davebulaval commited on
Commit
9e37f58
·
1 Parent(s): 395b220

Create CSMD.py

Browse files
Files changed (1) hide show
  1. CSMD.py +179 -0
CSMD.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """CSMD: a dataset for assessing meaning preservation between sentences"""
16
+
17
+ import csv
18
+
19
+ import datasets
20
+ from datasets import load_dataset
21
+
22
+ _CITATION = """\
23
+ @ARTICLE{10.3389/frai.2023.1223924,
24
+ AUTHOR={Beauchemin, David and Saggion, Horacio and Khoury, Richard},
25
+ TITLE={{MeaningBERT: Assessing Meaning Preservation Between Sentences}},
26
+ JOURNAL={Frontiers in Artificial Intelligence},
27
+ VOLUME={6},
28
+ YEAR={2023},
29
+ URL={https://www.frontiersin.org/articles/10.3389/frai.2023.1223924},
30
+ DOI={10.3389/frai.2023.1223924},
31
+ ISSN={2624-8212},
32
+ }
33
+ """
34
+
35
+ _DESCRIPTION = """\
36
+ Continuous Scale Meaning Dataset (CSMD) is a dataset for assessing meaning preservation between sentences.
37
+ """
38
+
39
+ _HOMEPAGE = "https://github.com/GRAAL-Research/csmd"
40
+
41
+ _LICENSE = "Attribution 4.0 International (CC BY 4.0)"
42
+
43
+ _URL_LIST = [
44
+ (
45
+ "meaning.train",
46
+ "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning/train.tsv",
47
+ ),
48
+ (
49
+ "meaning.dev",
50
+ "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning/dev.tsv",
51
+ ),
52
+ (
53
+ "meaning.test",
54
+ "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning/test.tsv",
55
+ ),
56
+ (
57
+ "meaning_with_data_augmentation.train",
58
+ "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning_with_data_augmentation/train.tsv",
59
+ ),
60
+ (
61
+ "meaning_with_data_augmentation.dev",
62
+ "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning_with_data_augmentation/dev.tsv",
63
+ ),
64
+ (
65
+ "meaning_with_data_augmentation.test",
66
+ "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning_with_data_augmentation/test.tsv",
67
+ ),
68
+ (
69
+ "identical",
70
+ "https://github.com/GRAAL-Research/csmd/blob/main/dataset/holdout/identical.tsv",
71
+ ),
72
+ (
73
+ "unrelated",
74
+ "https://github.com/GRAAL-Research/csmd/blob/main/dataset/holdout/unrelated.tsv",
75
+ ),
76
+ ]
77
+
78
+ _URLs = dict(_URL_LIST)
79
+
80
+
81
+ class CSMD(datasets.GeneratorBasedBuilder):
82
+ VERSION = datasets.Version("2.0.0")
83
+
84
+ BUILDER_CONFIGS = [
85
+ datasets.BuilderConfig(
86
+ name="meaning",
87
+ version=VERSION,
88
+ description="An instance consists of 1,355 meaning preservation triplets (Document, simplification, "
89
+ "label).",
90
+ ),
91
+ datasets.BuilderConfig(
92
+ name="meaning_with_data_augmentation",
93
+ version=VERSION,
94
+ description="An instance consists of 1,355 meaning preservation triplets (Document, simplification, label) "
95
+ "along with 1,355 data augmentation triplets (Document, Document, 1) and 1,355 data "
96
+ "augmentation triplets (Document, Unrelated Document, 0) (See the sanity checks in our "
97
+ "article).",
98
+ ),
99
+ datasets.BuilderConfig(
100
+ name="meaning_holdout_identical",
101
+ version=VERSION,
102
+ description="An instance consists of 359 meaning holdout preservation identical triplets (Document, "
103
+ "Document, 1) based on the ASSET Simplification dataset.",
104
+ ),
105
+ datasets.BuilderConfig(
106
+ name="meaning_holdout_unrelated",
107
+ version=VERSION,
108
+ description="An instance consists of 359 meaning holdout preservation unrelated triplets (Document, "
109
+ "Unrelated Document, 0) based on the ASSET Simplification dataset.",
110
+ ),
111
+ ]
112
+
113
+ DEFAULT_CONFIG_NAME = "meaning"
114
+
115
+ def _info(self):
116
+ features = datasets.Features(
117
+ {
118
+ "document": datasets.Value("string"),
119
+ "simplification": datasets.Sequence(datasets.Value("string")),
120
+ "labels": datasets.Value("int32"),
121
+ }
122
+ )
123
+ return datasets.DatasetInfo(
124
+ description=_DESCRIPTION,
125
+ features=features,
126
+ supervised_keys=None,
127
+ homepage=_HOMEPAGE,
128
+ license=_LICENSE,
129
+ citation=_CITATION,
130
+ )
131
+
132
+ def _split_generators(self, dl_manager):
133
+ data_dir = dl_manager.download_and_extract(_URLs)
134
+ if self.config.name in ("meaning", "meaning_with_data_augmentation"):
135
+ return [
136
+ datasets.SplitGenerator(
137
+ name=datasets.Split.TRAIN,
138
+ gen_kwargs={
139
+ "filepaths": data_dir,
140
+ "split": "train",
141
+ },
142
+ ),
143
+ datasets.SplitGenerator(
144
+ name=datasets.Split.VALIDATION,
145
+ gen_kwargs={
146
+ "filepaths": data_dir,
147
+ "split": "valid",
148
+ },
149
+ ),
150
+ datasets.SplitGenerator(
151
+ name=datasets.Split.TEST,
152
+ gen_kwargs={"filepaths": data_dir, "split": "test"},
153
+ ),
154
+ ]
155
+ elif self.config.name in ("identical", "unrelated"):
156
+ return [
157
+ datasets.SplitGenerator(
158
+ name=f"{self.config.name}_{datasets.Split.TEST}",
159
+ gen_kwargs={
160
+ "filepaths": data_dir,
161
+ "split": "test",
162
+ },
163
+ ),
164
+ ]
165
+
166
+ def _generate_examples(self, filepaths, split):
167
+ with open(filepaths[split], encoding="utf-8") as f:
168
+ reader = csv.reader(f, delimiter="\t")
169
+ for id_, row in enumerate(reader):
170
+ if id_ == 0:
171
+ # Columns header
172
+ keys = row[:]
173
+ else:
174
+ res = dict([(k, v) for k, v in zip(keys, row)])
175
+ for k in ["document", "simplification", "labels"]:
176
+ res[k] = int(res[k])
177
+ yield (
178
+ id_ - 1
179
+ ), res # Minus 1, since first idx is the columns header