|
import wandb |
|
import os |
|
import matplotlib.pyplot as plt |
|
import random |
|
|
|
is_wandb_enabled = os.getenv("WANDB_DISABLED", "false").lower() != "true" |
|
|
|
def get_next_directory(base_dir="results", sub_dir="train"): |
|
result_dir = os.path.join(base_dir, sub_dir) |
|
if not os.path.exists(result_dir): |
|
os.makedirs(result_dir) |
|
|
|
run_id = 0 |
|
while True: |
|
run_dir = os.path.join(result_dir, f"VAL_Images_StyleTransfer_{run_id}") |
|
if not os.path.exists(run_dir): |
|
os.makedirs(run_dir) |
|
return run_dir, run_id |
|
run_id += 1 |
|
|
|
|
|
def init_project(base_dir="results", sub_dir="train"): |
|
project_dir, run_id = get_next_directory(base_dir, sub_dir) |
|
|
|
if is_wandb_enabled: |
|
|
|
wandb.init(project=f"VAL_Images_StyleTransfer", name=f"VAL_Images_StyleTransfer_{run_id}r") |
|
|
|
return project_dir |
|
|
|
|
|
def upload_images(images, iters, img_index, epoch): |
|
dir_name = f"epoch_{epoch}_iters_{iters}" |
|
if not os.path.exists(dir_name): |
|
os.makedirs(dir_name) |
|
|
|
for i, img in enumerate(images): |
|
img_name = f"img_{img_index}_{iters}_{epoch}.png" |
|
img_path = os.path.join(dir_name, img_name) |
|
plt.figure() |
|
plt.imshow(img) |
|
plt.title(f"Image {img_index} | Iter {iters} | Epoch {epoch}") |
|
plt.axis('off') |
|
|
|
plt.savefig(img_path) |
|
plt.close() |
|
|
|
if is_wandb_enabled: |
|
wandb.log({f"epoch_{epoch}/img_{img_index}_{iters}_{epoch}": wandb.Image(img_path)}) |
|
|
|
|
|
|
|
previous_iters_all_images = -1 |
|
last_iters=0 |
|
|
|
|
|
def reset_iters_if_needed(iters_all_images): |
|
global previous_iters_all_images |
|
|
|
if iters_all_images > previous_iters_all_images: |
|
previous_iters_all_images = iters_all_images |
|
return True |
|
return False |
|
|
|
|
|
def get_section_name(epoch, iters_all_images): |
|
return f"Iters on all Images_epoch{epoch}_iters{iters_all_images}" |
|
|
|
|
|
def define_wandb_metrics(epoch, iters_all_images): |
|
section_name = get_section_name(epoch, iters_all_images) |
|
if is_wandb_enabled: |
|
|
|
wandb.define_metric(f"{section_name}/All_loss_on_one_images", step_metric=f"{section_name}_step") |
|
wandb.define_metric(f"{section_name}/L1_loss_on_one_images", step_metric=f"{section_name}_step") |
|
wandb.define_metric(f"{section_name}/L2_loss_on_one_images", step_metric=f"{section_name}_step") |
|
wandb.define_metric(f"{section_name}/Content_loss_on_one_images", step_metric=f"{section_name}_step") |
|
wandb.define_metric(f"{section_name}/Style_loss_on_one_images", step_metric=f"{section_name}_step") |
|
|
|
|
|
def upload_all_loss_on_one_images(loss_value, iters_one_imgs, iters_all_images, epoch): |
|
if reset_iters_if_needed(iters_all_images): |
|
iters_one_imgs = last_iters+iters_one_imgs |
|
define_wandb_metrics(epoch, iters_all_images) |
|
|
|
section_name = get_section_name(epoch, iters_all_images) |
|
|
|
if is_wandb_enabled: |
|
wandb.log({f"{section_name}/All_loss_on_one_images": loss_value, f"{section_name}_step": iters_one_imgs}) |
|
|
|
|
|
def upload_l1_loss_on_one_images(loss_value, iters_one_imgs, iters_all_images, epoch): |
|
section_name = get_section_name(epoch, iters_all_images) |
|
|
|
if is_wandb_enabled: |
|
wandb.log({f"{section_name}/L1_loss_on_one_images": loss_value, f"{section_name}_step": iters_one_imgs}) |
|
|
|
|
|
def upload_l2_loss_on_one_images(loss_value, iters_one_imgs, iters_all_images, epoch): |
|
section_name = get_section_name(epoch, iters_all_images) |
|
|
|
if is_wandb_enabled: |
|
wandb.log({f"{section_name}/L2_loss_on_one_images": loss_value, f"{section_name}_step": iters_one_imgs}) |
|
|
|
|
|
def upload_content_loss_on_one_images(loss_value, iters_one_imgs, iters_all_images, epoch): |
|
section_name = get_section_name(epoch, iters_all_images) |
|
|
|
if is_wandb_enabled: |
|
wandb.log({f"{section_name}/Content_loss_on_one_images": loss_value, f"{section_name}_step": iters_one_imgs}) |
|
|
|
|
|
def upload_style_loss_on_one_images(loss_value, iters_one_imgs, iters_all_images, epoch): |
|
section_name = get_section_name(epoch, iters_all_images) |
|
|
|
if is_wandb_enabled: |
|
wandb.log({f"{section_name}/Style_loss_on_one_images": loss_value, f"{section_name}_step": iters_one_imgs}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def upload_l1_loss_all(loss_values, iters_images, epoch): |
|
if is_wandb_enabled: |
|
wandb.log({f"epoch_{epoch}/L1_loss": loss_values}, step=iters_images) |
|
|
|
|
|
|
|
def upload_l2_loss(loss_values, iters, epoch): |
|
if is_wandb_enabled: |
|
wandb.log({f"epoch_{epoch}/L2_loss": loss_values}, step=iters) |
|
|
|
|
|
def upload_content_loss(loss_c, iters, epoch): |
|
if is_wandb_enabled: |
|
wandb.log({f"epoch_{epoch}/Content_loss": loss_c}, step=iters) |
|
|
|
|
|
def upload_style_loss(loss_s, iters, epoch): |
|
if is_wandb_enabled: |
|
wandb.log({f"epoch_{epoch}/Style_loss": loss_s}, step=iters) |
|
|
|
|
|
def upload_epoch(epoch,iter_images): |
|
if is_wandb_enabled: |
|
wandb.log({"epoch": epoch}) |
|
|
|
|
|
def upload_lr(lr,epoch): |
|
if is_wandb_enabled: |
|
wandb.log({"learning_rate": lr}) |
|
|
|
|
|
def upload_loss_all(loss_all, iters, epoch): |
|
if is_wandb_enabled: |
|
wandb.log({f"epoch_{epoch}/Total_loss": loss_all}, step=iters) |
|
|
|
|
|
def logs_model(model_params): |
|
"""Ghi log các tham số của mô hình lên Wandb.""" |
|
if is_wandb_enabled: |
|
wandb.log({"model_parameters": model_params}) |
|
|
|
|
|
def logs_params(params): |
|
"""Ghi log các tham số khác lên Wandb.""" |
|
if is_wandb_enabled: |
|
wandb.log({"params": params}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def logs_running(terminal_output): |
|
if is_wandb_enabled: |
|
wandb.log({"terminal_output": wandb.Html(terminal_output)}) |
|
|
|
def stop(): |
|
if is_wandb_enabled: |
|
wandb.finish() |
|
|