File size: 6,306 Bytes
83034b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import ntpath
import time
from . import util
from . import html
import numpy as np
import scipy.misc
try:
    from StringIO import StringIO  # Python 2.7
except ImportError:
    from io import BytesIO         # Python 3.x


class Visualizer():
    def __init__(self, opt):
        self.opt = opt
        self.tf_log = opt.isTrain and opt.tf_log
        self.use_html = opt.isTrain and not opt.no_html
        self.win_size = opt.display_winsize
        self.name = opt.name
        if self.tf_log:
            import tensorflow as tf
            self.tf = tf
            self.log_dir = os.path.join(opt.checkpoints_dir, opt.name, 'logs')
            self.writer = tf.summary.FileWriter(self.log_dir)

        if self.use_html:
            self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
            self.img_dir = os.path.join(self.web_dir, 'images')
            print('create web directory %s...' % self.web_dir)
            util.mkdirs([self.web_dir, self.img_dir])
        if opt.isTrain:
            self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
            with open(self.log_name, "a") as log_file:
                now = time.strftime("%c")
                log_file.write('================ Training Loss (%s) ================\n' % now)

    # |visuals|: dictionary of images to display or save
    def display_current_results(self, visuals, epoch, step):

        ## convert tensors to numpy arrays
        visuals = self.convert_visuals_to_numpy(visuals)

        if self.tf_log: # show images in tensorboard output
            img_summaries = []
            for label, image_numpy in visuals.items():
                # Write the image to a string
                try:
                    s = StringIO()
                except:
                    s = BytesIO()
                if len(image_numpy.shape) >= 4:
                    image_numpy = image_numpy[0]
                scipy.misc.toimage(image_numpy).save(s, format="jpeg")
                # Create an Image object
                img_sum = self.tf.Summary.Image(encoded_image_string=s.getvalue(), height=image_numpy.shape[0], width=image_numpy.shape[1])
                # Create a Summary value
                img_summaries.append(self.tf.Summary.Value(tag=label, image=img_sum))

            # Create and write Summary
            summary = self.tf.Summary(value=img_summaries)
            self.writer.add_summary(summary, step)

        if self.use_html: # save images to a html file
            img_path = os.path.join(self.img_dir, 'epoch%.3d_iter%.7d.png' % (epoch, step))
            visuals_lst = []
            for label, image_numpy in visuals.items():
                if len(image_numpy.shape) >= 4:
                    image_numpy = image_numpy[0]
                visuals_lst.append(image_numpy)
            image_cath = np.concatenate(visuals_lst, axis=0)
            util.save_image(image_cath, img_path)

            # update website
            webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=5)
            for n in range(epoch, 0, -1):
                webpage.add_header('epoch [%d]' % n)
                ims = []
                txts = []
                links = []

                for label, image_numpy in visuals.items():
                    if isinstance(image_numpy, list):
                        for i in range(len(image_numpy)):
                            img_path = 'epoch%.3d_iter%.3d_%s_%d.png' % (n, step, label, i)
                            ims.append(img_path)
                            txts.append(label+str(i))
                            links.append(img_path)
                    else:
                        img_path = 'epoch%.3d_iter%.3d_%s.png' % (n, step, label)
                        ims.append(img_path)
                        txts.append(label)
                        links.append(img_path)
                if len(ims) < 10:
                    webpage.add_images(ims, txts, links, width=self.win_size)
                else:
                    num = int(round(len(ims)/2.0))
                    webpage.add_images(ims[:num], txts[:num], links[:num], width=self.win_size)
                    webpage.add_images(ims[num:], txts[num:], links[num:], width=self.win_size)
            webpage.save()

    # errors: dictionary of error labels and values
    def plot_current_errors(self, errors, step):
        if self.tf_log:
            for tag, value in errors.items():
                value = value.mean().float()
                summary = self.tf.Summary(value=[self.tf.Summary.Value(tag=tag, simple_value=value)])
                self.writer.add_summary(summary, step)

    # errors: same format as |errors| of plotCurrentErrors
    def print_current_errors(self, epoch, i, errors, t):
        message = '(epoch: %d, iters: %d, time: %.3f) ' % (epoch, i, t)
        for k, v in errors.items():
            #print(v)
            #if v != 0:
            v = v.mean().float()
            message += '%s: %.3f ' % (k, v)

        print(message)
        with open(self.log_name, "a") as log_file:
            log_file.write('%s\n' % message)

    def convert_visuals_to_numpy(self, visuals):
        for key, t in visuals.items():
            tile = self.opt.batchSize > 8
            if 'input_label' == key:
                t = util.tensor2label(t, self.opt.label_nc, tile=tile)
            else:
                t = util.tensor2im(t, tile=tile)
            visuals[key] = t
        return visuals

    # save image to the disk
    def save_images(self, webpage, visuals, image_path, alpha=1.0):
        visuals = self.convert_visuals_to_numpy(visuals)

        image_dir = webpage.get_image_dir()
        short_path = ntpath.basename(image_path[0])
        name = os.path.splitext(short_path)[0]

        visuals_lst = []
        # image_name = '%s.png' % name
        # save image name with alpha value (upto 3 digits)
        image_name = '%s_%s.png' % (name, "{0:.3f}".format(alpha))
        alpha = alpha.item()
        save_path = os.path.join(image_dir, str(alpha), image_name)
        for label, image_numpy in visuals.items():
            visuals_lst.append(image_numpy)

        image_cath = np.concatenate(visuals_lst, axis=1)
        util.save_image(image_cath, save_path, create_dir=True)