None,
'log_s': log_s if not log_s is None else None,
'log_id1': log_id1 if not log_id1 is None else None,
'log_id2': log_id2 if not log_id2 is None else None,
'log_all': log_all if not log_all is None else None,
'loss_count_interval': loss_count_interval if not loss_count_interval is None else None
}
torch.save(checkpoint, save_path)
parser = argparse.ArgumentParser()
# Basic options
parser.add_argument('--content_dir', default=r'E:\NLP\VAL_Transformers\models\StyTr2\images', type=str,
help='Directory path to a batch of content images')
parser.add_argument('--style_dir', default=r'E:\NLP\VAL_Transformers\models\StyTr2\style', type=str,
# wikiart dataset crawled from https://www.wikiart.org/
help='Directory path to a batch of style images')
parser.add_argument('--vgg', type=str,
default=r'/home/share/VAL_ImageTranslation/models/networks/StyTr2/experiments/vgg_normalised.pth') # run the train.py, please download the pretrained vgg checkpoint
# training options
parser.add_argument('--save_dir', default='./experiments',
help='Directory to save the model')
parser.add_argument('--log_dir', default='./logs',
help='Directory to save the log')
parser.add_argument('--lr', type=float, default=5e-4)
parser.add_argument('--lr_decay', type=float, default=1e-4)
parser.add_argument('--max_iter', type=int, default=3000)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--style_weight', type=float, default=10.0)
parser.add_argument('--content_weight', type=float, default=7.0)
parser.add_argument('--n_threads', type=int, default=1)
parser.add_argument('--id1_weight', type=float, default=50)
parser.add_argument('--id2_weight', type=float, default=1)
parser.add_argument('--save_model_interval', type=int, default=3000)
parser.add_argument('--loss_count_interval', type=int, default=400)
args = parser.parse_args()
loss_count_interval = args.loss_count_interval
USE_CUDA = torch.cuda.is_available()
device = torch.device("cuda" if USE_CUDA else "cpu")
print(device)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
if not os.path.exists(args.log_dir):
os.mkdir(args.log_dir)
vgg = vgg_structures
vgg.load_state_dict(torch.load(args.vgg))
vgg = nn.Sequential(*list(vgg.children())[:44])
encoder=TransformerEncoder(img_size=224,patch_size=2,in_chans=3,embed_dim=192,depths=[2, 2, 2],nhead=[3, 6, 12],strip_width=[2, 4, 7],drop_path_rate=0.,patch_norm=True)
decoder=Decoder_MV(d_model=768,seq_input=True)
transformer_decoder=TransformerDecoder(nlayer=3,d_model=768,nhead=8,mlp_ratio=4,qkv_bias=False,attn_drop=0.,drop=0.,drop_path=0.,act_layer=nn.GELU,norm_layer=nn.LayerNorm,norm_first=True)
network=StyTr(encoder,decoder,transformer_decoder,vgg)
optimizer = torch.optim.Adam([
{'params': network.encoder.parameters()},
{'params': network.decoder.parameters()},
{'params': network.transModule.parameters()},
], lr=args.lr_decay)
scheduler = CosineAnnealingWarmUpLR(optimizer, warmup_step=args.max_iter//4, max_step=args.max_iter, min_lr=0)
log_c, log_s, log_id1, log_id2, log_all = [],[],[],[],[]
log_c_temp, log_s_temp, log_id1_temp, log_id2_temp, log_all_temp = [],[],[],[],[]
network.train()
network.to(device)
content_tf = train_transform()
style_tf = train_transform()
content_dataset = FlatFolderDataset(args.content_dir, content_tf)
style_dataset = FlatFolderDataset(args.style_dir, style_tf)
content_iter = iter(data.DataLoader(
content_dataset, batch_size=args.batch_size,
sampler=InfiniteSamplerWrapper(content_dataset),
num_workers=args.n_threads))
style_iter = iter(data.DataLoader(
style_dataset, batch_size=args.batch_size,
sampler=InfiniteSamplerWrapper(style_dataset),
num_workers=args.n_threads))
if not os.path.exists(args.save_dir + "/test"):
os.makedirs(args.save_dir + "/test")
for i in tqdm(range(args.max_iter)):
content_images = next(content_iter).to(device)
style_images = next(style_iter).to(device)
loss_c, loss_s, loss_id_1, loss_id_2, out = network(content_images, style_images)
loss_all = args.content_weight * loss_c + args.style_weight * loss_s + args.id1_weight * loss_id_1 + args.id2_weight * loss_id_2
print("loss_all",loss_all.sum().cpu().detach().numpy(),"==>loss_c",loss_c.sum().cpu().detach().numpy(),"==>loss_s",loss_s.sum().cpu().detach().numpy(),"==>loss_id_1",loss_id_1.sum().cpu().detach().numpy(),"==>loss_id_2",loss_id_2.sum().cpu().detach().numpy())
log_c_temp.append(loss_c.item())
log_s_temp.append(loss_s.item())
log_id1_temp.append(loss_id_1.item())
log_id2_temp.append(loss_id_2.item())
log_all_temp.append(loss_all.item())
# update parameters
optimizer.zero_grad()
loss_all.backward()
optimizer.step()
scheduler.step()
if i % 100 == 0:
output_name = '{:s}/test/{:s}{:s}'.format(
args.save_dir, str(i), ".jpg"
)
out = torch.cat((content_images, out), 0)
out = torch.cat((style_images, out), 0)
save_image(out, output_name)
if i % args.save_model_interval == 0:
save_checkpoint(
encoder=network.encoder,
transModule=network.transModule,
decoder=network.decoder,
optimizer=optimizer,
scheduler=scheduler,
epoch=i,
log_c=log_c,
log_s=log_s,
log_id1=log_id1,
log_id2=log_id2,
log_all=log_all,
loss_count_interval=loss_count_interval,
save_path=os.path.join(args.save_dir, 'checkpoint_{}_epoch.pkl'.format(i))
)
|