File size: 10,388 Bytes
83034b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import re
import importlib
import torch
from argparse import Namespace
import numpy as np
from PIL import Image
import os
import argparse
import dill as pickle
import util.coco


def save_obj(obj, name):
    with open(name, 'wb') as f:
        pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)


def load_obj(name):
    with open(name, 'rb') as f:
        return pickle.load(f)


# returns a configuration for creating a generator
# |default_opt| should be the opt of the current experiment
# |**kwargs|: if any configuration should be overriden, it can be specified here
def copyconf(default_opt, **kwargs):
    conf = argparse.Namespace(**vars(default_opt))
    for key in kwargs:
        print(key, kwargs[key])
        setattr(conf, key, kwargs[key])
    return conf


def tile_images(imgs, picturesPerRow=4):
    """ Code borrowed from
    https://stackoverflow.com/questions/26521365/cleanly-tile-numpy-array-of-images-stored-in-a-flattened-1d-format/26521997
    """

    # Padding
    if imgs.shape[0] % picturesPerRow == 0:
        rowPadding = 0
    else:
        rowPadding = picturesPerRow - imgs.shape[0] % picturesPerRow
    if rowPadding > 0:
        imgs = np.concatenate([imgs, np.zeros((rowPadding, *imgs.shape[1:]), dtype=imgs.dtype)], axis=0)

    # Tiling Loop (The conditionals are not necessary anymore)
    tiled = []
    for i in range(0, imgs.shape[0], picturesPerRow):
        tiled.append(np.concatenate([imgs[j] for j in range(i, i + picturesPerRow)], axis=1))

    tiled = np.concatenate(tiled, axis=0)
    return tiled


# Converts a Tensor into a Numpy array
# |imtype|: the desired type of the converted numpy array
def tensor2im(image_tensor, imtype=np.uint8, normalize=True, tile=False):
    if isinstance(image_tensor, list):
        image_numpy = []
        for i in range(len(image_tensor)):
            image_numpy.append(tensor2im(image_tensor[i], imtype, normalize))
        return image_numpy

    if image_tensor.dim() == 4:
        # transform each image in the batch
        images_np = []
        for b in range(image_tensor.size(0)):
            one_image = image_tensor[b]
            one_image_np = tensor2im(one_image)
            images_np.append(one_image_np.reshape(1, *one_image_np.shape))
        images_np = np.concatenate(images_np, axis=0)
        if tile:
            images_tiled = tile_images(images_np)
            return images_tiled
        else:
            return images_np

    if image_tensor.dim() == 2:
        image_tensor = image_tensor.unsqueeze(0)
    image_numpy = image_tensor.detach().cpu().float().numpy()
    if normalize:
        image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
    else:
        image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0
    image_numpy = np.clip(image_numpy, 0, 255)
    if image_numpy.shape[2] == 1:
        image_numpy = image_numpy[:, :, 0]
    return image_numpy.astype(imtype)


# Converts a one-hot tensor into a colorful label map
def tensor2label(label_tensor, n_label, imtype=np.uint8, tile=False):
    if label_tensor.dim() == 4:
        # transform each image in the batch
        images_np = []
        for b in range(label_tensor.size(0)):
            one_image = label_tensor[b]
            one_image_np = tensor2label(one_image, n_label, imtype)
            images_np.append(one_image_np.reshape(1, *one_image_np.shape))
        images_np = np.concatenate(images_np, axis=0)
        if tile:
            images_tiled = tile_images(images_np)
            return images_tiled
        else:
            images_np = images_np[0]
            return images_np

    if label_tensor.dim() == 1:
        return np.zeros((64, 64, 3), dtype=np.uint8)
    if n_label == 0:
        return tensor2im(label_tensor, imtype)
    label_tensor = label_tensor.cpu().float()
    if label_tensor.size()[0] > 1:
        label_tensor = label_tensor.max(0, keepdim=True)[1]
    label_tensor = Colorize(n_label)(label_tensor)
    label_numpy = np.transpose(label_tensor.numpy(), (1, 2, 0))
    result = label_numpy.astype(imtype)
    return result


def save_image(image_numpy, image_path, create_dir=False):
    if create_dir:
        os.makedirs(os.path.dirname(image_path), exist_ok=True)
    if len(image_numpy.shape) == 2:
        image_numpy = np.expand_dims(image_numpy, axis=2)
    if image_numpy.shape[2] == 1:
        image_numpy = np.repeat(image_numpy, 3, 2)
    image_pil = Image.fromarray(image_numpy)

    # save to png
    image_pil.save(image_path.replace('.jpg', '.png'))


def mkdirs(paths):
    if isinstance(paths, list) and not isinstance(paths, str):
        for path in paths:
            mkdir(path)
    else:
        mkdir(paths)


def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)


def atoi(text):
    return int(text) if text.isdigit() else text


def natural_keys(text):
    '''
    alist.sort(key=natural_keys) sorts in human order
    http://nedbatchelder.com/blog/200712/human_sorting.html
    (See Toothy's implementation in the comments)
    '''
    return [atoi(c) for c in re.split('(\d+)', text)]


def natural_sort(items):
    items.sort(key=natural_keys)


def str2bool(v):
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')


def find_class_in_module(target_cls_name, module):
    target_cls_name = target_cls_name.replace('_', '').lower()
    clslib = importlib.import_module(module)
    cls = None
    for name, clsobj in clslib.__dict__.items():
        if name.lower() == target_cls_name:
            cls = clsobj

    if cls is None:
        print("In %s, there should be a class whose name matches %s in lowercase without underscore(_)" % (module, target_cls_name))
        exit(0)

    return cls


def save_network(net, label, epoch, opt):
    save_filename = '%s_net_%s.pth' % (epoch, label)
    save_path = os.path.join(opt.checkpoints_dir, opt.name, save_filename)
    torch.save(net.cpu().state_dict(), save_path)
    if len(opt.gpu_ids) and torch.cuda.is_available():
        net.cuda()

def save_generator_by_iter(net, label, epoch,iters, opt):
    gen_path = os.path.join(opt.checkpoints_dir, opt.name, "generators_by_iters")
    os.makedirs(gen_path,exist_ok=True)
    save_filename = '%s_iters_%s_net_%s.pth' % (epoch, iters, label)
    save_path = os.path.join(gen_path, save_filename)
    torch.save(net.cpu().state_dict(), save_path)
    if len(opt.gpu_ids) and torch.cuda.is_available():
        net.cuda()

def load_network(net, label, epoch, opt):
    save_filename = '%s_net_%s.pth' % (epoch, label)
    save_dir = os.path.join(opt.checkpoints_dir, opt.name)
    save_path = os.path.join(save_dir, save_filename)
    weights = torch.load(save_path)
    net.load_state_dict(weights)
    return net

def load_genrator_network(model,checkpoint_path):
    print("======> Loading Checkpoint ====================>")
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    checkpoint = torch.load(checkpoint_path, map_location=device)

    model.TransEncoder.load_state_dict(checkpoint['encoder1'])
    model.HeTransEncoder.load_state_dict(checkpoint['encoder2'])
    model.CNNdecoder.load_state_dict(checkpoint['decoder'])
    model.transModule.load_state_dict(checkpoint['transModule'])
    loss_count_interval = checkpoint['loss_count_interval']
    print('======> loading finished')
    return model


###############################################################################
# Code from
# https://github.com/ycszen/pytorch-seg/blob/master/transform.py
# Modified so it complies with the Citscape label map colors
###############################################################################
def uint82bin(n, count=8):
    """returns the binary of integer n, count refers to amount of bits"""
    return ''.join([str((n >> y) & 1) for y in range(count - 1, -1, -1)])


def labelcolormap(N):
    if N == 35:  # cityscape
        cmap = np.array([(0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (111, 74, 0), (81, 0, 81),
                         (128, 64, 128), (244, 35, 232), (250, 170, 160), (230, 150, 140), (70, 70, 70), (102, 102, 156), (190, 153, 153),
                         (180, 165, 180), (150, 100, 100), (150, 120, 90), (153, 153, 153), (153, 153, 153), (250, 170, 30), (220, 220, 0),
                         (107, 142, 35), (152, 251, 152), (70, 130, 180), (220, 20, 60), (255, 0, 0), (0, 0, 142), (0, 0, 70),
                         (0, 60, 100), (0, 0, 90), (0, 0, 110), (0, 80, 100), (0, 0, 230), (119, 11, 32), (0, 0, 142)],
                        dtype=np.uint8)
    else:
        cmap = np.zeros((N, 3), dtype=np.uint8)
        for i in range(N):
            r, g, b = 0, 0, 0
            id = i + 1  # let's give 0 a color
            for j in range(7):
                str_id = uint82bin(id)
                r = r ^ (np.uint8(str_id[-1]) << (7 - j))
                g = g ^ (np.uint8(str_id[-2]) << (7 - j))
                b = b ^ (np.uint8(str_id[-3]) << (7 - j))
                id = id >> 3
            cmap[i, 0] = r
            cmap[i, 1] = g
            cmap[i, 2] = b

        if N == 182:  # COCO
            important_colors = {
                'sea': (54, 62, 167),
                'sky-other': (95, 219, 255),
                'tree': (140, 104, 47),
                'clouds': (170, 170, 170),
                'grass': (29, 195, 49)
            }
            for i in range(N):
                name = util.coco.id2label(i)
                if name in important_colors:
                    color = important_colors[name]
                    cmap[i] = np.array(list(color))

    return cmap


class Colorize(object):
    def __init__(self, n=35):
        self.cmap = labelcolormap(n)
        self.cmap = torch.from_numpy(self.cmap[:n])

    def __call__(self, gray_image):
        size = gray_image.size()
        color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0)

        for label in range(0, len(self.cmap)):
            mask = (label == gray_image[0]).cpu()
            color_image[0][mask] = self.cmap[label][0]
            color_image[1][mask] = self.cmap[label][1]
            color_image[2][mask] = self.cmap[label][2]

        return color_image