import os import ntpath import time from . import util from . import html import numpy as np import scipy.misc try: from StringIO import StringIO # Python 2.7 except ImportError: from io import BytesIO # Python 3.x class Visualizer(): def __init__(self, opt): self.opt = opt self.tf_log = opt.isTrain and opt.tf_log self.use_html = opt.isTrain and not opt.no_html self.win_size = opt.display_winsize self.name = opt.name if self.tf_log: import tensorflow as tf self.tf = tf self.log_dir = os.path.join(opt.checkpoints_dir, opt.name, 'logs') self.writer = tf.summary.FileWriter(self.log_dir) if self.use_html: self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web') self.img_dir = os.path.join(self.web_dir, 'images') print('create web directory %s...' % self.web_dir) util.mkdirs([self.web_dir, self.img_dir]) if opt.isTrain: self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') with open(self.log_name, "a") as log_file: now = time.strftime("%c") log_file.write('================ Training Loss (%s) ================\n' % now) # |visuals|: dictionary of images to display or save def display_current_results(self, visuals, epoch, step): ## convert tensors to numpy arrays visuals = self.convert_visuals_to_numpy(visuals) if self.tf_log: # show images in tensorboard output img_summaries = [] for label, image_numpy in visuals.items(): # Write the image to a string try: s = StringIO() except: s = BytesIO() if len(image_numpy.shape) >= 4: image_numpy = image_numpy[0] scipy.misc.toimage(image_numpy).save(s, format="jpeg") # Create an Image object img_sum = self.tf.Summary.Image(encoded_image_string=s.getvalue(), height=image_numpy.shape[0], width=image_numpy.shape[1]) # Create a Summary value img_summaries.append(self.tf.Summary.Value(tag=label, image=img_sum)) # Create and write Summary summary = self.tf.Summary(value=img_summaries) self.writer.add_summary(summary, step) if self.use_html: # save images to a html file img_path = os.path.join(self.img_dir, 'epoch%.3d_iter%.7d.png' % (epoch, step)) visuals_lst = [] for label, image_numpy in visuals.items(): if len(image_numpy.shape) >= 4: image_numpy = image_numpy[0] visuals_lst.append(image_numpy) image_cath = np.concatenate(visuals_lst, axis=0) util.save_image(image_cath, img_path) # update website webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=5) for n in range(epoch, 0, -1): webpage.add_header('epoch [%d]' % n) ims = [] txts = [] links = [] for label, image_numpy in visuals.items(): if isinstance(image_numpy, list): for i in range(len(image_numpy)): img_path = 'epoch%.3d_iter%.3d_%s_%d.png' % (n, step, label, i) ims.append(img_path) txts.append(label+str(i)) links.append(img_path) else: img_path = 'epoch%.3d_iter%.3d_%s.png' % (n, step, label) ims.append(img_path) txts.append(label) links.append(img_path) if len(ims) < 10: webpage.add_images(ims, txts, links, width=self.win_size) else: num = int(round(len(ims)/2.0)) webpage.add_images(ims[:num], txts[:num], links[:num], width=self.win_size) webpage.add_images(ims[num:], txts[num:], links[num:], width=self.win_size) webpage.save() # errors: dictionary of error labels and values def plot_current_errors(self, errors, step): if self.tf_log: for tag, value in errors.items(): value = value.mean().float() summary = self.tf.Summary(value=[self.tf.Summary.Value(tag=tag, simple_value=value)]) self.writer.add_summary(summary, step) # errors: same format as |errors| of plotCurrentErrors def print_current_errors(self, epoch, i, errors, t): message = '(epoch: %d, iters: %d, time: %.3f) ' % (epoch, i, t) for k, v in errors.items(): #print(v) #if v != 0: v = v.mean().float() message += '%s: %.3f ' % (k, v) print(message) with open(self.log_name, "a") as log_file: log_file.write('%s\n' % message) def convert_visuals_to_numpy(self, visuals): for key, t in visuals.items(): tile = self.opt.batchSize > 8 if 'input_label' == key: t = util.tensor2label(t, self.opt.label_nc, tile=tile) else: t = util.tensor2im(t, tile=tile) visuals[key] = t return visuals # save image to the disk def save_images(self, webpage, visuals, image_path, alpha=1.0): visuals = self.convert_visuals_to_numpy(visuals) image_dir = webpage.get_image_dir() short_path = ntpath.basename(image_path[0]) name = os.path.splitext(short_path)[0] visuals_lst = [] # image_name = '%s.png' % name # save image name with alpha value (upto 3 digits) image_name = '%s_%s.png' % (name, "{0:.3f}".format(alpha)) alpha = alpha.item() save_path = os.path.join(image_dir, str(alpha), image_name) for label, image_numpy in visuals.items(): visuals_lst.append(image_numpy) image_cath = np.concatenate(visuals_lst, axis=1) util.save_image(image_cath, save_path, create_dir=True)