HazeT_Hieu / data /sunny2diffweathers_dataset.py
datnguyentien204's picture
Upload 1403 files
83034b6 verified
import os
from data.pix2pix_dataset import Pix2pixDataset
class Sunny2DiffWeathersDataset(Pix2pixDataset):
@staticmethod
def modify_commandline_options(parser, is_train):
parser = Pix2pixDataset.modify_commandline_options(parser, is_train)
parser.add_argument('--test_mode', type=str, default='all',
help='specify style mode to control multi-modal image synthesis (MMIS) during test phase:'
'night | cloudy | rainy | snowy | all')
parser.set_defaults(preprocess_mode='fixed')
parser.set_defaults(load_size=512)
parser.set_defaults(crop_size=512)
parser.set_defaults(display_winsize=512)
parser.set_defaults(aspect_ratio=2.0)
opt, _ = parser.parse_known_args()
if hasattr(opt, 'num_upsampling_layers'):
parser.set_defaults(num_upsampling_layers='more')
return parser
def get_paths(self, opt):
croot = opt.croot
sroot = opt.sroot
with open(os.path.join(croot, 'bdd100k_lists/sunny2diffweathers/sunny_%s.txt' % opt.phase)) as c_list:
c_image_paths_read = c_list.read().splitlines()
c_image_paths = [os.path.join(croot, p) for p in c_image_paths_read if p != '']
if opt.phase == 'train' or opt.test_mode == 'all':
mode_list = ['night', 'cloudy', 'rainy', 'snowy']
else:
mode_list = [opt.test_mode]
s_image_paths = []
for mode in mode_list:
with open(os.path.join(sroot, 'bdd100k_lists/sunny2diffweathers/%s_%s.txt' % (mode, opt.phase))) as s_list:
s_image_paths_read = s_list.read().splitlines()
s_image_paths_mode = [os.path.join(sroot, p) for p in s_image_paths_read if p != '']
s_image_paths.extend(s_image_paths_mode)
while len(s_image_paths) < len(c_image_paths):
s_image_paths = s_image_paths + s_image_paths
instance_paths = []
length = min(len(c_image_paths), len(s_image_paths))
c_image_paths = c_image_paths[:length]
s_image_paths = s_image_paths[:length]
return c_image_paths, s_image_paths, instance_paths
def paths_match(self, path1, path2):
return True