File size: 6,306 Bytes
83034b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import os
import ntpath
import time
from . import util
from . import html
import numpy as np
import scipy.misc
try:
from StringIO import StringIO # Python 2.7
except ImportError:
from io import BytesIO # Python 3.x
class Visualizer():
def __init__(self, opt):
self.opt = opt
self.tf_log = opt.isTrain and opt.tf_log
self.use_html = opt.isTrain and not opt.no_html
self.win_size = opt.display_winsize
self.name = opt.name
if self.tf_log:
import tensorflow as tf
self.tf = tf
self.log_dir = os.path.join(opt.checkpoints_dir, opt.name, 'logs')
self.writer = tf.summary.FileWriter(self.log_dir)
if self.use_html:
self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
self.img_dir = os.path.join(self.web_dir, 'images')
print('create web directory %s...' % self.web_dir)
util.mkdirs([self.web_dir, self.img_dir])
if opt.isTrain:
self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
with open(self.log_name, "a") as log_file:
now = time.strftime("%c")
log_file.write('================ Training Loss (%s) ================\n' % now)
# |visuals|: dictionary of images to display or save
def display_current_results(self, visuals, epoch, step):
## convert tensors to numpy arrays
visuals = self.convert_visuals_to_numpy(visuals)
if self.tf_log: # show images in tensorboard output
img_summaries = []
for label, image_numpy in visuals.items():
# Write the image to a string
try:
s = StringIO()
except:
s = BytesIO()
if len(image_numpy.shape) >= 4:
image_numpy = image_numpy[0]
scipy.misc.toimage(image_numpy).save(s, format="jpeg")
# Create an Image object
img_sum = self.tf.Summary.Image(encoded_image_string=s.getvalue(), height=image_numpy.shape[0], width=image_numpy.shape[1])
# Create a Summary value
img_summaries.append(self.tf.Summary.Value(tag=label, image=img_sum))
# Create and write Summary
summary = self.tf.Summary(value=img_summaries)
self.writer.add_summary(summary, step)
if self.use_html: # save images to a html file
img_path = os.path.join(self.img_dir, 'epoch%.3d_iter%.7d.png' % (epoch, step))
visuals_lst = []
for label, image_numpy in visuals.items():
if len(image_numpy.shape) >= 4:
image_numpy = image_numpy[0]
visuals_lst.append(image_numpy)
image_cath = np.concatenate(visuals_lst, axis=0)
util.save_image(image_cath, img_path)
# update website
webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=5)
for n in range(epoch, 0, -1):
webpage.add_header('epoch [%d]' % n)
ims = []
txts = []
links = []
for label, image_numpy in visuals.items():
if isinstance(image_numpy, list):
for i in range(len(image_numpy)):
img_path = 'epoch%.3d_iter%.3d_%s_%d.png' % (n, step, label, i)
ims.append(img_path)
txts.append(label+str(i))
links.append(img_path)
else:
img_path = 'epoch%.3d_iter%.3d_%s.png' % (n, step, label)
ims.append(img_path)
txts.append(label)
links.append(img_path)
if len(ims) < 10:
webpage.add_images(ims, txts, links, width=self.win_size)
else:
num = int(round(len(ims)/2.0))
webpage.add_images(ims[:num], txts[:num], links[:num], width=self.win_size)
webpage.add_images(ims[num:], txts[num:], links[num:], width=self.win_size)
webpage.save()
# errors: dictionary of error labels and values
def plot_current_errors(self, errors, step):
if self.tf_log:
for tag, value in errors.items():
value = value.mean().float()
summary = self.tf.Summary(value=[self.tf.Summary.Value(tag=tag, simple_value=value)])
self.writer.add_summary(summary, step)
# errors: same format as |errors| of plotCurrentErrors
def print_current_errors(self, epoch, i, errors, t):
message = '(epoch: %d, iters: %d, time: %.3f) ' % (epoch, i, t)
for k, v in errors.items():
#print(v)
#if v != 0:
v = v.mean().float()
message += '%s: %.3f ' % (k, v)
print(message)
with open(self.log_name, "a") as log_file:
log_file.write('%s\n' % message)
def convert_visuals_to_numpy(self, visuals):
for key, t in visuals.items():
tile = self.opt.batchSize > 8
if 'input_label' == key:
t = util.tensor2label(t, self.opt.label_nc, tile=tile)
else:
t = util.tensor2im(t, tile=tile)
visuals[key] = t
return visuals
# save image to the disk
def save_images(self, webpage, visuals, image_path, alpha=1.0):
visuals = self.convert_visuals_to_numpy(visuals)
image_dir = webpage.get_image_dir()
short_path = ntpath.basename(image_path[0])
name = os.path.splitext(short_path)[0]
visuals_lst = []
# image_name = '%s.png' % name
# save image name with alpha value (upto 3 digits)
image_name = '%s_%s.png' % (name, "{0:.3f}".format(alpha))
alpha = alpha.item()
save_path = os.path.join(image_dir, str(alpha), image_name)
for label, image_numpy in visuals.items():
visuals_lst.append(image_numpy)
image_cath = np.concatenate(visuals_lst, axis=1)
util.save_image(image_cath, save_path, create_dir=True)
|