Commit
·
9e37f58
1
Parent(s):
395b220
Create CSMD.py
Browse files
CSMD.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""CSMD: a dataset for assessing meaning preservation between sentences"""
|
16 |
+
|
17 |
+
import csv
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
from datasets import load_dataset
|
21 |
+
|
22 |
+
_CITATION = """\
|
23 |
+
@ARTICLE{10.3389/frai.2023.1223924,
|
24 |
+
AUTHOR={Beauchemin, David and Saggion, Horacio and Khoury, Richard},
|
25 |
+
TITLE={{MeaningBERT: Assessing Meaning Preservation Between Sentences}},
|
26 |
+
JOURNAL={Frontiers in Artificial Intelligence},
|
27 |
+
VOLUME={6},
|
28 |
+
YEAR={2023},
|
29 |
+
URL={https://www.frontiersin.org/articles/10.3389/frai.2023.1223924},
|
30 |
+
DOI={10.3389/frai.2023.1223924},
|
31 |
+
ISSN={2624-8212},
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
_DESCRIPTION = """\
|
36 |
+
Continuous Scale Meaning Dataset (CSMD) is a dataset for assessing meaning preservation between sentences.
|
37 |
+
"""
|
38 |
+
|
39 |
+
_HOMEPAGE = "https://github.com/GRAAL-Research/csmd"
|
40 |
+
|
41 |
+
_LICENSE = "Attribution 4.0 International (CC BY 4.0)"
|
42 |
+
|
43 |
+
_URL_LIST = [
|
44 |
+
(
|
45 |
+
"meaning.train",
|
46 |
+
"https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning/train.tsv",
|
47 |
+
),
|
48 |
+
(
|
49 |
+
"meaning.dev",
|
50 |
+
"https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning/dev.tsv",
|
51 |
+
),
|
52 |
+
(
|
53 |
+
"meaning.test",
|
54 |
+
"https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning/test.tsv",
|
55 |
+
),
|
56 |
+
(
|
57 |
+
"meaning_with_data_augmentation.train",
|
58 |
+
"https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning_with_data_augmentation/train.tsv",
|
59 |
+
),
|
60 |
+
(
|
61 |
+
"meaning_with_data_augmentation.dev",
|
62 |
+
"https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning_with_data_augmentation/dev.tsv",
|
63 |
+
),
|
64 |
+
(
|
65 |
+
"meaning_with_data_augmentation.test",
|
66 |
+
"https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning_with_data_augmentation/test.tsv",
|
67 |
+
),
|
68 |
+
(
|
69 |
+
"identical",
|
70 |
+
"https://github.com/GRAAL-Research/csmd/blob/main/dataset/holdout/identical.tsv",
|
71 |
+
),
|
72 |
+
(
|
73 |
+
"unrelated",
|
74 |
+
"https://github.com/GRAAL-Research/csmd/blob/main/dataset/holdout/unrelated.tsv",
|
75 |
+
),
|
76 |
+
]
|
77 |
+
|
78 |
+
_URLs = dict(_URL_LIST)
|
79 |
+
|
80 |
+
|
81 |
+
class CSMD(datasets.GeneratorBasedBuilder):
|
82 |
+
VERSION = datasets.Version("2.0.0")
|
83 |
+
|
84 |
+
BUILDER_CONFIGS = [
|
85 |
+
datasets.BuilderConfig(
|
86 |
+
name="meaning",
|
87 |
+
version=VERSION,
|
88 |
+
description="An instance consists of 1,355 meaning preservation triplets (Document, simplification, "
|
89 |
+
"label).",
|
90 |
+
),
|
91 |
+
datasets.BuilderConfig(
|
92 |
+
name="meaning_with_data_augmentation",
|
93 |
+
version=VERSION,
|
94 |
+
description="An instance consists of 1,355 meaning preservation triplets (Document, simplification, label) "
|
95 |
+
"along with 1,355 data augmentation triplets (Document, Document, 1) and 1,355 data "
|
96 |
+
"augmentation triplets (Document, Unrelated Document, 0) (See the sanity checks in our "
|
97 |
+
"article).",
|
98 |
+
),
|
99 |
+
datasets.BuilderConfig(
|
100 |
+
name="meaning_holdout_identical",
|
101 |
+
version=VERSION,
|
102 |
+
description="An instance consists of 359 meaning holdout preservation identical triplets (Document, "
|
103 |
+
"Document, 1) based on the ASSET Simplification dataset.",
|
104 |
+
),
|
105 |
+
datasets.BuilderConfig(
|
106 |
+
name="meaning_holdout_unrelated",
|
107 |
+
version=VERSION,
|
108 |
+
description="An instance consists of 359 meaning holdout preservation unrelated triplets (Document, "
|
109 |
+
"Unrelated Document, 0) based on the ASSET Simplification dataset.",
|
110 |
+
),
|
111 |
+
]
|
112 |
+
|
113 |
+
DEFAULT_CONFIG_NAME = "meaning"
|
114 |
+
|
115 |
+
def _info(self):
|
116 |
+
features = datasets.Features(
|
117 |
+
{
|
118 |
+
"document": datasets.Value("string"),
|
119 |
+
"simplification": datasets.Sequence(datasets.Value("string")),
|
120 |
+
"labels": datasets.Value("int32"),
|
121 |
+
}
|
122 |
+
)
|
123 |
+
return datasets.DatasetInfo(
|
124 |
+
description=_DESCRIPTION,
|
125 |
+
features=features,
|
126 |
+
supervised_keys=None,
|
127 |
+
homepage=_HOMEPAGE,
|
128 |
+
license=_LICENSE,
|
129 |
+
citation=_CITATION,
|
130 |
+
)
|
131 |
+
|
132 |
+
def _split_generators(self, dl_manager):
|
133 |
+
data_dir = dl_manager.download_and_extract(_URLs)
|
134 |
+
if self.config.name in ("meaning", "meaning_with_data_augmentation"):
|
135 |
+
return [
|
136 |
+
datasets.SplitGenerator(
|
137 |
+
name=datasets.Split.TRAIN,
|
138 |
+
gen_kwargs={
|
139 |
+
"filepaths": data_dir,
|
140 |
+
"split": "train",
|
141 |
+
},
|
142 |
+
),
|
143 |
+
datasets.SplitGenerator(
|
144 |
+
name=datasets.Split.VALIDATION,
|
145 |
+
gen_kwargs={
|
146 |
+
"filepaths": data_dir,
|
147 |
+
"split": "valid",
|
148 |
+
},
|
149 |
+
),
|
150 |
+
datasets.SplitGenerator(
|
151 |
+
name=datasets.Split.TEST,
|
152 |
+
gen_kwargs={"filepaths": data_dir, "split": "test"},
|
153 |
+
),
|
154 |
+
]
|
155 |
+
elif self.config.name in ("identical", "unrelated"):
|
156 |
+
return [
|
157 |
+
datasets.SplitGenerator(
|
158 |
+
name=f"{self.config.name}_{datasets.Split.TEST}",
|
159 |
+
gen_kwargs={
|
160 |
+
"filepaths": data_dir,
|
161 |
+
"split": "test",
|
162 |
+
},
|
163 |
+
),
|
164 |
+
]
|
165 |
+
|
166 |
+
def _generate_examples(self, filepaths, split):
|
167 |
+
with open(filepaths[split], encoding="utf-8") as f:
|
168 |
+
reader = csv.reader(f, delimiter="\t")
|
169 |
+
for id_, row in enumerate(reader):
|
170 |
+
if id_ == 0:
|
171 |
+
# Columns header
|
172 |
+
keys = row[:]
|
173 |
+
else:
|
174 |
+
res = dict([(k, v) for k, v in zip(keys, row)])
|
175 |
+
for k in ["document", "simplification", "labels"]:
|
176 |
+
res[k] = int(res[k])
|
177 |
+
yield (
|
178 |
+
id_ - 1
|
179 |
+
), res # Minus 1, since first idx is the columns header
|