import re import importlib import torch from argparse import Namespace import numpy as np from PIL import Image import os import argparse import dill as pickle import util.coco def save_obj(obj, name): with open(name, 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) def load_obj(name): with open(name, 'rb') as f: return pickle.load(f) # returns a configuration for creating a generator # |default_opt| should be the opt of the current experiment # |**kwargs|: if any configuration should be overriden, it can be specified here def copyconf(default_opt, **kwargs): conf = argparse.Namespace(**vars(default_opt)) for key in kwargs: print(key, kwargs[key]) setattr(conf, key, kwargs[key]) return conf def tile_images(imgs, picturesPerRow=4): """ Code borrowed from https://stackoverflow.com/questions/26521365/cleanly-tile-numpy-array-of-images-stored-in-a-flattened-1d-format/26521997 """ # Padding if imgs.shape[0] % picturesPerRow == 0: rowPadding = 0 else: rowPadding = picturesPerRow - imgs.shape[0] % picturesPerRow if rowPadding > 0: imgs = np.concatenate([imgs, np.zeros((rowPadding, *imgs.shape[1:]), dtype=imgs.dtype)], axis=0) # Tiling Loop (The conditionals are not necessary anymore) tiled = [] for i in range(0, imgs.shape[0], picturesPerRow): tiled.append(np.concatenate([imgs[j] for j in range(i, i + picturesPerRow)], axis=1)) tiled = np.concatenate(tiled, axis=0) return tiled # Converts a Tensor into a Numpy array # |imtype|: the desired type of the converted numpy array def tensor2im(image_tensor, imtype=np.uint8, normalize=True, tile=False): if isinstance(image_tensor, list): image_numpy = [] for i in range(len(image_tensor)): image_numpy.append(tensor2im(image_tensor[i], imtype, normalize)) return image_numpy if image_tensor.dim() == 4: # transform each image in the batch images_np = [] for b in range(image_tensor.size(0)): one_image = image_tensor[b] one_image_np = tensor2im(one_image) images_np.append(one_image_np.reshape(1, *one_image_np.shape)) images_np = np.concatenate(images_np, axis=0) if tile: images_tiled = tile_images(images_np) return images_tiled else: return images_np if image_tensor.dim() == 2: image_tensor = image_tensor.unsqueeze(0) image_numpy = image_tensor.detach().cpu().float().numpy() if normalize: image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 else: image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 image_numpy = np.clip(image_numpy, 0, 255) if image_numpy.shape[2] == 1: image_numpy = image_numpy[:, :, 0] return image_numpy.astype(imtype) # Converts a one-hot tensor into a colorful label map def tensor2label(label_tensor, n_label, imtype=np.uint8, tile=False): if label_tensor.dim() == 4: # transform each image in the batch images_np = [] for b in range(label_tensor.size(0)): one_image = label_tensor[b] one_image_np = tensor2label(one_image, n_label, imtype) images_np.append(one_image_np.reshape(1, *one_image_np.shape)) images_np = np.concatenate(images_np, axis=0) if tile: images_tiled = tile_images(images_np) return images_tiled else: images_np = images_np[0] return images_np if label_tensor.dim() == 1: return np.zeros((64, 64, 3), dtype=np.uint8) if n_label == 0: return tensor2im(label_tensor, imtype) label_tensor = label_tensor.cpu().float() if label_tensor.size()[0] > 1: label_tensor = label_tensor.max(0, keepdim=True)[1] label_tensor = Colorize(n_label)(label_tensor) label_numpy = np.transpose(label_tensor.numpy(), (1, 2, 0)) result = label_numpy.astype(imtype) return result def save_image(image_numpy, image_path, create_dir=False): if create_dir: os.makedirs(os.path.dirname(image_path), exist_ok=True) if len(image_numpy.shape) == 2: image_numpy = np.expand_dims(image_numpy, axis=2) if image_numpy.shape[2] == 1: image_numpy = np.repeat(image_numpy, 3, 2) image_pil = Image.fromarray(image_numpy) # save to png image_pil.save(image_path.replace('.jpg', '.png')) def mkdirs(paths): if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): if not os.path.exists(path): os.makedirs(path) def atoi(text): return int(text) if text.isdigit() else text def natural_keys(text): ''' alist.sort(key=natural_keys) sorts in human order http://nedbatchelder.com/blog/200712/human_sorting.html (See Toothy's implementation in the comments) ''' return [atoi(c) for c in re.split('(\d+)', text)] def natural_sort(items): items.sort(key=natural_keys) def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def find_class_in_module(target_cls_name, module): target_cls_name = target_cls_name.replace('_', '').lower() clslib = importlib.import_module(module) cls = None for name, clsobj in clslib.__dict__.items(): if name.lower() == target_cls_name: cls = clsobj if cls is None: print("In %s, there should be a class whose name matches %s in lowercase without underscore(_)" % (module, target_cls_name)) exit(0) return cls def save_network(net, label, epoch, opt): save_filename = '%s_net_%s.pth' % (epoch, label) save_path = os.path.join(opt.checkpoints_dir, opt.name, save_filename) torch.save(net.cpu().state_dict(), save_path) if len(opt.gpu_ids) and torch.cuda.is_available(): net.cuda() def save_generator_by_iter(net, label, epoch,iters, opt): gen_path = os.path.join(opt.checkpoints_dir, opt.name, "generators_by_iters") os.makedirs(gen_path,exist_ok=True) save_filename = '%s_iters_%s_net_%s.pth' % (epoch, iters, label) save_path = os.path.join(gen_path, save_filename) torch.save(net.cpu().state_dict(), save_path) if len(opt.gpu_ids) and torch.cuda.is_available(): net.cuda() def load_network(net, label, epoch, opt): save_filename = '%s_net_%s.pth' % (epoch, label) save_dir = os.path.join(opt.checkpoints_dir, opt.name) save_path = os.path.join(save_dir, save_filename) weights = torch.load(save_path) net.load_state_dict(weights) return net def load_genrator_network(model,checkpoint_path): print("======> Loading Checkpoint ====================>") device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if torch.cuda.is_available(): torch.cuda.empty_cache() checkpoint = torch.load(checkpoint_path, map_location=device) model.TransEncoder.load_state_dict(checkpoint['encoder1']) model.HeTransEncoder.load_state_dict(checkpoint['encoder2']) model.CNNdecoder.load_state_dict(checkpoint['decoder']) model.transModule.load_state_dict(checkpoint['transModule']) loss_count_interval = checkpoint['loss_count_interval'] print('======> loading finished') return model ############################################################################### # Code from # https://github.com/ycszen/pytorch-seg/blob/master/transform.py # Modified so it complies with the Citscape label map colors ############################################################################### def uint82bin(n, count=8): """returns the binary of integer n, count refers to amount of bits""" return ''.join([str((n >> y) & 1) for y in range(count - 1, -1, -1)]) def labelcolormap(N): if N == 35: # cityscape cmap = np.array([(0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (111, 74, 0), (81, 0, 81), (128, 64, 128), (244, 35, 232), (250, 170, 160), (230, 150, 140), (70, 70, 70), (102, 102, 156), (190, 153, 153), (180, 165, 180), (150, 100, 100), (150, 120, 90), (153, 153, 153), (153, 153, 153), (250, 170, 30), (220, 220, 0), (107, 142, 35), (152, 251, 152), (70, 130, 180), (220, 20, 60), (255, 0, 0), (0, 0, 142), (0, 0, 70), (0, 60, 100), (0, 0, 90), (0, 0, 110), (0, 80, 100), (0, 0, 230), (119, 11, 32), (0, 0, 142)], dtype=np.uint8) else: cmap = np.zeros((N, 3), dtype=np.uint8) for i in range(N): r, g, b = 0, 0, 0 id = i + 1 # let's give 0 a color for j in range(7): str_id = uint82bin(id) r = r ^ (np.uint8(str_id[-1]) << (7 - j)) g = g ^ (np.uint8(str_id[-2]) << (7 - j)) b = b ^ (np.uint8(str_id[-3]) << (7 - j)) id = id >> 3 cmap[i, 0] = r cmap[i, 1] = g cmap[i, 2] = b if N == 182: # COCO important_colors = { 'sea': (54, 62, 167), 'sky-other': (95, 219, 255), 'tree': (140, 104, 47), 'clouds': (170, 170, 170), 'grass': (29, 195, 49) } for i in range(N): name = util.coco.id2label(i) if name in important_colors: color = important_colors[name] cmap[i] = np.array(list(color)) return cmap class Colorize(object): def __init__(self, n=35): self.cmap = labelcolormap(n) self.cmap = torch.from_numpy(self.cmap[:n]) def __call__(self, gray_image): size = gray_image.size() color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0) for label in range(0, len(self.cmap)): mask = (label == gray_image[0]).cpu() color_image[0][mask] = self.cmap[label][0] color_image[1][mask] = self.cmap[label][1] color_image[2][mask] = self.cmap[label][2] return color_image