HazeT_Hieu / util /logging_wandb.py
datnguyentien204's picture
Upload 1403 files
83034b6 verified
import wandb
import os
import matplotlib.pyplot as plt
import random
is_wandb_enabled = os.getenv("WANDB_DISABLED", "false").lower() != "true"
def get_next_directory(base_dir="results", sub_dir="train"):
result_dir = os.path.join(base_dir, sub_dir)
if not os.path.exists(result_dir):
os.makedirs(result_dir)
run_id = 0
while True:
run_dir = os.path.join(result_dir, f"VAL_Images_StyleTransfer_{run_id}")
if not os.path.exists(run_dir):
os.makedirs(run_dir)
return run_dir, run_id
run_id += 1
def init_project(base_dir="results", sub_dir="train"):
project_dir, run_id = get_next_directory(base_dir, sub_dir)
if is_wandb_enabled:
# `name` là cố định, còn `project` sẽ là VAL_Images_StyleTransfer_{run_id}
wandb.init(project=f"VAL_Images_StyleTransfer", name=f"VAL_Images_StyleTransfer_{run_id}r")
return project_dir
def upload_images(images, iters, img_index, epoch):
dir_name = f"epoch_{epoch}_iters_{iters}"
if not os.path.exists(dir_name):
os.makedirs(dir_name)
for i, img in enumerate(images):
img_name = f"img_{img_index}_{iters}_{epoch}.png"
img_path = os.path.join(dir_name, img_name)
plt.figure()
plt.imshow(img)
plt.title(f"Image {img_index} | Iter {iters} | Epoch {epoch}")
plt.axis('off')
plt.savefig(img_path)
plt.close()
if is_wandb_enabled:
wandb.log({f"epoch_{epoch}/img_{img_index}_{iters}_{epoch}": wandb.Image(img_path)})
#### ON ONE IMAGES
previous_iters_all_images = -1
last_iters=0
def reset_iters_if_needed(iters_all_images):
global previous_iters_all_images
if iters_all_images > previous_iters_all_images:
previous_iters_all_images = iters_all_images
return True # Cần reset cho section mới
return False
def get_section_name(epoch, iters_all_images):
return f"Iters on all Images_epoch{epoch}_iters{iters_all_images}"
def define_wandb_metrics(epoch, iters_all_images):
section_name = get_section_name(epoch, iters_all_images)
if is_wandb_enabled:
# Định nghĩa metric cho từng section (epoch + iters_all_images)
wandb.define_metric(f"{section_name}/All_loss_on_one_images", step_metric=f"{section_name}_step")
wandb.define_metric(f"{section_name}/L1_loss_on_one_images", step_metric=f"{section_name}_step")
wandb.define_metric(f"{section_name}/L2_loss_on_one_images", step_metric=f"{section_name}_step")
wandb.define_metric(f"{section_name}/Content_loss_on_one_images", step_metric=f"{section_name}_step")
wandb.define_metric(f"{section_name}/Style_loss_on_one_images", step_metric=f"{section_name}_step")
def upload_all_loss_on_one_images(loss_value, iters_one_imgs, iters_all_images, epoch):
if reset_iters_if_needed(iters_all_images):
iters_one_imgs = last_iters+iters_one_imgs
define_wandb_metrics(epoch, iters_all_images) # Định nghĩa các metric cho section mới
section_name = get_section_name(epoch, iters_all_images)
if is_wandb_enabled:
wandb.log({f"{section_name}/All_loss_on_one_images": loss_value, f"{section_name}_step": iters_one_imgs})
def upload_l1_loss_on_one_images(loss_value, iters_one_imgs, iters_all_images, epoch):
section_name = get_section_name(epoch, iters_all_images)
if is_wandb_enabled:
wandb.log({f"{section_name}/L1_loss_on_one_images": loss_value, f"{section_name}_step": iters_one_imgs})
def upload_l2_loss_on_one_images(loss_value, iters_one_imgs, iters_all_images, epoch):
section_name = get_section_name(epoch, iters_all_images)
if is_wandb_enabled:
wandb.log({f"{section_name}/L2_loss_on_one_images": loss_value, f"{section_name}_step": iters_one_imgs})
def upload_content_loss_on_one_images(loss_value, iters_one_imgs, iters_all_images, epoch):
section_name = get_section_name(epoch, iters_all_images)
if is_wandb_enabled:
wandb.log({f"{section_name}/Content_loss_on_one_images": loss_value, f"{section_name}_step": iters_one_imgs})
def upload_style_loss_on_one_images(loss_value, iters_one_imgs, iters_all_images, epoch):
section_name = get_section_name(epoch, iters_all_images)
if is_wandb_enabled:
wandb.log({f"{section_name}/Style_loss_on_one_images": loss_value, f"{section_name}_step": iters_one_imgs})
### ON ALL IMAGES
def upload_l1_loss_all(loss_values, iters_images, epoch):
if is_wandb_enabled:
wandb.log({f"epoch_{epoch}/L1_loss": loss_values}, step=iters_images)
def upload_l2_loss(loss_values, iters, epoch):
if is_wandb_enabled:
wandb.log({f"epoch_{epoch}/L2_loss": loss_values}, step=iters)
def upload_content_loss(loss_c, iters, epoch):
if is_wandb_enabled:
wandb.log({f"epoch_{epoch}/Content_loss": loss_c}, step=iters)
def upload_style_loss(loss_s, iters, epoch):
if is_wandb_enabled:
wandb.log({f"epoch_{epoch}/Style_loss": loss_s}, step=iters)
def upload_epoch(epoch,iter_images):
if is_wandb_enabled:
wandb.log({"epoch": epoch})
def upload_lr(lr,epoch):
if is_wandb_enabled:
wandb.log({"learning_rate": lr})
def upload_loss_all(loss_all, iters, epoch):
if is_wandb_enabled:
wandb.log({f"epoch_{epoch}/Total_loss": loss_all}, step=iters)
def logs_model(model_params):
"""Ghi log các tham số của mô hình lên Wandb."""
if is_wandb_enabled:
wandb.log({"model_parameters": model_params})
def logs_params(params):
"""Ghi log các tham số khác lên Wandb."""
if is_wandb_enabled:
wandb.log({"params": params})
# def save_model_weights(model, epoch, project_dir):
# """Lưu weights của model theo từng epoch."""
# weights_dir = os.path.join(project_dir, f"epoch_{epoch}")
# if not os.path.exists(weights_dir):
# os.makedirs(weights_dir)
#
# weights_path = os.path.join(weights_dir, f"weights_epoch_{epoch}.pth")
# torch.save(model.state_dict(), weights_path) # Lưu weights vào file .pth
#
# if is_wandb_enabled:
# wandb.save(weights_path)
def logs_running(terminal_output):
if is_wandb_enabled:
wandb.log({"terminal_output": wandb.Html(terminal_output)})
def stop():
if is_wandb_enabled:
wandb.finish()